
Building R objects from ArrayExpress datasets

Audrey Kauffmann

January 27, 2009

1 ArrayExpress database

ArrayExpress is a public repository for transcriptomics and related data, which is aimed at storing
MIAME-compliant data in accordance with MGED recommendations. The ArrayExpress Data
Warehouse stores gene-indexed expression profiles and related measurements from a curated subset
of experiments in the repository. Currently, 100,000 hybridizations are represented in ArrayEx-
press. Please visit http://www.ebi.ac.uk/arrayexpress/ for more information on the database.

2 MAGE-TAB format

In the repository, for each dataset, ArrayExpress stores a MAGE-TAB document with standardized
format. A MAGE-TAB document contains four different types of files Investigation Description
Format (IDF), Array Design Format (ADF), Sample and Data Relationship Format (SDRF), and
Raw and processed data files. The tab-delimited IDF file contains top level information about the
experiment including title, description, submitter contact details and protocols. The tab-delimited
ADF file describes the design of an array, e.g., what sequence is located at each position on an
array and what the annotation of this sequence is. The tab-delimited SDRF file contains the
sample annotation and the relationship between arrays as provided by the submitter. The raw
zip file contains the raw files (like the CEL files for Affymetrix chips or the GPR files from the
GenePix scanner for instance), and the processed zip file contains all processed data in one generic
tab delimited text format.

3 Querying the database

With the queryAE function, you can query the ArrayExpress repository. Two arguments are avail-
able, ’keywords’ and ’species’. You can use both of them simultaneously or each of them inde-
pendently, depending on your needs. If you want to use several words, they need to be separated
by a ’+’ without any space. Here is an example where the object sets contains the identifiers
of all the datasets for which the word ’leukemia’ was found in the description and for which the
Homo sapiens is the studied species. You need to be connected to Internet to have access to the
database.

> library("ArrayExpress")

> sets = queryAE(keywords = "leukemia", species = "homo+sapiens")

In October 2008, this query was giving 167 identifiers. The output is a dataframe with the
identifiers and two columns giving the availability of the raw and processed data. When raw and
processed data are available for the same dataset, a unique identifier is given for both. There is
no way to distinguish between a processed and a raw dataset just from the identifier. The column
’Raw’ from the output of ArrayExpress allows to know if the raw data are available for a data set.
For a more extended querying mode, the ArrayExpress website offers an advanced query interface
with detailed results.

1

4 Import an ArrayExpress dataset into R

4.1 Call of the function ArrayExpress

Once you know which identifier you wish to retrieve, the function ArrayExpress can be called,
using the following arguments:

� input : an ArrayExpress identifier for which the raw data are available.

� path: the name of the directory in which the files downloaded from the ArrayExpress repos-
itory will be extracted. The default is the current directory.

� save: if TRUE, the files downloaded from the database will not be deleted from ’path’ after
executing the function.

� rawcol : by default, the columns are automatically selected according to the scanner type. If
the scanner is unknown or if the user wants to use different columns than the default, the
argument ’rawcol’ can be set. For two colour arrays it must be a list with the fields ’R’,
’G’, ’Rb’ and ’Gb’ giving the column names to be used for red and green foreground and
background. For one colour arrays, it must be a character string with the column name to
be used. These column names must correspond to existing column names of the expression
files.

You still need to be connected to Internet to have access to the database.

4.2 Examples and ouput format

Simple example The output object is an AffyBatch if the ArrayExpress identifier corresponds
to an Affymetrix experiment, it is an ExpressionSet if the identifier corresponds to a one colour
non Affymetrix experiment and it is a NChannelSet if the identifier corresponds to a two colours
experiment.

> rawset = ArrayExpress("E-MEXP-1422")

In this example, ’E-MEXP-1422’ being an Affymetrix experiment, ’rawset’ is an AffyBatch.
The expression values of ’rawset’ are the content from the CEL files. The phenoData of ’rawset’
contains the whole sample annotation file content from the MAGE-TAB sdrf file. The featureData
of ’rawset’ contains the feature annotation file content from the MAGE-TAB adf file. The exper-
imentData of ’rawset’ contains the experiment annotation file content from the MAGE-TAB idf
file.

Example when the column names are needed In the case of non Affymetrix experiments,
ArrayExpress decides automatically, based on known quantitation types, which column from the
scan files are to be used to fill the exprs. However, in some cases the scanner software is not
recognized or unknown and this decision cannot be made automatically. The argument ’rawcol’ is
then needed. Here is an example.

> eset = try(ArrayExpress("E-DKFZ-1"))

Here, the object cannot be built because the columns are not recognized. The error message
also gives a list of possible column names. We can then call the function again, feeding the
argument ’rawcol’ with the appropriate column names.

> eset = ArrayExpress("E-DKFZ-1",

+ rawcol = list(R = "Software Unknown:Foreground red",

+ G = "Software Unknown:Foreground green",

+ Rb = "Software Unknown:Background red" ,

+ Gb = "Software Unknown:Background green"))

2

Then eset is created. However, there is still a warning, the phenoData cannot be built. This
means that the object is correctly created but the sample annotation has not been attached to it.
It is still possible to manually correct the files and try to build the object. To do so, the functions
getAE and magetab2bioc, used by the ArrayExpress function, can be called separately.

5 Download an ArrayExpress dataset on your local machine

It is possible to only download the data, by calling the function getAE. The arguments ’input’,
’path’, ’save’ are the same than for the ArrayExpress function. The argument ’type’ determines if
you retrieve the MAGE-TAB files with the raw data only (by setting ’type’ to ’raw’), the MAGE-
TAB files with the processed data only (by setting ’type’ to ’processed’) or if you retrieve all the
MAGE-TAB files, both raw and processed (by setting ’type’ to ’full’). Here, you also need Internet
connection to access the database.

> full = getAE("E-MEXP-1422", type = "full")

Here, the output is a list of all the files that have been downloaded and extracted in the
directory ’path’.

6 Build an R object from local MAGE-TAB

If you have your own raw MAGE-TAB data or if you want to build an R object from existing
MAGE-TAB data that are stored locally on your computer. The function magetab2bioc can convert
them into an R object.

The arguments for the magetab2bioc are:

� rawfiles all the expression files to use to create the object. The content of the raw.zip
MAGE-TAB file.

� sdrf the sdrf file from MAGE-TAB.

� adf the adf file from MAGE-TAB.

� idf the idf file from MAGE-TAB.

� path see the ArrayExpress function arguments.

� rawcol see the ArrayExpress function arguments.

� save see the ArrayExpress function arguments.

As an example, we can use the files that we have downloaded in the previous example.

> rawset= magetab2bioc(rawfiles = full$rawfiles,

+ sdrf = full$sdrf,

+ adf = full$adf,

+ idf = full$idf)

The object rawset is an AffyBatch.

7 ArrayExpress package efficiency

For this first release, the ArrayExpress package works well on 96% of the raw data available on the
database. Ongoing work aims at developing a function to deal with the processed data as well.

3

