genefilter

November 11, 2009

R topics documented:

allNA . . e 1
ANOVA . . . L L e 2
coxfilter L e 3
OV o e e e e e 4
dist2 . .. e 5
eSetFilter e 6
filterfun e e e e e 7
findLargest 8
gapFilter e e 9
genefilter 10
genefinder 11
genescale L. L e e 12
halfrangemode 13
KOVerA e e e e 15
MAaXA . . e e 16
nsFilter L e 16
POVErA . . . e e e 19
TOWFLeStS 20
rowpAUCs-methods e 22
rowROC-class e 25
TOWSAS . .. 26
shorth o o e 27
tdata e e e e e e 28
TESE . . . e e 29
Index 31
allNA A filter function to determine if all elements of a vector are NA.
Description

allNA evaluates to FALSE if all elements of its argument are NA. anyNA evaluates to FALSE if
any of the elements of its argument are NA.

2 Anova

Usage
allNA (x)
anyNA (x)
Arguments

X The vector to test.

Value

FALSE if all elements of x are NA.

Author(s)

R. Gentleman

See Also

pOverA

Examples

allNA (NA)
allNA (1)
anyNA (1)
anyNA (NA)

Anova A filter function for Analysis of Variance

Description

Anova returns a function of one argument with bindings for cov and p. The function, when
evaluated, performs an ANOVA using cov as the covariate. It returns TRUE if the p value for a
difference in means is less than p.

Usage

Anova (cov, p=0.05, na.rm=TRUE)

Arguments
cov The covariate. It must have length equal to the number of columns of the array
that Anova will be applied to.
P The p-value for the test.
na.rm If set to TRUE any NA’s will be removed.
Details

The function returned by Anova uses 1m to fit a linear model of the form 1m (x ~ cov), where
x is the set of gene expressions. The F statistic for an overall effect is computed and if it has a
p-value less than p the function returns TRUE, otherwise it returns FALSE for that gene.

coxfilter 3

Value

Anova returns a function with bindings for cov and p that will perform a one-way ANOVA.

The covariate can be continuous, in which case the test is for a linear effect for the covariate.

Author(s)

R. Gentleman

See Also

kOverA, 1m

Examples

set.seed(123)
af <- Anova(c(rep(l,5),rep(2,5)), .01)
af (rnorm(10))

coxfilter A filter function for univariate Cox regression.

Description

A function that performs Cox regression with bindings for surt, cens, and p is returned. This
function filters genes according to the attained p-value from a Cox regression using surt as the
survival times, and cens as the censoring indicator. It requires survival.

Usage

coxfilter (surt, cens, p)

Arguments

surt Survival times.

cens Censoring indicator.

P The p-value to use in filtering.
Value

Calls to the coxph function in the survival library are used to fit a Cox model. The filter
function returns TRUE if the p-value in the fit is less than p.

Author(s)

R. Gentleman

See Also

Anova

Examples

set.seed (-5)

sfun <- coxfilter(rexp(10), ifelse(runif(10) < .7, 1, 0), .05)
ffun <- filterfun (sfun)

dat <- matrix (rnorm(1000), ncol=10)

out <- genefilter (dat, ffun)

cv A filter function for the coefficient of variation.

Description

cv returns a function with values for a and b bound. This function takes a single argument. It
computes the coefficient of variation for the input vector and returns TRUE if the coefficient of
variation is between a and b. Otherwise it returns FALSE

Usage

cv(a=1l, b=Inf, na.rm=TRUE)

Arguments

a The lower bound for the cv.

b The upper bound for the cv.

na.rm If set to TRUE any NA’s will be removed.
Details

The coefficient of variation is the standard deviation divided by the absolute value of the mean.

Value

It returns a function of one argument. The function has an environment with bindings for a and b.

Author(s)

R. Gentleman

See Also

pOverA, kOverA

Examples

set.seed (-3)

cvfun <- cv(1,10)
cvfun (rnorm(10,10))
cvfun (rnorm(10))

dist2 5

dist2 Calculate an n-by-n matrix by applying a function to pairs of columns
of an m-by-n matrix.

Description

Calculate an n-by-n matrix by applying a function to pairs of columns of an m-by-n matrix.

Usage

dist2 (x, fun=function(a,b) mean(abs(a-b), na.rm=TRUE), diagonal=0)

Arguments
x A matrix, or any object x for which ncol (x) and x [, j] return appropriate
results.
fun A symmetric function of two arguments that may be columns of x.
diagonal The value to be used for the diagonal elements of the resulting matrix.
Details

With the default value of fun, this function calculates for each pair of columns of x the mean of
the absolute values of their differences (which is proportional to the L1-norm of their difference).
This is a distance metric.

The implementation assumes that fun is symmetric, fun (a, b) =fun (b, a) . Hence, the returned
matrix is symmetric. fun (a, a) is not evaluated, instead the value of diagonal is used to fill
the diagonal elements of the returned matrix.

A use for this function is the detection of outlier arrays in a microarray experiment. Assume that
each column of x can be decomposed as z + 3 + €, where z is a fixed vector (the same for all
columns), € is vector of nrow{x} i.i.d. random numbers, and (is an arbitrary vector whose
majority of entries are negligibly small (i.e. close to zero). In other words, Dz the probe effects,
€ measurement noise and (3 differential expression effects. Under this assumption, all entries of
the resulting distance matrix should be the same, namely a multiple of the standard deviation of e.
Arrays whose distance matrix entries are way different give cause for suspicion.

Value

A symmetric matrix of sizen x n.

Examples

z = matrix (rnorm(15693), ncol=3)
dist2(z)

6 eSetFilter

eSetFilter A function to filter an eSet object

Description

Given a Bioconductor’s ExpressionSet object, this function filters genes using a set of selected
filters.

Usage

eSetFilter (eSet)

getFilterNames ()

getFuncDesc (lib = "genefilter", funcs = getFilterNames())
getRdAsText (1ib)

parseDesc (text)

parseArgs (text)

showESet (eSet)

setESetArgs (filter)

isESet (eSet)

Arguments
eSet eSet an ExpressionSet object
lib 1ib a character string for the name of an R library where functions of interests
reside
funcs funcs a vector of character strings for names of functions of interest
text text a character of string from a filed (e. g. description, argument, ..) filed of
an Rd file for a fucntion
filter filter acharacter string for the name of a filter function
Details

A set of filters may be selected to filter genes in through each of the filters in the order the filters
have been selected

Value

A logical vector of length equal to the number of rows of ’expr’. The values in that vector indicate
whether the corresponding row of ’expr’ passed the set of filter functions.

Author(s)

Jianhua Zhang

See Also

genefilter

filterfun 7

Examples

if (interactive ()) {
data (sample.ExpressionSet)
res <- eSetFilter (sample.ExpressionSet)

filterfun Creates a first FALSE exiting function from the list of filter functions it
is given.

Description

This function creates a function that takes a single argument. The filtering functions are bound in the
environment of the returned function and are applied sequentially to the argument of the returned
function. When the first filter function evaluates to FALSE the function returns FALSE otherwise it
returns TRUE.

Usage

filterfun(...)

Arguments

Filtering functions.

Value

filterfun returns a function that takes a single argument. It binds the filter functions given to it
in the environment of the returned function. These functions are applied sequentially (in the order
they were given to filterfun). The function returns FALSE (and exits) when the first filter
function returns FALSE otherwise it returns TRUE.

Author(s)

R. Gentleman

See Also

genefilter

Examples

set.seed (333)

x <- matrix (rnorm(100,2,1),nc=10)
cvfun <- cv(.5,2.5)

ffun <- filterfun (cvfun)

which <- genefilter(x, ffun)

8 findLargest

findLargest Find the Entrez Gene ID corresponding to the largest statistic

Description

Most microarrays have multiple probes per gene (Entrez). This function finds all replicates, and
then selects the one with the largest value of the test statistic.

Usage
findLargest (gN, testStat, data = "hgul33plus2")
Arguments
gN A vector of probe identifiers for the chip.
testStat A vector of test statistics, of the same length as gN with the per probe test statis-
tics.
data The character string identifying the chip.
Details

All the probe identifiers, gN, are mapped to Entrez Gene IDs and the duplicates determined. For
any set of probes that map to the same Gene ID, the one with the largest test statistic is found. The
return vector is the named vector of selected probe identifiers. The names are the Entrez Gene IDs.

This could be extended in different ways, such as allowing the user to use a different selection
criterion. Also, matching on different identifiers seems like another alternative.

Value

A named vector of probe IDs. The names are Entrez Gene IDs.

Author(s)

R. Gentleman

See Also

sapply

Examples

library ("hgu95av2.db")

set.seed (124)

gN <- sample(ls (hgu95av2ENTREZID), 200)
stats <- rnorm(200)

findLargest (gN, stats, "hgu95av2")

gapFilter 9

gapFilter A filter to select genes based on there being a gap.

Description

The gapFilter looks for genes that might usefully discriminate between two groups (possibly
unknown at the time of filtering). To do this we look for a gap in the ordered expression values.
The gap must come in the central portion (we exclude jumps in the initial Prop values or the final
Prop values). Alternatively, if the IQR for the gene is large that will also pass our test and the gene
will be selected.

Usage

gapFilter (Gap, IQR, Prop, na.rm=TRUE, neg.rm=TRUE)

Arguments
Gap The size of the gap required to pass the test.
IOR The size of the IQR required to pass the test.
Prop The proportion (or number) of samples to exclude at either end.
na.rm If TRUE then NA’s will be removed before processing.
neg.rm If TRUE then negative values in x will be removed before processing.
Details

As stated above we are interested in

Value

A function that returns either TRUE or FALSE depending on whether the vector supplied has a gap
larger than Gap or an IQR (inter quartile range) larger than IQR. For computing the gap we want to
exclude a proportion, Prop from either end of the sorted values. The reason for this requirement is
that genes which differ in expression levels only for a few samples are not likely to be interesting.

Author(s)

R. Gentleman

See Also

ttest,genefilter

Examples

set.seed (250)

X <- c¢(rnorm(10,100,3), rnorm(10, 100, 10))
y <= x + c(rep(0,10), rep(100,10))

tmp <- rbind(x,y)

Gfilter <- gapFilter (200, 100, 5)

ffun <- filterfun(Gfilter)

genefilter (tmp, ffun)

10 genefilter

genefilter A function to filter genes.

Description

genefilter filters genes in the array expr using the filter functions in £1ist. It returns an
array of logical values (suitable for subscripting) of the same length as there are rows in expr. For
each row of expr the returned value is TRUE if the row passed all the filter functions. Otherwise it
is set to FALSE.

Usage

genefilter (expr, flist)

Arguments
expr Amatrix or ExpressionSet that the filter functions will be applied to.
flist A 1ist of filter functions to apply to the array.

Details

This package uses a very simple but powerful protocol for filtering genes. The user simply con-
structs any number of tests that they want to apply. A test is simply a function (as constructed using
one of the many helper functions in this package) that returns TRUE if the gene of interest passes
the test (or filter) and FALSE if the gene of interest fails.

The benefit of this approach is that each test is constructed individually (and can be tested individ-
ually). The tests are then applied sequentially to each gene. The function returns a logical vector
indicating whether the gene passed all tests functions or failed at least one of them.

Users can construct their own filters. These filters should accept a vector of values, corresponding
to a row of the expr object. The user defined function should return a length 1 logical vector, with
value TRUE or FALSE. User-defined functions can be combined with £ilterfun, just as built-in
filters.

Value

A logical vector of length equal to the number of rows of expr. The values in that vector
indicate whether the corresponding row of expr passed the set of filter functions.

Author(s)

R. Gentleman

See Also

genefilter, kOverA

genefinder 11

Examples

set.seed(-1)

f1l <- kOverA (5, 10)

flist <- filterfun(fl, allNA)

exprA <- matrix (rnorm (1000, 10), ncol = 10)
ans <- genefilter (exprA, flist)

genefinder Finds genes that have similar patterns of expression.

Description

Given an ExpressionSet or a matrix of gene expressions, and the indices of the genes of
interest, genefinder returns a 1ist of the numResults closest genes. The user can spec-
ify one of the standard distance measures listed below. The number of values to return can be
specified. The return value is a 1ist with two components: genes (measured through the desired
distance method) to the genes of interest (where X is the number of desired results returned) and
their distances.

Usage

genefinder (X, ilist, numResults=25, scale="none", weights, method="euclidean")

Arguments
X A numeric mat rix where columns represent patients and rows represent genes.
ilist A vector of genes of interest. Contains indices of genes in matrix X.

numResults Number of results to display, starting from the least distance to the greatest.

scale One of "none", "range", or "zscore". Scaling is carried out separately on each
row.
weights A vector of weights applied across the columns of X. If no weights are supplied,
no weights are applied.
method One of "euclidean", "maximum", "manhattan", "canberra", "correlation", "bi-
nary".
Details

If the scale option is "range", then the input matrix is scaled using genescale (). Ifitis
"zscore", then the input matrix is scaled using the scale builtin with no arguments.

The method option specifies the metric used for gene comparisons. The metric is applied, row by
row, for each gene specifiedin 11ist.

The "correlation" option for the distance method will return a value equal to 1-correlation(x).

See dist for a more detailed description of the distances.

Value

The returned value is a 1ist containing an entry for each gene specified in 11ist. Each 1ist
entry contains an array of distances for that gene of interest.

12 genescale

Author(s)
J. Gentry and M. Kajen

See Also

genescale

Examples

set.seed (12345)

#create some fake expression profiles
ml <- matrix (1:12, 4, 3)

vl <= 1

nr <- 2

#find the 2 rows of ml that are closest to row 1
genefinder (ml, vl, nr, method="euc")

v2 <= c(1,3)
genefinder (ml, v2, nr)

genefinder (ml, v2, nr, scale="range")
genefinder (ml, v2, nr, method="manhattan")
m2 <- matrix (rnorm(100), 10, 10)

v3 <- c(2, 5, 6, 8)

nr2 <- 6
genefinder (m2, v3, nr2, scale="zscore")

genescale Scales a matrix or vector.

Description

genescale returns a scaled version of the input matrix m by applying the following formula to
each column of the matrix:

yli] = (li] — min(2))/(maz(z) — min(x))

Usage

genescale (m, axis=2, method=c("z", "R"), na.rm=TRUE)

Arguments
m Input a matrix or a vector with numeric elements.
axis An integer indicating which axis of m to scale.
method Either "Z" or "R", indicating whether a Z scaling or a range scaling should be

performed.
na.rm A boolean indicating whether NA’s should be removed.

half.range.mode 13

Details
Either the rows or columns of m are scaled. This is done either by subtracting the mean and dividing
by the standard deviation ("Z") or by subtracing the minimum and dividing by the range.

Value

A scaled version of the input. If m is a matrix or a dataframe then the dimensions of the
returned value agree with that of m, in both cases the returned value is a mat rix.

Author(s)

R. Gentleman

See Also

genefinder,scale

Examples

m <- matrix(1:12, 4, 3)
genescale (m)

half.range.mode Mode estimation for continuous data

Description

For data assumed to be drawn from a unimodal, continuous distribution, the mode is estimated by
the “half-range” method. Bootstrap resampling for variance reduction may optionally be used.

Usage

half.range.mode (data, B, B.sample, beta = 0.5, diag = FALSE)

Arguments

data A numeric vector of data from which to estimate the mode.

B Optionally, the number of bootstrap resampling rounds to use. Note thatB = 1
resamples 1 time, whereas omitting B uses data as is, without resampling.

B.sample If bootstrap resampling is requested, the size of the bootstrap samples drawn
from data. Default is to use a sample which is the same size as data. For
large data sets, this may be slow and unnecessary.

beta The fraction of the remaining range to use at each iteration.

diag Print extensive diagnostics. For internal testing only... best left FALSE.

14 half.range.mode

Details

Briefly, the mode estimator is computed by iteratively identifying densest half ranges. (Other frac-
tions of the current range can be requested by setting bet a to something other than 0.5.) A densest
half range is an interval whose width equals half the current range, and which contains the maximal
number of observations. The subset of observations falling in the selected densest half range is then
used to compute a new range, and the procedure is iterated. See the references for details.

If bootstrapping is requested, B half-range mode estimates are computed for B bootstrap samples,
and their average is returned as the final estimate.

Value

The mode estimate.

Author(s)

Richard Bourgon <bourgon@stat.berkeley.edu>

References

* DR Bickel, “Robust estimators of the mode and skewness of continuous data.” Computational
Statistics & Data Analysis 39:153-163 (2002).

* SB Hedges and P Shah, “Comparison of mode estimation methods and application in molec-
ular clock analysis.” BMC Bioinformatics 4:31-41 (2003).

See Also

shorth

Examples

A single normal-mixture data set

x <—= c¢(rnorm(10000), rnorm(2000, mean = 3))
M <- half.range.mode(x)

M.bs <- half.range.mode(x, B = 100)

if (interactive ()) {

hist (x, breaks = 40)

abline(v = ¢(M, M.bs), col = "red", lty = 1:2)

legend (
1.5, par("usr") [4],
c("Half-range mode", "With bootstrapping (B = 100)"),
lwd =1, 1lty = 1:2, cex = .8, col = "red"

)

Sampling distribution, with and without bootstrapping

X <= rbind(
matrix(rnorm (1000 100), ncol = 100),
matrix (rnorm (200 = 100, mean = 3), ncol = 100)
)
M.list <- list(
Simple = apply(X, 2, half.range.mode),

kOverA 15

BS = apply(X, 2, half.range.mode, B = 100)
)

if (interactive ()) {
boxplot (M.list, main = "Effect of bootstrapping")
abline(h = 0, col = "red")
}
kOverA A filter function for k elements larger than A.
Description

kOverA returns a filter function with bindings for k and A. This function evaluates to TRUE if at
least k of the arguments elements are larger than A.

Usage

kOverA(k, A=100, na.rm=TRUE)

Arguments
A The value you want to exceed.
The number of elements that have to exceed A.
na.rm If set to TRUE any NA’s will be removed.
Value

A function with bindings for A and k.

Author(s)

R. Gentleman

See Also

pOverA

Examples

fg <- kOverA (5, 100)
£g(90:100)
£g(98:110)

16 nsFilter

maxA A filter function to filter according to the maximum.

Description

maxA returns a function with the parameter A bound. The returned function evaluates to TRUE if
any element of its argument is larger than A.

Usage

maxA (A=75, na.rm=TRUE)

Arguments
A The value that at least one element must exceed.
na.rm If TRUE then NA’s are removed.

Value

maxA returns a function with an environment containing a binding for A.

Author(s)

R. Gentleman

See Also

pOverA

Examples

ff <- maxA (30)

£f£(1:10)
£f£(28:31)
nsFilter Non-Specific Filtering of Features in an ExpressionSet
Description

This function identifies and removes features that appear to be less informative. Use cases for this
function are: variable selection for subsequent sample clustering or classification tasks; independent
filtering of features used in subsequent hypothesis testing, with the aim of increasing the detection
rate (please see Details).

nsFilter 17

Usage

nsFilter (eset, require.entrez = TRUE, require.GOBP = FALSE,
require.GOCC = FALSE, require.GOMF = FALSE,
remove.dupEntrez = TRUE, var.func = IQR, var.cutoff = 0.5,
var.filter = TRUE, filterByQuantile=TRUE,
feature.exclude=""AFFX", ...)
varFilter (eset, var.func = IQR, var.cutoff = 0.5, filterByQuantile=TRUE)
featureFilter (eset, require.entrez=TRUE,
require.GOBP=FALSE, require.GOCC=FALSE,
require.GOMF=FALSE, remove.dupEntrez=TRUE,
feature.exclude=""AFFX")

Arguments

eset an ExpressionSet object

require.entrez
If TRUE, require that all probe sets have an Entrez Gene ID annotation. Probe
sets without such an annotation will be filtered out.

require.GOBP If TRUE, require that all probe sets have an annotation to at least one GO ID in
the BP ontology. Probe sets without such an annotation will be filtered out.

require.GOCC If TRUE, require that all probe sets have an annotation to at least one GO ID in
the CC ontology. Probe sets without such an annotation will be filtered out.

require.GOMF If TRUE, require that all probe sets have an annotation to at least one GO ID in
the MF ontology. Probe sets without such an annotation will be filtered out.

remove.dupkEntrez
If TRUE and there are multiple probe sets mapping to the same Entrez Gene ID,
then the probe set with the largest value of var . func will be retained and the
others removed.

var.func A function that will be used to assess the variance of a probe set across
all samples. This function should return a numeric vector of length one when
given a numeric vector as input. Probe sets with a var. func value less than
var.cutoff will be removed. The default is TQOR.

var.cutoff A numeric value to use in filtering out probe sets with small variance across
samples. See the var . func argument and the details section below.

var.filter A logical indicating whether or not to perform variance based filtering. The
default is TRUE.
filterByQuantile
Logical: whether the variance-filter cutoff threshold should be interpreted as a
quantile. Defaults to TRUE; if set to FALSE the cutoff value is used directly “as

29

is”.

feature.exclude
A character vector of regular expressions. Any probe sets identifiers (return
value of featureNames (eset)) that match one of the specified patterns
will be filtered out. The default value is intended to filter out Affymetrix quality
control probe sets.

Unused, but available for specializing methods.

18 nsFilter

Details

Marginal type I errors: Independent filtering of features used in subsequent hypothesis testing can
increase the detection rate at the same marginal type I error, as detailed in the following. Call U the
stage 1 filter statistic, U’/ the stage 2 test statistic for differential expression. Sufficient conditions
for marginal type-I error control are:

U the overall (across all samples) variance or mean, and U™ the t-statistic (or any other scale
and location invariant statistic);

U’ the overall mean, and U/ the moderated t-statistic (as in limma’s eBayes function);

U’ a sample-class label independent function (e.g. overall mean, median, variance, IQR), and
U!! the Wilcoxon rank sum statistic.

In each of these cases, the value of UZ for the k-th feature must depend on the data for the k-th
feature only, not on any other features.

Experiment-wide type I error: Marginal type-1 error control provided by the conditions above is
sufficient for control of the family wise error rate (FWER). Note, however, that common false
discovery rate (FDR) methods depend not only on the marginal behaviour of the test statistics under
the null hypothesis, but also on their joint distribution. The joint distribution can be affected by
filtering. The effect of this is negligible in many cases in practice, but this depends on the dataset
and the filter used, and the assessment is in the responsibility of the data analyst. For a more
comprehensive discussion, please see the reference (Bourgon et al.).

Annotation Based Filtering Arguments require.entrez, require.GOBP, require.GOCC,
and require.GOMF turn on a filter based on available annotation data. The annotation package
is determined by calling annotation (eset).

Duplicate Probe Removal If remove . dupEnt rez=TRUE, probes determined by your annotation
to be pointing to the same gene will be compared, and only the probe with the highest var. func
value will be retained.

Variance Based Filtering The var.filter, var. func, var.cutoff and varByQuantile
arguments control numerical cutoff-based filtering. The intention is to remove uninformative probe
sets, representing genes that were not expressed at all. Probes for which var. func returns NA are
removed. The default var. func is IQR, which is defined as rowQ (eset, ceiling(0.75
* ncol (eset))) - rowQ(eset, floor(0.25 % ncol (eset))); this choice is mo-
tivated by the observation that unexpressed genes are detected most reliably through their low
variability across samples. Additionally, IOR is robust to outliers (see note below). The default
var.cutoffis 0.5 and is motivated by the rule of thumb that in many tissues only 40% of genes
are expressed. Of course, if you believe in a different approach to numerical filtering you can choose
another function as var . func, or turn off numerical filtering by setting var.filter=FALSE.

Note that by default the numerical-filter cutoff is interpreted as a quantile, so leaving the default
values intact would filter out 50% of the genes remaining at this stage. If you prefer to set the
cutoff at some absolute threshold, change the value of varByQuantile to FALSE, and modify
var.cutoff accordingly.

Note also that variance filtering is performed last, so that (if varByQuant i1e=TRUE and remove . dupEnt rez=TRU
the final number of genes does indeed exclude precisely the var . cut of £ fraction of unique genes
remaining after all other filters were passed.

The stand-alone function varFilter does only numerical filtering, and returns an ExpressionSet.
featureFilter does only feature based filtering and duplicate removal, and returns an expres-
sion set as well. Duplicate removal is hard-coded to retain the highest-IQR probe for each gene.

pOverA 19

Value

For nsFilter alist consisting of:

eset the filtered ExpressionSet

filter.log a list giving details of how many probe sets where removed for each filtering
step performed.

For both varFilter and featureFilter the filtered ExpressionSet.

Note

IQOR is a reasonable variance-filter choice when the dataset is split into two roughly equal and
relatively homogeneous phenotype groups. If your dataset has important groups smaller than 25%
of the overall sample size, or if you are interested in unusual individual-level patterns, then TQR
may not be sensitive enough for your needs. In such cases, you should consider using less robust
and more sensitive measures of variance (the simplest of which would be sd).

Author(s)

Seth Falcon (somewhat revised by Assaf Oron)

References

R. Bourgon, R. Gentleman, W. Huber, Independent filtering increases power for detecting differen-
tially expressed genes, Technical Report.

Examples

library ("hgu95av2.db")

library ("Biobase")

data (sample.ExpressionSet)

ans <- nsFilter (sample.ExpressionSet)
ans$eset

ans$filter.log

skip variance-based filtering
ans <- nsFilter (sample.ExpressionSet, var.filter=FALSE)

al <- varFilter (sample.ExpressionSet)
a2 <- featureFilter (sample.ExpressionSet)

pOverA A filter function to filter according to the proportion of elements larger
than A.

Description

A function that returns a function with values for A, p and na . rm bound to the specified values.
The function takes a single vector, x, as an argument. When the returned function is evaluated it
returns TRUE if the proportion of values in x that are larger than A is at least p.

20 rowFtests

Usage

pOverA (p=0.05, A=100, na.rm=TRUE)

Arguments
A The value to be exceeded.
o The proportion that need to exceed A for TRUE to be returned.
na.rm If TRUE then NA’s are removed.

Value

pOverA returns a function with bindings for A, p and na . rm. This function evaluates to TRUE if
the proportion of values in x that are larger than A exceeds p.

Author(s)

R. Gentleman

See Also

cv

Examples

ff<- pOverA(p=.1, 10)
f£(1:20)
f£(1:5)

rowFtests t-tests and F-tests for rows or columns of a matrix

Description

t-tests and F-tests for rows or columns of a matrix

Usage

rowttests (x, fac, tstatOnly FALSE)
colttests (x, fac, tstatOnly = FALSE)

fastT(x, igl, ig2, var.equal = TRUE)
rowFtests (x, fac, var.equal = TRUE)
colFtests (x, fac, var.equal = TRUE)

rowFtests 21

Arguments

X Numeric matrix. The matrix must not contain NA values. For rowttests and
colttests, x can also be an ExpressionSet.

fac Factor which codes the grouping to be tested. There must be 1 or 2 groups for
the t-tests (corresponding to one- and two-sample t-test), and 2 or more for the
F-tests. If fac is missing, this is taken as a one-group test (i.e. is only allowed
for the t-tests). The length of the factor needs to correspond to the sample size:
for the row~ functions, the length of the factor must be the same as the number
of columns of x. for the col * functions, it must be the same as the number of
rows of x.
If x is an ExpressionSet, then fac may also be a character vector of length
1 with the name of a covariate variable in x.

tstatOnly A logical variable indicating whether to calculate parametric p-values. If TRUE,
just the t-statistics are returned. This can be considerably faster.

igl The indices of the columns of x that correspond to group 1.
ig2 The indices of the columns of x that correspond to group 2.

var.equal A logical variable indicating whether to treat the variances in the samples as
equal. If "'TRUE’, a simple F test for the equality of means in a one-way analysis
of variance is performed. If "FALSE’, an approximate method of Welch (1951)
is used, which generalizes the commonly known 2-sample Welch test to the case
of arbitrarily many samples.

Details

If fac is specified, rowttests performs for each row of x a two-sided, two-class t-test with
equal variances. fac must be a factor of length ncol (x) with two levels, corresponding to the
two groups. The sign of the resulting t-statistic corresponds to "group 1 minus group 2". If fac
is missing, rowttests performs for each row of x a two-sided one-class t-test against the null
hypothesis "'mean=0’.

rowttestsand colttests areimplemented in C and are reasonably fast and memory-efficient.
fastT is an alternative implementation, in Fortran, possibly useful for certain legacy code. rowFtests
and colFtests are currently implemented using matrix algebra in R. Compared to the xttests
functions, they are slower and use more memory.

Value

A data.frame with columns statistic, p.value (optional in the case of the t-test func-
tions) and dm, the difference of the group means (only in the case of the t-test functions). The
row.names of the data.frame are taken from the corresponding dimension names of x.

The degrees of freedom are provided in the attribute df. For the F-tests, if var.equal is
’FALSE’, nrow (x) +1 degree of freedoms are given, the first one is the first degree of freedom (it
is the same for each row) and the other ones are the second degree of freedom (one for each row).

Author(s)

Wolfgang Huber <huber @ebi.ac.uk>

References

B. L. Welch (1951), On the comparison of several mean values: an alternative approach. Biometrika,
*38%, 330-336

22

See Also

mt.teststat

Examples
x = matrix(runif(970), ncol=97)
f2 = factor (floor (runif (ncol (x))=*2))
£f7 = factor (floor (runif (ncol(x))=*x7))
rl = rowttests (x)
r2 = rowttests (x, £f2)
r7 = rowFtests (x, f7)

compare with pedestrian tests
about.equal = function(x,y,tol=1e-10)
stopifnot (all (abs(x-y) < tol))

for (j in l:nrow(x)) {
sl = t.test(x[7J,])
about.equal (sl$statistic, rl$statistic[j])
about.equal (sl$p.value, rl$p.value([j])

s2 = t.test(x[j,] ~ f£2, var.equal=TRUE)
about.equal (s2$statistic, r2$statistic([j])
about.equal (s28p.value, r2Sp.valuel[3j])

dm = -diff (tapply(x[j,], £2, mean))
about.equal (dm, r2$dml[j])

s7 = summary (lm(x[3j,]~£7))

about.equal (s7$statisticS$value, r7S$statistic([]j])

colttests
c2 = colttests(t(x), £f2)
stopifnot (identical (r2, c2))

missing values

f2n = £2
f2n[sample (length(f2n), 3)] = NA
r2n = rowttests(x, f2n)
for(j in l:nrow(x)) {
s2n = t.test(x[j,] ~ f£2n, var.equal=TRUE)

about.equal (s2n$statistic, r2n$statistic[j])

about .equal (s2n$p.value, r2n$p.valuel[]j])

rowpAUCs-methods

rowpAUCs-methods Rowwise ROC and pAUC computation

Description

Methods for fast rowwise computation of ROC curves and (partial) area under the curve (pAUC)
using the simple classification rule x > theta, where theta is a value in the range of x

rowpAUCs-methods 23

Usage

rowpAUCs (x, fac, p=0.1, flip=TRUE, caseNames=c("1", "2"))

Arguments

X ExpressionSet or numeric matrix. The matrix must not contain NA
values.

fac A factor or numeric or character that can be coerced to a factor.
If x is an ExpressionSet, this may also be a character vector of length
1 with the name of a covariate variable in x. fac must have exactly 2 levels.
For better control over the classification, use integer values in 0 and 1, where 1
indicates the "Disease" class in the sense of the Pepe et al paper (see below).

P Numeric vector of length 1. Limit in (0,1) to integrate pAUC to.

flip Logical. If TRUE, both classification rules x > theta and x < theta are
tested and the (partial) area under the curve of the better one of the two is re-
turned. This is appropriate for the cases in which the classification is not nec-
essarily linked to higher expression values, but instead it is symmetric and one
would assume both over- and under-expressed genes for both classes. You can
set f1ip to FALSE if you only want to screen for genes which discriminate
Disease from Control with the x > theta rule.

caseNames The class names that are used when plotting the data. If fac is the name of the
covariate variable in the ExpressionSet the function will use its levels as
caseNames.

Details

Rowwise calculation of Receiver Operating Characteristic (ROC) curves and the corresponding
partial area under the curve (pAUC) for a given data matrix or ExpressionSet. The function is
implemented in C and thus reasonably fast and memory efficient. Cutpoints (theta are calculated
before the first, in between and after the last data value. By default, both classification rules x >
theta and x < theta are tested and the (partial) area under the curve of the better one of the
two is returned. This is only valid for symmetric cases, where the classification is independent of
the magnitude of x (e.g., both over- and under-expression of different genes in the same class).
For unsymmetric cases in which you expect x to be consistently higher/lower in of of the two
classes (e.g. presence or absence of a single biomarker) set £11p=FALSE or use the functionality
provided in the ROC package. For better control over the classification (i.e., the choice of "Disease”
and "Control" class in the sense of the Pepe et al paper), argument fac can be an integer in [0, 1]
where 1 indicates "Disease" and 0 indicates "Control".

Value

An object of class rowROC with the calculated specificities and sensitivities for each row and the
corresponding pAUCs and AUCs values. See rowROC for details.

Methods
Methods exist for rowPAUCSs:
signature (x="matrix", fac="factor")
rowPABGPAUCs signature (x="matrix", fac="numeric")
rowPAUCs signature (x="ExpressionSet")

rowPAUCs signature (x="ExpressionSet", fac="character")

24 rowpAUCs-methods

Author(s)
Florian Hahne <fhahne @thcrc.org>

References

Pepe MS, Longton G, Anderson GL, Schummer M.: Selecting differentially expressed genes from
microarray experiments. Biometrics. 2003 Mar;59(1):133-42.

See Also

rocdemo.sca, rocdemo.sca, rocdemo.sca

Examples

library (Biobase)
data (sample.ExpressionSet)

rl = rowttests (sample.ExpressionSet, "sex")
r2 = rowpAUCs (sample.ExpressionSet, "sex", p=0.1)

plot (area(r2, total=TRUE), rlS$statistic, pch=16)
sel <- which(area(r2, total=TRUE) > 0.7)
plot (r2[sell)

this compares performance and output of rowpAUCs to function pAUC in
package ROC
if (require (ROC)) {

performance

myRule = function (x)
PAUC (rocdemo.sca (truth = as.integer (sample.ExpressionSet$sex)-1 ,
data = x, rule = dxrule.sca), t0 = 0.1)

nGenes = 200

cat ("computation time for ", nGenes, "genes:\n")

cat ("function pAUC: ")

print (system.time (r3 <- esApply(sample.ExpressionSet[l:nGenes,], 1, myRule)))
cat ("function rowpAUCs: ")

print (system.time (r2 <- rowpAUCs (sample.ExpressionSet[l:nGenes,],

"sex", p=1)))

compare output

myRule2 = function (x)
PAUC (rocdemo.sca (truth = as.integer (sample.ExpressionSetS$sex)-1 ,
data = x, rule = dxrule.sca), t0 = 1)

r4 <- esApply(sample.ExpressionSet[l:nGenes,], 1, myRule2)
plot (r4,area(r2), xlab="function pAUC", ylab="function rowpAUCs",
main="pAUCs")

plot (r4, area (rowpAUCs (sample.ExpressionSet[l:nGenes,],
"sex", p=1, flip=FALSE)), xlab="function pAUC", ylab="function rowpAUCs",
main="pAUCs")

r4[r4<0.5] <- 1-r4[r4<0.5]
plot (r4, area(r2), xlab="function pAUC", ylab="function rowpAUCs",
main="pAUCs")

rowROC-class 25

rowROC—-class Class "rowROC"

Description

A class to model ROC curves and corresponding area under the curve as produced by rowpAUCs.

Objects from the Class

Objects can be created by calls of the form new ("rowROC", ...).

Slots

data: Object of class "matrix" The input data.

ranks: Object of class "matrix" The ranked input data.

sens: Object of class "matrix" Matrix of senitivity values for each gene at each cutpoint.
spec: Object of class "matrix" Matrix of specificity values for each gene at each cutpoint.
PAUC: Object of class "numeric" The partial area under the curve (integrated from O to p.
AUC: Object of class "numeric" The total area under the curve.

factor: Object of class "factor" The factor used for classification.

cutpoints: Object of class "matrix" The values of the cutpoints at which specificity ans
sensitivity was calculated. (Note: the data is ranked prior to computation of ROC curves, the
cutpoints map to the ranked data.

caseNames: Object of class "character" The names of the two classification cases.

p: Object of class "numeric" The limit to which pAUC is integrated.

Methods

show signature (object="rowROC") Print nice info about the object.
[signature (x="rowROC", j="missing") Subset the object according to rows/genes.

plot signature (x="rowROC", y="missing") Plot the ROC curve of the first row of the
object along with the pAUC. To plot the curve for a specific row/gene subsetting should be
done first (i.e. plot (rowROC[1]).

PAUC signature (object="rowROC", p="numeric", flip="logical") Integrate
area under the curve from 0 to p. This method returns a new rowROC object.

AUC signature (object="rowROC") Integrate total area under the curve. This method re-
turns a new rowROC object.

sens signature (object="rowROC") Accessor method for sensitivity slot.
spec signature (object="rowROC") Accessor method for specificity slot.

area signature (object="rowROC", total="logical") Accessor method for pAUC
slot.

Author(s)

Florian Hahne <fhahne @thcrc.org>

26

References

rowSds

Pepe MS, Longton G, Anderson GL, Schummer M.: Selecting differentially expressed genes from

microarray experiments. Biometrics. 2003 Mar;59(1):133-42.

See Also

rowpAUCs

Examples

library (Biobase)

require (genefilter)

data (sample.ExpressionSet)

roc <- rowpAUCs (sample.ExpressionSet, "sex", p=0.5)
roc

area(roc[1l:3])

if (interactive()) {

par (ask=TRUE)

plot (roc)

plot (1-spec(roc[l]), sens(roc[2]))
par (ask=FALSE)

}

pAUC (roc, 0.1)
roc

rowSds Row variance and standard deviation of a numeric array

Description

Row variance and standard deviation of a numeric array

Usage

rowVars (X, ...)
row3ds (x, ...)

Arguments

x An array of two or more dimensions, containing numeric, complex, integer or

logical values, or a numeric data frame.

... Further arguments that get passed on to rowMeans and rowSums.

Details

These are very simple convenience functions, the main work is done in rowMeans and rowSums.

See the function definition of rowVars, it is very simple.

shorth 27

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional. The
‘dimnames’ (or ‘names’ for a vector result) are taken from the original array.

Author(s)

Wolfgang Huber http://www.ebi.ac.uk/huber

See Also

rowMeans and rowSums

Examples
a = matrix (rnorm(led4), nrow=10)
rowSds (a)
shorth A location estimator based on the shorth
Description

A location estimator based on the shorth

Usage

shorth (x, na.rm=FALSE, tie.action="mean", tie.limit=0.05)

Arguments
x Numeric
na.rm Logical. If TRUE, then non-finite (according to is.finite) values in x are
ignored. Otherwise, presence of non-finite or NA values will lead to an error
message.

tie.action Character scalar. See details.
tie.limit Numeric scalar. See details.

Details

The shorth is the shortest interval that covers half of the values in x. This function calculates the
mean of the x values that lie in the shorth. This was proposed by Andrews (1972) as a robust
estimator of location.

Ties: if there are multiple shortest intervals, the action specified in ties.action is applied.
Allowed values are mean (the default), max and min. For mean, the average value is considered;
however, an error is generated if the start indices of the different shortest intervals differ by more
than the fraction tie.limit of length (x). For min and max, the left-most or right-most,
respectively, of the multiple shortest intervals is considered.

Rate of convergence: as an estimator of location of a unimodal distribution, under regularity condi-
tions, the quantity computed here has an asymptotic rate of only n~'/3 and a complicated limiting
distribution.

See half.range.mode for an iterative version that refines the estimate iteratively and has a
builtin bootstrapping option.

http://www.ebi.ac.uk/huber

28 tdata

Value

The mean of the x values that lie in the shorth.

Author(s)

Wolfgang Huber http://www.ebi.ac.uk/huber, Ligia Pedroso Bras

References

* G Sawitzki, “The Shorth Plot.” Available at http://Ishorth.r-forge.r-project.org/TheShorthPlot.pdf
* DF Andrews, “Robust Estimates of Location.” Princeton University Press (1972).
* R Grueble, “The Length of the Shorth.” Annals of Statistics 16, 2:619-628 (1988).

* DR Bickel and R Fruehwirth, “On a fast, robust estimator of the mode: Comparisons to other
robust estimators with applications.” Computational Statistics & Data Analysis 50, 3500-3530
(2006).

See Also

half.range.mode
Examples

x = c(rnorm(500), runif (500) = 10)

methods = c("mean", "median", "shorth", "half.range.mode")
ests = sapply (methods, function(m) get (m) (x))
if (interactive ()) {

colors = 1:4

hist (x, 40, col="orange")
abline (v=ests, col=colors, lwd=3, lty=1:2)
legend (5, 100, names (ests), col=colors, 1lwd=3, lty=1:2)

tdata A small test dataset of Affymetrix Expression data.

Description
The tdata data frame has 500 rows and 26 columns. The columns correspond to samples while
the rows correspond to genes. The row names are Affymetrix accession numbers.

Usage

data (tdata)

Format

This data frame contains 26 columns.

http://www.ebi.ac.uk/huber

ttest 29

Source

An unknown data set.

Examples

data (tdata)

ttest A filter function for a t.test

Description

ttest returns a function of one argument with bindings for cov and p. The function, when
evaluated, performs a t-test using cov as the covariate. It returns TRUE if the p value for a difference

in means is less than p.

Usage

ttest (m, p=0.05, na.rm=TRUE)

Arguments
m If m is of length one then it is assumed that elements one through m of x will be
one group. Otherwise m is presumed to be the same length as x and constitutes
the groups.
o) The p-value for the test.
na.rm If set to TRUE any NA’s will be removed.
Details

When the data can be split into two groups (diseased and normal for example) then we often want
to select genes on their ability to distinguish those two groups. The t-test is well suited to this and

can be used as a filter function.

This helper function creates a t-test (function) for the specified covariate and considers a gene to
have passed the filter if the p-value for the gene is less than the prespecified p.

Value

ttest returns a function with bindings for m and p that will perform a t-test.

Author(s)

R. Gentleman

See Also

kOverA, Anova, t.test

30 ttest

Examples

dat <- c(rep(l,5),rep(2,5))
set.seed (5)

y <-= rnorm(10)

af <- ttest(dat, .01)
at (y)

af2 <- ttest (5, .01)
af2 (y)

y[8] <- NA

af (y)

af2(y)

y[1:5] <= y[1l:5]+10
af (y)

Index

+Topic arith
shorth, 27

xTopic array
rowSds, 26

*Topic classes
rowROC-class, 25

xTopic datasets
tdata, 28

+Topic manip
allNA, 1
Anova, 2
coxfilter, 3
cv, 4
dist2,5
eSetFilter, 6
filterfun,7
findLargest, 8
gapFilter,9
genefilter, 10
genefinder, 11
genescale, 12
kOverA, 15
maxA, 16
nsFilter, 16
pOverA, 19
rowSds, 26
ttest, 29

*Topic math
rowFtests, 20
rowpAUCs-methods, 22

*Topic robust
half.range.mode, 13

+Topic univar
half.range.mode, 13

[, rowROC—-method (rowROC-class), 25

allNAa, 1

Anova, 2, 3, 29

anyNA (allNA), 1

area (rowROC-class), 25

area, rowROC-method
(rowROC—-class), 25

AUC (rowROC-class), 25

31

AUC, rowROC—-method (rowROC-class),
25

colFtests (rowFtests), 20

colFtests, ExpressionSet, character-method
(rowFtests), 20

colFtests, ExpressionSet, factor-method
(rowFtests), 20

colFtests,matrix, factor-method
(rowFtests), 20

colttests (rowFtests), 20

colttests, ExpressionSet, character-method
(rowFtests), 20

colttests, ExpressionSet, factor-method
(rowFtests), 20

colttests, ExpressionSet,missing-method
(rowFtests), 20

colttests,matrix, factor—-method
(rowFtests), 20

colttests, matrix,missing-method
(rowFtests), 20

coxfilter,3

coxph, 3

cv, 4,20

dist, 11
dist2,5

eBayes, I8
eSetFilter, 6
ExpressionSet, 2/

fastT (rowFtests), 20
featureFilter (nsFilter), 16
filterfun,7, 10
findLargest, 8

gapFilter,9

genefilter,6,7,9,10, 10

genefinder, 11, 13

genefinder, ExpressionSet, vector-method
(genefinder), 11

genefinder,matrix, vector-method
(genefinder), 11

genescale, 12, 12

32

getFilterNames (eSetFilter), 6
getFuncDesc (eSetFilter), 6
getRdAsText (eSetFilter), 6

half.range.mode, 13,27, 28

is.finite, 27
isESet (eSetFilter), 6

kOvera, 2,4, 10, 15, 29
I1m, 2

maxA, 16
mt.teststat, 22

nsFilter, 16
nsFilter, ExpressionSet-method
(nsFilter), 16

parseArgs (eSetFilter), 6

parseDesc (eSetFilter), 6

PAUC (rowROC-class), 25

PAUC, rowROC, numeric-method
(rowROC-class), 25

plot, rowROC, missing-method
(rowROC—-class), 25

pOverA, 1,4, 15, 16, 19

rocdemo.sca, 24
rowFtests, 20

rowFtests, ExpressionSet, character-meth

(rowFtests), 20

rowFtests, ExpressionSet, factor-method

(rowFtests), 20

rowFtests,matrix, factor-method

(rowFtests), 20
rowMeans, 26, 27
rowpAUCs, 26
rowpAUCs (rowpAUCs-methods), 22

rowpAUCs, ExpressionSet, ANY-method

(rowpAUCs-methods), 22

INDEX

rowttests, ExpressionSet, character-method
(rowFtests), 20

rowttests, ExpressionSet, factor-method
(rowFtests), 20

rowttests, ExpressionSet,missing-method
(rowFtests), 20

rowttests,matrix, factor—-method
(rowFtests), 20

rowttests, matrix, missing-method
(rowFtests), 20

rowVars (rowSds), 26

sapply, 8

scale, I3

sens (rowROC-class), 25

sens, rowROC-method
(rowROC-class), 25

setESetArgs (eSetFilter), 6

shorth, 14, 27

show, rowROC-method
(rowROC-class), 25

showESet (eSetFilter), 6

spec (rowROC-class), 25

spec, rowROC-method
(rowROC-class), 25

t.test, 29
tdata, 28
ttest, 9,29

WﬁfFilter(nsFilterLl6

rowpAUCs, ExpressionSet, character-method

(rowpAUCs-methods), 22
rowpAUCs, matrix, factor-method
(rowpAUCs-methods), 22

rowpAUCs, matrix, numeric-method

(rowpAUCs-methods), 22
rowpAUCs-methods, 22
rowROC, 23
rowROC-class, 25
rowSds, 26
rowSums, 26, 27
rowttests (rowFtests), 20

	allNA
	Anova
	coxfilter
	cv
	dist2
	eSetFilter
	filterfun
	findLargest
	gapFilter
	genefilter
	genefinder
	genescale
	half.range.mode
	kOverA
	maxA
	nsFilter
	pOverA
	rowFtests
	rowpAUCs-methods
	rowROC-class
	rowSds
	shorth
	tdata
	ttest
	Index

