xcms

April 19, 2009

SSgauss

Gaussian Model

Description

This selfStart model evalueates the Gaussian model and its gradient. It has an initial attribute that will evalueate the initial estimates of the parameters mu, sigma, and h.

Usage

SSgauss(x, mu, sigma, h)

Arguments

Х	a numeric vector of values at which to evaluate the model
mu	mean of the distribution function
sigma	standard deviation of the distribution fuction
h	height of the distribution function

Details

Initial values for mu and h are chosen from the maximal value of x. The initial value for sigma is determined from the area under x divided by h*sqrt(2*pi).

Value

A numeric vector of the same length as x. It is the value of the expression $h \exp(-(x-mu)^2/(2 \times sigma^2))$, which is a modified gaussian function where the maximum height is treated as a separate parameter not dependent on sigma. If arguments mu, sigma, and h are names of objects, the gradient matrix with respect to these names is attached as an attribute named gradient.

Author(s)

Colin A. Smith, (csmith@scripps.edu)

See Also

nls, selfStart

c-methods

Description

Combines the samples and peaks from multiple xcmsSet objects into a single object. Group and retention time correction data are discarded. The profinfo list is set to be equal to the first object.

Arguments

xs1	xcmsSet object	
	xcmsSet objects	5

Value

A xcmsSet object.

Methods

xs1 = "xcmsRaw" c(xs1, ...)

Author(s)

Colin A. Smith, (csmith@scripps.edu)

See Also

xcmsSet-class

calibrate-methods Calibrate peaks for correcting unprecise m/z values

Description

Calibrate peaks of a xcmsSet via a set of known masses

Arguments

a xcmsSet object with uncalibrated mz
a vector or a list of vectors with reference m/z-values
the used calibrating-method, see below
the relative error used for matching peaks in ppm (parts per million)
the absolute error used for matching peaks in Da
the number of neighbours from wich the one with the highest intensity is used (instead of the nearest)
can be set to TRUE if wanted a result-plot showing the found m/z with the distances and the regression

collect-methods

Value

object	a xcmsSet with one ore more samples
wishlist	for each sample can be used a different wishlist if there is given a list of m/z-vectors. the length of the list must be the same as the number of samples, alter- natively a single vector of masses can be given which is used for all samples.
method	"shift" for shifting each m/z, "linear" does a linear regression and adds a linear term to each m/z. "edgeshift" does a linear regression within the range of the mz-wishlist and a shift outside.

Methods

See Also

xcmsSet-class,

collect-methods Collect MS[^]n peaks into xcmsFragments

Description

Collecting Peaks into xcmsFragmentss from several MS-runs using xcmsSet and xcmsRaw.

Arguments

object	(empty) xcmsFragments-class object
XS	A xcmsSet-class object which contains picked ms1-peaks from several experiments
compMethod	("floor", "round", "none"): compare-method which is used to find the parent- peak of a MSnpeak through comparing the MZ-values of the MS1peaks with the MSnParentDeaks
snthresh, mz	gap, uniq
·	these are the paramters for the getspec-peakpicker included in xcmsRaw.

Details

After running collect(xFragments,xSet) The peaktable of the xcmsFragments includes the ms1Peaks from all experiments stored in a xcmsSet-object. Further it contains the relevant msN-peaks from the xcmsRaw-objects, which were created temporarily with the paths in xcmsSet.

Value

A matrix with columns:

peakID	unique identifier of every peak
MSnParentPeal	<id< td=""></id<>
	PeakID of the parentpeak of a msLevel>1 - peak, it is 0 if the peak is msLevel 1.
msLevel	The msLevel of the peak.

rt	retention time of the peak midpoint
mz	the mz-Value of the peak
intensity	the intensity of the peak
sample	the number of the sample from the xcmsSet

Methods

```
object = "xcmsFragments" collect(object, ...)
```

diffreport-methods Create report of analyte differences

Description

Create a report showing the most significant differences between two sets of samples. Optionally create extracted ion chromatograms for the most significant differences.

Arguments

object	the xcmsSet object
class1	character vector with the first set of sample classes to be compared
class2	character vector with the second set of sample classes to be compared
filebase	base file name to save report, .tsv file and _eic will be appended to this name for the tabular report and EIC directory, respectively. if blank nothing will be saved
eicmax	number of the most significantly different analytes to create EICs for
eicwidth	width (in seconds) of EICs produced
sortpval	logical indicating whether the reports should be sorted by p-value
classeic	character vector with the sample classes to include in the EICs
value	<pre>intensity values to be used for the diffreport. If value="into", integrated peak intensities are used. If value="maxo", maximum peak intensities are used. If value="intb", baseline corrected integrated peak intensities are used (only available if peak detection was done by findPeaks.centWave).</pre>
metlin	mass uncertainty to use for generating link to Metlin metabolite database. the sign of the uncertainty indicates negative or positive mode data for M+H or M-H calculation. a value of FALSE or 0 removes the column
h	Numeric variable for the height of the eic and boxplots that are printed out.
W	Numeric variable for the width of the eic and boxplots print out made.
	optional arguments to be passed to mt.teststat

Details

This method handles creation of summary reports with statistics about which analytes were most significantly different between two sets of samples. It computes Welch's two-sample t-statistic for each analyte and ranks them by p-value. It returns a summary report that can optionally be written out to a tab-separated file.

Additionally, it does all the heavy lifting involved in creating superimposed extracted ion chromatograms for a given number of analytes. It does so by reading the raw data files assoicated with the samples of interest one at a time. As it does so, it prints the name of the sample it is currently reading. Depending on the number and size of the samples, this process can take a long time.

If a base file name is provided, the report (see Value section) will be saved to a tab separated file. If EICs are generated, they will be saved as 640x480 PNG files in a newly created subdirectory. However this parameter can be changed with the commands arguments. The numbered file names correspond to the rows in the report.

Chromatographic traces in the EICs are colored and labeled by their sample class. Sample classes take their color from the current palette. The color a sample class is assigned is dependent its order in the xcmsSet object, not the order given in the class arguments. Thus levels (sampclass (object)) [1] would use color palette() [1] and so on. In that way, sample classes maintian the same color across any number of different generated reports.

When there are multiple groups, xcms will produce boxplots of the different groups and will generate a single anova p-value statistic. Like the eic's the plot number corrosponds to the row number in the report.

Value

A data frame with the following columns:

fold	mean fold change (always greater than 1, see $tstat$ for which set of sample classes was higher)	
tstat	Welch's two sample t-statistic, positive for analytes having greater intensity in class2, negative for analytes having greater intensity in class1	
pvalue	p-value of t-statistic	
anova	p-value of the anova statistic if there are multiple groups	
mzmed	median m/z of peaks in the group	
mzmin	minimum m/z of peaks in the group	
mzmax	maximum m/z of peaks in the group	
rtmed	median retention time of peaks in the group	
rtmin	minimum retention time of peaks in the group	
rtmax	maximum retention time of peaks in the group	
npeaks	number of peaks assigned to the group	
Sample Classes		
	number samples from each sample class represented in the group	
	one column for every sample class	
Sample Names	integrated intensity value for every sample	
	one column for every sample	

Methods

See Also

xcmsSet-class,mt.teststat,palette

etg

Empirically Transformed Gaussian function

Description

A general function for asymmetric chromatographic peaks.

Usage

etg(x, H, t1, tt, k1, kt, lambda1, lambdat, alpha, beta)

Arguments

Х	times to evaluate function at
Н	peak height
t1	time of leading edge inflection point
tt	time of trailing edge inflection point
k1	leading edge parameter
kt	trailing edge parameter
lambda1	leading edge parameter
lambdat	trailing edge parameter
alpha	leading edge parameter
beta	trailing edge parameter

Value

The function evaluated at times x.

Author(s)

Colin A. Smith, (csmith@scripps.edu)

References

Jianwei Li. Development and Evaluation of Flexible Empirical Peak Functions for Processing Chromatographic Peaks. Anal. Chem., 69 (21), 4452-4462, 1997. http://dx.doi.org/10.1021/ac970481d

fillPeaks-methods Integrate areas of missing peaks

Description

For each sample, identify peak groups where that sample is not represented. For each of those peak groups, integrate the signal in the region of that peak group and create a new peak.

Arguments

object the xcmsSet object

Details

After peak grouping, there will always be peak groups that do not include peaks from every sample. This method produces intensity values for those missing samples by integrating raw data in peak group region. In a given group, the start and ending retention time points for integration are defined by the median start and end points of the other detected peaks. The start and end m/z values are similarly determined.

Importantly, if retention time correction data is available, the alignment information is used to more precisely integrate the propper region of the raw data.

Value

A xcmsSet objects with filled in peak groups.

Methods

object = "xcmsSet" fillPeaks(object)

See Also

xcmsSet-class,getPeaks

findPeaks-methods Feature detection for GC/MS and LC/MS Data - methods

Description

A number of peak pickers exist in XCMS. findPeaks is the generic method.

Arguments

object	xcmsRaw-class object
method	Method to use for peak detection. See details.
	Optional arguments to be passed along

Details

Different algorithms can be used by specifying them with the method argument. For example to use the matched filter approach described by Smith et al (2006) one would use: findPeaks (object, method="matchedFilter"). This is also the default.

Further arguments given by ... are passed through to the function implementing the method.

A character vector of *nicknames* for the algorithms available is returned by getOption("BioC")\$xcms\$findPeak If the nickname of a method is called "centWave", the help page for that specific method can be accessed with ?findPeaks.centWave.

Value

A matrix with columns:

mz	weighted (by intensity) mean of peak m/z across scans
mzmin	m/z of minimum step
mzmax	m/z of maximum step
rt	retention time of peak midpoint
rtmin	leading edge of peak retention time
rtmax	trailing edge of peak retention time
into	integrated area of original (raw) peak
maxo	maximum intensity of original (raw) peak

and additional columns depending on the choosen method.

Methods

object = "xcmsRaw" findPeaks(object, ...)

See Also

findPeaks.matchedFilter findPeaks.centWave xcmsRaw-class

findPeaks.MS1-methods

Collecting MS1 precursor peaks

Description

Collecting Tandem MS or MSⁿ Mass Spectrometry precursor peaks as annotated in XML raw file

Arguments

object xcmsRaw object

8

Details

Some mass spectrometers can acquire MS1 and MS2 (or MS n scans) quasi simultanously, e.g. in data dependent tandem MS or DDIT mode.

Since xcmsFragments attaches all MSⁿ peaks to MS1 peaks in xcmsSet, it is important that find-Peaks and xcmsSet do not miss any MS1 precursor peak.

To be sure that *all* MS1 precursor peaks are in an xcmsSet, findPeaks.MS1 does not do an actual peak picking, but simply uses the annotation stored in mzXML, mzData or mzML raw files.

This relies on the following XML tags:

```
mzData: <spectrum id="463"> <spectrumInstrument msLevel="2"> <cvParam
cvLabel="psi" accession="PSI:1000039" name="TimeInSeconds" value="92.7743"/>
</spectrumInstrument> <precursor msLevel="1" spectrumRef="461"> <cvParam
cvLabel="psi" accession="PSI:1000040" name="MassToChargeRatio" value="462.091"/>
<cvParam cvLabel="psi" accession="PSI:1000042" name="Intensity" value="366.674"/
</precursor> </spectrum>
```

```
mzXML: <scan num="17" msLevel="2" retentionTime="PT1.5224S"> <precursorMz
precursorIntensity="125245">220.1828003</precursorMz> </scan>
```

Several mzXML and mzData converters are known to create incomplete files, either without intensities (they will be set to 0) or without the precursor retention time (then a reasonably close rt will be chosen. NYI).

Value

A matrix with columns:

mz, mzmin, mzmax annotated MS1 precursor selection mass rt, rtmin, rtmax annotated MS1 precursor retention time into, maxo, sn annotated MS1 precursor intensity

Methods

object = "xcmsRaw" findPeaks.MS1(object)

Author(s)

Steffen Neumann, (sneumann@ipb-halle.de)

See Also

findPeaks-methods xcmsRaw-class

```
findPeaks.MSW-methods
```

Feature detection for single-spectrum non-chromatography MS data

Description

Processing Mass Spectrometry direct-injection spectrum by using wavelet based algorithm.

Arguments

object	xcmsSet object	
snthresh	signal to noise ratio cutoff	
verbose.colur	nns	
	additional peak meta data columns are returned	
	Parameters passed to peakDetectionCWT	

Details

This is a wrapper around the peak picker in the bioconductor package MassSpecWavelet calling peakDetectionCWT and tuneInPeakInfo.

Value

A matrix with columns:

mz	weighted (by intensity) mean of peak m/z across scans	
mzmin	same as mz	
mzmax	same as mz	
rt	always -1	
rtmin	always -1	
rtmax	always -1	
into	integrated area of original (raw) peak	
maxo	intensity of original (raw) peak at the centroid position	
sn	Signal/Noise ratio	

Methods

```
object = "xcmsRaw" findPeaks.MSW(object, snthresh=3, verbose.columns =
    FALSE, ...)
```

Author(s)

Steffen Neumann, \langle sneumann@ipb-halle.de \rangle

See Also

peakDetectionCWT findPeaks-methods xcmsRaw-class

findPeaks.centWave-methods

Feature detection for high resolution LC/MS data

Description

Peak density and wavelet based feature detection for high resolution LC/MS data in centroid mode

Arguments

object	xcmsSet object	
ppm	maxmial tolerated m/z deviation in consecutive scans, in ppm (parts per million)	
peakwidth	Chromatographic peak width, given as range (min,max) in seconds	
snthresh	signal to noise ratio cutoff, definition see below.	
prefilter	prefilter=c(k, I). Prefilter step for the first phase. Mass traces are only retained if they contain at least k peaks with intensity >= I.	
integrate	Integration method. If $=1$ peak limits are found through descent on the mexican hat filtered data, if $=2$ the descent is done on the real data. Method 2 is very accurate but prone to noise, while method 1 is more robust to noise but less exact.	
mzdiff	minimum difference in m/z for peaks with overlapping retention times, can be negative to allow overlap	
fitgauss	logical, if TRUE a Gaussian is fitted to each peak	
scanrange	scan range to process	
sleep	number of seconds to pause between plotting peak finding cycles	
verbose.colu	mns	
	logical, if TRUE additional peak meta data columns are returned	

Details

This algorithm is most suitable for high resolution LC/{TOF,OrbiTrap,FTICR}-MS data in centroid mode. In the first phase of the method mass traces (characterised as regions with less than ppm m/z deviation in consecutive scans) in the LC/MS map are located. In the second phase these mass traces are further analysed. Continuous wavelet transform (CWT) is used to locate chromatographic peaks on different scales.

Value

A matrix with columns:

mz	weighted (by intensity) mean of peak m/z across scans
mzmin	m/z peak minimum
mzmax	m/z peak maximum
rt	retention time of peak midpoint
rtmin	leading edge of peak retention time
rtmax	trailing edge of peak retention time

into	integrated peak intensity	
intb	baseline corrected integrated peak intensity	
maxo	maximum peak intensity	
sn	Signal/Noise ratio, defined as (maxo - baseline)/sd, where maxo is the maximum peak intensity, baseline the estimated baseline value and sd the standard deviation of local chromatographic noise.	
egauss	RMSE of Gaussian fit	
	if verbose.columns is TRUE additionally:	
mu	Gaussian parameter mu	
sigma	Gaussian parameter sigma	
h	Gaussian parameter h	
f	Region number of m/z ROI where the peak was localised	
dppm	m/z deviation of mass trace across scans in ppm	
scale	Scale on which the peak was localised	
scpos	Peak position found by wavelet analysis	
scmin	Left peak limit found by wavelet analysis (scan number)	
scmax	Right peak limit found by wavelet analysis (scan number)	

Methods

```
object = "xcmsRaw" findPeaks.centWave(object, ppm=25, peakwidth=c(20,50),
    snthresh=10, prefilter=c(3,100), integrate=1, mzdiff=-0.001, fitgauss=FALSE,
    scanrange= numeric(), sleep=0, verbose.columns=FALSE)
```

Author(s)

Ralf Tautenhahn, \langle rtautenh@ipb-halle.de \rangle

See Also

findPeaks-methods xcmsRaw-class

findPeaks.matchedFilter-methods

Feature detection in the chromatographic time domain

Description

Find peaks in extracted the chromatographic time domain of the profile matrix.

Arguments

object	xcmsRaw object	
fwhm	full width at half maximum of matched filtration gaussian model peak	
sigma	standard deviation of matched filtration model peak	
max	maximum number of peaks per extracted ion chromatogram	
snthresh	signal to noise ratio cutoff	
step	step size to use for profile generation	
steps	number of steps to merge prior to filtration	
mzdiff	minimum difference in m/z for peaks with overlapping retention times	
index	return indicies instead of values for m/z and retention times	
sleep	number of seconds to pause between plotting peak finding cycles	

Value

A matrix with columns:

mz	weighted (by intensity) mean of peak m/z across scans
mzmin	m/z of minimum step
mzmax	m/z of maximum step
rt	retention time of peak midpoint
rtmin	leading edge of peak retention time
rtmax	trailing edge of peak retention time
into	integrated area of original (raw) peak
intf	integrated area of filtered peak
maxo	maximum intensity of original (raw) peak
maxf	maximum intensity of filtered peak
i	rank of peak identified in merged EIC (<= max)
sn	signal to noise ratio of the peak

Methods

```
object = "xcmsRaw" findPeaks.matchedFilter(object, fwhm = 30, sigma =
    fwhm/2.3548, max = 5, snthresh = 10, step = 0.1, steps = 2, mzdiff
    = 0.8 - step*steps, index = FALSE, sleep = 0)
```

Author(s)

Colin A. Smith, $\langle csmith@scripps.edu \rangle$

See Also

findPeaks-methods xcmsRaw-class

```
getEIC-methods
```

Description

Generate multiple extracted ion chromatograms for m/z values of interest. For xcmsSet objects, reread original raw data and apply precomputed retention time correction, if applicable.

Arguments

object	the xcmsRaw or xcmsSet object	
mzrange	either a two column matrix with minimum or maximum m/z or a matrix of any dimensions containing columns <code>mzmin</code> and <code>mzmax</code>	
	for xcmsSet objects, if left blank the group data will be used instead	
rtrange	a two column matrix the same size as mzrange with minimum and maximum retention times between which to return EIC data points	
	for <code>xcmsSet</code> objects, it may also be a single number specifying the time window around the peak to return EIC data points	
step	step size to use for profile generation	
groupidx	either character vector with names or integer vector with indicies of peak groups for which to get EICs	
sampleidx	either character vector with names or integer vector with indicies of samples for which to get EICs	
rt	"corrected" for using corrected retention times, or "raw" for using raw retention times	

Value

For xcmsRaw objects, if rtrange is NULL, an intensity matrix with a row for each mzmin, mzmax pair. Columns correspond to individual scans. If rtrange is not NULL, a list of two column (retention time/intensity) matricies, one for each mzmin, mzmax pair.

For xcmsSet objects, an xcmsEIC object.

Methods

See Also

xcmsRaw-class, xcmsSet-class, xcmsEIC-class

getPeaks-methods Get peak intensities for specified regions

Description

Integrate extracted ion chromatograms in pre-defined defined regions. Return output similar to findPeaks.

Arguments

object	the xcmsSet object
peakrange	matrix or data frame with 4 columns: mzmin, mzmax, rtmin, rtmax (they must be in that order or named)
step	step size to use for profile generation

Value

A matrix with columns:

i	rank of peak identified in merged EIC (<= max), always NA	
mz	weighted (by intensity) mean of peak m/z across scans	
mzmin	m/z of minimum step	
mzmax	m/z of maximum step	
ret	retention time of peak midpoint	
retmin	leading edge of peak retention time	
retmax	trailing edge of peak retention time	
into	integrated area of original (raw) peak	
intf	integrated area of filtered peak, always NA	
maxo	maximum intensity of original (raw) peak	
maxf	maximum intensity of filtered peak, always NA	

Methods

object = "xcmsRaw" getPeaks(object, peakrange, step = 0.1)

See Also

xcmsRaw-class

getScan-methods Get m/z and intensity values for a single mass scan

Description

Return the data from a single mass scan using the numeric index of the scan as a reference.

Arguments

object	the xcmsRaw object
scan	integer index of scan. if negative, the index numbered from the end
massrange	limit data points returned to those between in the range, range (massrange)

Value

A matrix with two columns:

mz	m/z values
intensity	intensity values

Methods

```
object = "xcmsRaw" getScan(object, scan, massrange = numeric())
```

See Also

xcmsRaw-class,getSpec

getSpec-methods Get average m/z and intensity values for multiple mass scans

Description

Return full-resolution averaged data from multiple mass scans.

Arguments

object	the xcmsRaw object
	arguments passed to profRange used to sepecify the spectral segments of interest for averaging

Details

Based on the mass points from the spectra selected, a master unique list of masses is generated. Every spectra is interpolated at those masses and then averaged.

group-methods

Value

A matrix with two columns:

mz	m/z values
intensity	intensity values

Methods

```
object = "xcmsRaw" getSpec(object, ...)
```

See Also

xcmsRaw-class, profRange, getScan

group-methods Group peaks from different samples together

Description

A number of grouping (or alignment) methods exist in XCMS. group is the generic method.

Arguments

object	xcmsSet-class object
method	Method to use for grouping. See details.
	Optional arguments to be passed along

Details

Different algorithms can be used by specifying them with the method argument. For example to use the density-based approach described by Smith et al (2006) one would use: group (object, method="density"). This is also the default.

Further arguments given by ... are passed through to the function implementing the method.

A character vector of *nicknames* for the algorithms available is returned by getOption ("BioC") \$xcms\$group.me If the nickname of a method is called "mzClust", the help page for that specific method can be accessed with ?group.mzClust.

Value

An xcmsSet object with peak group assignments and statistics.

Methods

```
object = "xcmsSet" group(object, ...)
```

See Also

group.density group.mzClust xcmsSet-class,

group-methods

Description

Group peaks together across samples using overlapping m/z bins and calculation of smoothed peak distributions in chromatographic time.

Arguments

object	the xcmsSet object
minfrac	minimum fraction of samples necessary in at least one of the sample groups for it to be a valid group
minsamp	minimum number of samples necessary in at least one of the sample groups for it to be a valid group
wd	bandwidth (standard deviation or half width at half maximum) of gaussian smooth- ing kernel to apply to the peak density chromatogram
mzwid	width of overlapping m/z slices to use for creating peak density chromatograms and grouping peaks across samples
max	maximum number of groups to identify in a single m/z slice
sleep	seconds to pause between plotting successive steps of the peak grouping algo- rithm. peaks are plotted as points showing relative intensity. identified groups are flanked by dotted vertical lines.

Value

An xcmsSet object with peak group assignments and statistics.

Methods

```
object = "xcmsSet" group(object, bw = 30, minfrac = 0.5, minsamp = 1, mzwid
= 0.25, max = 50, sleep = 0)
```

See Also

xcmsSet-class, density

group.mzClust	Group Peaks via High Resolution Alignment
7 1	, , , , , , , , , , , , , , , , , , ,

Description

Runs high resolution alignment on the peaks stored in a given xcmsSet.

Usage

```
groupedobject <- group(object, method="mzClust", mzppm = 20, mzabs = 0, minsamp</pre>
```

groupnames-methods

Arguments

object	a xcmsSet with peaks
mzppm	the relative error used for clustering/grouping in ppm (parts per million)
mzabs	the absolute error used for clustering/grouping
minsamp	set the minimum number of samples in one bin
minfrac	set the minimum fraction of each class in one bin

Value

Returns a xcmsSet with slots groups and groupindex set.

References

Saira A. Kazmi, Samiran Ghosh, Dong-Guk Shin, Dennis W. Hill and David F. Grant *Alignment of high resolution mass spectra: development of a heuristic approach for metabolomics*. Metabolomics, Vol. 2, No. 2, 75-83 (2006)

See Also

xcmsSet-class,

Examples

```
## load xcms and faahKO Dataset
library(xcms)
library(faahKO)
data(faahko)
## group faahko data
##faahko_grouped <- group(faahko, method="mzClust")
## get groups
##groups <- groups(faahko_grouped)
## get grouped peak indices
##idx <- groupidx(faahko_grouped)</pre>
```

groupnames-methods Generate unque names for peak groups

Description

Allow linking of peak group data between classes using unique group names that remain the same as long as no re-grouping occurs.

Arguments

object	the xcmsSet or xcmsEIC object
mzdec	number of decimal places to use for m/z
rtdec	number of decimal places to use for retention time
template	a character vector with existing group names whose format should be emulated

Value

A character vector with unique names for each peak group in the object. The format is M[m/z]T[time in seconds].

Methods

```
object = "xcmsSet" (object, mzdec = 0, rtdec = 0, template = NULL)
object = "xcmsEIC" (object)
```

See Also

xcmsSet-class, xcmsEIC-class

groupval-methods Extract a matrix of peak values for each group

Description

Generate a matrix of peak values with rows for every group and columns for every sample. The value included in the matrix can be any of the columns from the xcmsSet peaks slot matrix. Collisions where more than one peak from a single sample are in the same group get resolved with one of several user-selectable methods.

Arguments

object	the xcmsSet object
method	conflict resolution method, "medret" to use the peak closest to the median retention time or "maxint" to use the peak with the highest intensity
value	name of peak column to enter into returned matrix, or "index" for index to the corresponding row in the peaks slot matrix
intensity	<pre>if method == "maxint", name of peak column to use for intensity</pre>

Value

A matrix with with rows for every group and columns for every sample. Missing peaks have NA values.

Methods

See Also

xcmsSet-class

image-methods Plot log intensity image of a xcmsRaw object

Description

Create log intensity false-color image of a xcmsRaw object plotted with m/z and retention time axes

Arguments

Х	xcmsRaw object
col	vector of colors to use for for the image
	arguments for profRange

Methods

x = "xcmsRaw" image(x, col = rainbow(256), ...)

Author(s)

Colin A. Smith, (csmith@scripps.edu)

See Also

xcmsRaw-class

medianFilter Apply a median filter to a matrix

Description

For each element in a matix, replace it with the median of the values around it.

Usage

```
medianFilter(x, mrad, nrad)
```

Arguments

Х	numeric matrix to median filter
mrad	number of rows on either side of the value to use for median calculation
nrad	number of rows on either side of the value to use for median calculation

Value

A matrix whose values have been median filtered

Author(s)

Colin A. Smith, (csmith@scripps.edu)

Examples

```
mat <- matrix(1:25, nrow=5)
mat
medianFilter(mat, 1, 1)</pre>
```

plot.xcmsEIC Plot extracted ion chromatograms from multiple files

Description

Batch plot a list of extracted ion chromatograms to the current graphics device.

Arguments

Х	the xcmsEIC object
У	optional xcmsSet object with peak integration data
groupidx	either character vector with names or integer vector with indicies of peak groups for which to plot EICs
sampleidx	either character vector with names or integer vector with indicies of samples for which to plot EICs
rtrange	a two column matrix with minimum and maximum retention times between which to return EIC data points
	if it has the same number of rows as the number groups in the xcmsEIC object, then sampleidx is used to subset it. otherwise, it is repeated over the length of sampleidx
	it may also be a single number specifying the time window around the peak for which to plot EIC data
col	color to use for plotting extracted ion chromatograms. if missing and y is specified, colors are taken from unclass(sampclass(y)) and the default palette
	if it is the same length as the number groups in the <code>xcmsEIC</code> object, then <code>sampleidx</code> is used to subset it. otherwise, it is repeated over the length of <code>sampleidx</code>
legtext	text to use for legend. if <code>NULL</code> and <code>y</code> is specified, legend text is taken from the sample class information found in the <code>xcmsSet</code>
peakint	logical, plot integrated peak area with darkened lines (requires that $\ensuremath{\mathtt{y}}$ also be specified)
sleep	seconds to pause between plotting EICs
	other graphical parameters

Value

A xcmsSet object.

Methods

```
x = "xcmsEIC" plot.xcmsEIC(x, y, groupidx = groupnames(x), sampleidx
= sampnames(x), rtrange = x@rtrange, col = rep(1, length(sampleidx)),
legtext = NULL, peakint = TRUE, sleep = 0, ...)
```

22

plotChrom-methods

Author(s)

Colin A. Smith, (csmith@scripps.edu)

See Also

xcmsEIC-class, png, pdf, postscript,

plotChrom-methods Plot extracted ion chromatograms from the profile matrix

Description

Uses the pre-generated profile mode matrix to plot averaged or base peak extracted ion chromatograms over a specified mass range.

Arguments

object	the xcmsRaw object
base	logical, plot a base-peak chromatogram
ident	logical, use mouse to identify and label peaks
fitgauss	logical, fit a gaussian to the largest peak
vline	numeric vector with locations of vertical lines
•••	arguments passed to profRange

Value

If ident == TRUE, an integer vector with the indecies of the points that were identified. If fitgauss == TRUE, a nls model with the fitted gaussian. Otherwise a two-column matrix with the plotted points.

Methods

See Also

xcmsRaw-class

plotPeaks-methods Plot a grid of a large number of peaks

Description

Plot extracted ion chromatograms for many peaks simultaneously, indicating peak integration start and end points with vertical grey lines.

Arguments

object	the xcmsRaw object
peaks	matrix with peak information as produced by findPeaks
figs	two-element vector describing the number of rows and the number of columns of peaks to plot, if missing then an approximately square grid that will fit the number of peaks supplied
width	width of chromatogram retention time to plot for each peak

Details

This function is intended to help graphically analyze the results of peak picking. It can help estimate the number of false positives and improper integration start and end points. Its output is very compact and tries to waste as little space as possible. Each plot is labeled with rounded m/z and retention time separated by a space.

Methods

```
object = "xcmsRaw" plotPeaks(object, peaks, figs, width = 200)
```

See Also

xcmsRaw-class,findPeaks,split.screen

plotRaw-methods Scatterplot of raw data points

Description

Produce a scatterplot showing raw data point location in retention time and m/z. This plot is more useful for centroided data than continuum data.

Arguments

object	the xcmsRaw object
massrange	numeric vector of length ≥ 2 whose range will be used to select the masses to plot
timerange	numeric vector of length ≥ 2 whose range will be used to select the retention times to plot
scanrange	numeric vector of length $>= 2$ whose range will be used to select scans to plot
log	logical, log transform intensity
title	main title of the plot

plotScan-methods

Value

A matrix with the points plotted.

Methods

See Also

xcmsRaw-class

plotScan-methods Plot a single mass scan

Description

Plot a single mass scan using the impulse representation. Most useful for centroided data.

Arguments

object	the xcmsRaw object
scan	integer with number of scan to plot
massrange	numeric vector of length >= 2 whose range will be used to select masses to plot
ident	logical, use mouse to interactively identify and label individual masses

Methods

See Also

xcmsRaw-class

plotSpec-methods Plot mass spectra from the profile matrix

Description

Uses the pre-generated profile mode matrix to plot mass spectra over a specified retention time range.

Arguments

object	the xcmsRaw object
ident	logical, use mouse to identify and label peaks
vline	numeric vector with locations of vertical lines
	arguments passed to profRange

Value

If ident == TRUE, an integer vector with the indecies of the points that were identified. Otherwise a two-column matrix with the plotted points.

Methods

See Also

xcmsRaw-class

plotSurf-methods Plot profile matrix 3D surface using OpenGL

Description

This method uses the rgl package to create interactive three dimensional representations of the profile matrix. It uses the terrain color scheme.

Arguments

object	the xcmsRaw object
log	logical, log transform intensity
aspect	numeric vector with aspect ratio of the m/z , retention time and intensity components of the plot
	arguments passed to profRange

Details

The rgl package is still in development and imposes some limitations on the output format. A bug in the axis label code means that the axis labels only go from 0 to the aspect ratio constant of that axis. Additionally the axes are not labeled with what they are.

It is important to only plot a small portion of the profile matrix. Large portions can quickly overwhelm your CPU and memory.

Methods

```
object = "xcmsRaw" plotSurf(object, log = FALSE, aspect = c(1, 1, .5),
...)
```

See Also

xcmsRaw-class

plotTIC-methods Plot total ion count

Description

Plot chromatogram of total ion count. Optionally allow identification of target peaks and viewing/identification of individual spectra.

Arguments

object	the xcmsRaw object
ident	logical, use mouse to identify and label chromatographic peaks
ident	logical, use mouse to identify and label spectral peaks

Value

If ident == TRUE, an integer vector with the indecies of the points that were identified. Otherwise a two-column matrix with the plotted points.

Methods

```
object = "xcmsRaw" plotTIC(object, ident = FALSE, msident = FALSE)
```

See Also

xcmsRaw-class

plotrt-methods Plot retention time deviation profiles

Description

Use corrected retention times for each sample to calculate retention time deviation profiles and plot each on the same graph.

Arguments

object	the xcmsSet object
col	vector of colors for plotting each sample
ty	vector of line and point types for plotting each sample
leg	logical plot legend with sample labels
densplit	logical, also plot peak overall peak density

Methods

See Also

xcmsSet-class, retcor

```
profMedFilt-methods
```

Median filtering of the profile matrix

Description

Apply a median filter of given size to a profile matrix.

Arguments

object	the xcmsRaw object
massrad	number of m/z grid points on either side to use for median calculation
scanrad	number of scan grid points on either side to use for median calculation

Methods

```
object = "xcmsRaw" profMedFilt(object, massrad = 0, scanrad = 0)
```

See Also

xcmsRaw-class,medianFilter

profMethod-methods Get and set method for generating profile data

Description

These methods get and set the method for generating profile (matrix) data from raw mass spectral data. It can currently be bin, binlin, binlinbase, or intlin.

Methods

object = "xcmsRaw" profMethod(object)

See Also

xcmsRaw-class, profMethod, profBin, plotSpec, plotChrom, findPeaks

profRange-methods Specify a subset of profile mode data

Description

Specify a subset of the profile mode matrix given a mass, time, or scan range. Allow flexible user entry for other functions.

Arguments

object	the xcmsRaw object
massrange	single numeric mass or vector of masses
timerange	single numeric time (in seconds) or vector of times
scanrange	single integer scan index or vector of indecies
	arguments to other functions

Details

This function handles selection of mass/time subsets of the profile matrix for other functions. It allows the user to specify such subsets in a variety of flexible ways with minimal typing.

Because R does partial argument matching, massrange, scanrange, and timerange can be specified in short form using m=, s=, and t=, respectively. If both a scanrange and timerange are specified, then the timerange specification takes precedence.

When specifying ranges, you may either enter a single number or a numeric vector. If a single number is entered, then the closest single scan or mass value is selected. If a vector is entered, then the range is set to the range() of the values entered. That allows specification of ranges using shortened, slightly non-standard syntax. For example, one could specify 400 to 500 seconds using any of the following: t=c(400, 500), t=c(500, 400), or t=400:500. Use of the sequence operator (:) can save several keystrokes when specifying ranges. However, while the sequence operator works well for specifying integer ranges, fractional ranges do not always work as well.

Value

A list with the folloing items:

massrange	numeric vector with start and end mass
masslab	textual label of mass range
massidx	integer vector of mass indecies
scanrange	integer vector with stat ane end scans
scanlab	textual label of scan range
scanidx	integer vector of scan range
timerange	numeric vector of start and end times
timelab	textual label of time range

Methods

```
object = "xcmsRaw" profRange(object, massrange = numeric(), timerange =
    numeric(), scanrange = numeric(), ...)
```

See Also

xcmsRaw-class

profStep-methods Get and set m/z step for generating profile data

Description

These methods get and set the m/z step for generating profile (matrix) data from raw mass spectral data. Smaller steps yield more precision at the cost of greater memory usage.

Methods

object = "xcmsRaw" profStep(object)

See Also

xcmsRaw-class,profMethod

rawEIC-methods Get extracted ion chromatograms for specified m/z range

Description

Generate extracted ion chromatogram for m/z values of interest. The raw data is used in contrast to getEIC which uses data from the profile matrix.

Arguments

object	xcmsRaw object
massrange	m/z range for EIC
scanrange	scan range for EIC

Value

A list of :

scan	scan number
intensity	added intensity values

Methods

```
object = "xcmsRaw" rawEIC(object, massrange, scanrange=c(1,length(object@scantime))
```

Author(s)

Ralf Tautenhahn, (rtautenh@ipb-halle.de)

See Also

xcmsRaw-class

30

retcor-methods

Description

Use "well behaved" peak groups to calculate retention time deviations for every time point of each sample. Use smoothed deviations to align retention times.

Arguments

object	the xcmsSet object
missing	number of missing samples to allow in retention time correction groups
extra	number of extra peaks to allow in retention time correction correction groups
method	either "loess" for non-linear alignment or "linear" for linear alignment
span	degree of smoothing for local polynomial regression fitting
family	if gaussian fitting is by least-squares with no outlier removal, and if symmetric a re-descending M estimator is used with Tukey's biweight function, allowing outlier removal
plottype	if deviation plot retention time deviation points and regression fit, and if mdevden also plot peak overall peak density and retention time correction peak density
col	vector of colors for plotting each sample
ty	vector of line and point types for plotting each sample

Value

An xcmsSet object

Methods

```
object = "xcmsSet" retcor(object, missing = 1, extra = 1, method = c("loess",
    "linear"), span = .2, family = c("gaussian", "symmetric"), plottype
    = c("none", "deviation", "mdevden"), col = NULL, ty = NULL)
```

See Also

xcmsSet-class, loess

retexp

Description

Expands (or contracts) the retention time window in each row of a matrix as defined by the retmin and retmax columns.

Usage

```
retexp(peakrange, width = 200)
```

Arguments

peakrange maxtrix with columns retmin and retmax
width new width for the window

Value

The altered matrix.

Author(s)

Colin A. Smith, (csmith@scripps.edu)

See Also

getEIC

sampnames-methods Get sample names

Description

Return sample names for an object

Value

A character vector with sample names.

Methods

object = "xcmsEIC" sampnames(object)
object = "xcmsSet" sampnames(object)

See Also

xcmsSet-class, xcmsEIC-class

score_fun

Description

A similarity scoring function for MS/MS spectra against a reference.

Usage

```
score_fun(ref, exp, ppmval)
```

Arguments

ref	An array of numbers for the refference
exp	An array of numbers for the test
ppmval	Error to match to in ppm

Details

A simple scoring function to score two arrays of numbers and give a percentage match between the two. Uses a a distance and similarity matrix score system. When the two scores are calculated the percentage score is calculated from the theoritical maximum score and the theoritical minimum score.

Value

score Percentage score between the two arrays

Author(s)

H. Paul Benton, (hpbenton@scripps.edu)

References

H. Paul Benton, D.M. Wong, S.A.Strauger, G. Siuzdak "XCMS²:" Analytical Chemistry 2008

searchMetlin Search Metlin Online Database

Description

A method for searching MS^2 data against the accurate MS^2 METLIN database

Usage

```
searchMetlin(object, ppmfrag=10, ppmMZ= 5, file, MS1data=FALSE,
metXML="metlin", ...)
```

Arguments

object	An xcmsFragment object generated by xcmsRaw.collect
ppmfrag	Error in ppm for each fragment
ppmMZ	Error in ppm for precursor mass
file	Name of the results file
MS1data	Should accurate mass alone be search as well
metXML	location of metlin like XML file or "metlin" as a default
	Arguments to plot.metlin()

Details

This method automates the task of MS/MS comparison to a reference library. By default the METLIN database is used however this can be changed with the metXML parameter.

The search first identifies precursors that match entries in the current METLIN databass using the specified error given by ppmMZ. Once a matching m/z value is found, MS/MS data is searched. Each fragment is identified and comparied to the reference fragments with error specified byppmfrag. Each match is done using a score schema of the difference and similarity of the two spectra. This value is the equiovacated against the possible maximum and minimum.

For each match a plot of the two MS/MS spectra are given. These are found using the ${\tt A}$ and ${\tt B}$ parameter

Value

A data frame with the following columns:

А	Location of the plot
В	Seconded number locator for plot
Precursor Ion	1
	M/Z of the precursor Ion
rtmin	Start of rt window
rtmax	End of rt window
CollisionEner	rgy experiment"
	Collision energy of the experiment
CollisionEnergy Reference	
	Collision energy of the reference
Percentage Ma	atch"
	Match percentage of the reference spectra to the experimental spectra
Metlin Mass	The mass of the reference precursor ion
# matching"	The number of matching fragment
<pre># non-matchin</pre>	ng
	The number of non-matching fragments
Total # Ref :	ion
	The total number of fragment reference ions
Metlin ID Nar	ne
	Name of the identified meatbolite
Ionization	Is the reference spectra in '-' mode or '+' mode
Adduct	Is the reference spectra an adduct of the precursor

simSearch

Author(s)

H. Paul Benton, (hpbenton@scripps.edu)

References

H. Paul Benton, D.M. Wong, S.A.Strauger, G. Siuzdak "XCMS²" Analytical Chemistry 2008

simSearch

Unrestricted precursor Metlin Search

Description

A method for searching MS^2 data against the METLIN Database without a precursor restraint.

Usage

```
simSearch(object, ppmfrag=20, percent=50, file, fullReport=FALSE, ...)
```

Arguments

object	An xcmsFragment object generated by xcmsRaw.collect
ppmfrag	Error on fragment masses in ppm
percent	Percentage thresthold to use for identification
file	Name of the output files
fullReport	Should a full report be generated
	Arguments to plot.metlin()

Details

This method searches the METLIN database for similar MS/MS spectra and ranks them on a fragment score and a neutral loss score. Both of these scores work on a score_fun method. The search takes xcmsFragment objects and searches the database with an unrestricted precursor, thereby searching all spectra in the METLIN database. The percent variable can be used to remove spectra that are below the accepted percentage similarity. The percentage similarity is an independant variable for both the fragment search and the neutral loss search. The method generates two files when the fullReport variable is set to TRUE. The default file shows the top 5 m/z's most frequently matched. This gives a guide as fragments and neutral losses which should be inspected with a formula calculator. The second file which is printed to a variable and or to the second file is a full report of the data. This report includes metabolite names from the METLIN database and gives both the fragment score and the neutral loss score thereby giving a confidence to the likelyhood of the possible molecule/family of molecules.

Value

A data frame with the following columns:

m/z	Precursor m/z of the Experimental spectra
rtmin	Start of the rt window
rtmax	End of the rt window

specNoise

```
Experiment Collision Energy
Experimental spectra Collision Energy
Fragment Score
Score of the Fragments
Neutral Score
Common Neutral loss
Common Neutral loss
m/z of the most matching neutral loss
Common Fragment
m/z of the most matching fragment
Compound Name
Name of the compound from METLIN
Metlin Mass The mass as reported by METLIN
Collision Energy
The collision energy of the metlin spectra
```

Author(s)

H. Paul Benton, (hpbenton@scripps.edu)

References

H. Paul Benton, D.M. Wong, S.A.Strauger, G. Siuzdak "XCMS²:" Analytical Chemistry 2008

specNoise Calculate noise for a sparse continuum mass spectrum

Description

Given a sparse continuum mass spectrum, determine regions where no signal is present, substituting half of the minimum intensity for those regions. Calculate the noise level as the weighted mean of the regions with signal and the regions without signal.

Usage

```
specNoise(spec, gap = quantile(diff(spec[, "mz"]), 0.9))
```

Arguments

spec	matrix with named columns mz and intensity
gap	threshold above which to data points are considerd to be separated by a blank
	region and not bridged by an interpolating line

Details

The default gap value is determined from the 90th percentile of the pair-wise differences between adjacent mass values.

Value

A numeric noise level

36

specPeaks

Author(s)

Colin A. Smith, (csmith@scripps.edu)

See Also

getSpec, specPeaks

specPeaks

Identify peaks in a sparse continuum mode spectrum

Description

Given a spectrum, identify and list significant peaks as determined by several criteria.

Usage

specPeaks(spec, sn = 20, mzgap = 0.2)

Arguments

spec	matrix with named columns mz and intensity
sn	minimum signal to noise ratio
mzgap	minimal distance between adjacent peaks, with smaller peaks being excluded

Details

Peaks must meet two criteria to be considered peaks: 1) Their s/n ratio must exceed a certain threshold. 2) They must not be within a given distance of any greater intensity peaks.

Value

A matrix with columns:

mz	m/z at maximum peak intensity
intensity	maximum intensity of the peak
fwhm	full width at half max of the peak

Author(s)

Colin A. Smith, (csmith@scripps.edu)

See Also

getSpec, specNoise

split.xcmsSet

Description

Divides the samples and peaks from a <code>xcmsSet</code> object into a list of multiple objects. Group data is discarded.

Arguments

XS	xcmsSet object
f	factor such that factor (f) defines the grouping
drop	logical indicating if levels that do not occur should be dropped (if 'f' is a 'factor' or a list).
	further potential arguments passed to methods.

Value

A list of xcmsSet objects.

Methods

xs = "xcmsSet" split(x, f, drop = TRUE, ...)

Author(s)

Colin A. Smith, (csmith@scripps.edu)

See Also

xcmsSet-class

write.cdf-methods Save an xcmsRaw object to file

Description

Write the raw data to a (simple) CDF file.

Arguments

object	the xcmsRaw object
filename	filename (may include full path) for the CDF file. Pipes or URLs are not allowed

Details

Currently the only application known to read the resulting file is XCMS. Others, especially those which build on the AndiMS library, will refuse to load the output.

xcmsEIC-class

Value

None.

Methods

object = "xcmsRaw" write.cdf(object, filename)

See Also

xcmsRaw-class, xcmsRaw,

xcmsEIC-class Class xcmsEIC, a class for multi-sample extracted ion chromatograms

Description

This class is used to store and plot parallel extracted ion chromatograms from multiple sample files. It integrates with the xcmsSet class to display peak area integrated during peak identification or fill-in.

Objects from the Class

Objects can be created with the getEIC method of the xcmsSet class. Objects can also be created by calls of the form new ("xcmsEIC", ...).

Slots

eic: list containing named entries for every sample. for each entry, a list of two column EIC matricies with retention time and intensity

mzrange: two column matrix containing starting and ending m/z for each EIC

rtrange: two column matrix containing starting and ending time for each EIC

rt: either "raw" or "corrected" to specify retention times contained in the object

groupnames: group names from xcmsSet object used to generate EICs

Methods

```
groupnames signature(object = "xcmsEIC"): get groupnames slot
mzrange signature(object = "xcmsEIC"): get mzrange slot
plot signature(x = "xcmsEIC"): plot the extracted ion chromatograms
rtrange signature(object = "xcmsEIC"): get rtrange slot
sampnames signature(object = "xcmsEIC"): get sample names
```

Note

No notes yet.

Author(s)

Colin A. Smith, (csmith@scripps.edu)

See Also

getEIC

```
xcmsFragments-class
```

Class xcmsFragments, a class for handling Tandem MS and MSⁿ data

Description

This class is similar to xcmsSet because it stores peaks from a number of individual files. However, xcmsFragments keeps Tandem MS and e.g. Ion Trap or Orbitrap MSⁿ peaks, including the parent ion relationships.

Objects from the Class

Objects can be created with the xcmsFragments constructor and filled with peaks using the collect method.

Slots

peaks: matrix with colmns peakID (MS1 parent in corresponding xcmsSet), MSnParentPeakID (parent peak within this xcmsFragments), msLevel (e.g. 2 for Tandem MS), rt (retention time in case of LC data), mz (fragment mass-to-charge), intensity (peak intensity as reported by XXX), sample (The ID of the rawData-file).

Methods

- collect signature(object = "xcmsFragments"): gets a xcmsSet-object, collects ms1peaks from it and the msn-peaks from the corresponding xcmsRaw-files.
- plotTree signature(object = "xcmsFragments"): prints a (text based) pseudo-tree of
 the peaktable to display the dependencies of the peaks among each other.
- show signature(object = "xcmsFragments"): print a human-readable description of
 this object to the console.

Note

No notes yet.

Author(s)

S. Neumann, J. Kutzera

References

A parallel effort in metabolite profiling data sharing: http://metlin.scripps.edu/

See Also

xcmsRaw

40

xcmsFragments

Description

EXPERIMANTAL FEATURE

xcmsFragments is an object similar to xcmsSet, which holds peaks picked (or collected) from one or several xcmsRaw objects.

There are still discussions going on about the exact API for MSⁿ data, so this is likely to change in the future. The code is not yet pipeline-ified.

Usage

```
xcmsFragments(xs, ...)
```

Arguments

XS	A xcmsSet-class object which contains picked ms1-peaks from one or sev- eral experiments
	further arguments to the collect method

Details

After running collect(xFragments,xSet) The peaktable of the xcmsFragments includes the ms1Peaks from all experiments stored in a xcmsSet-object. Further it contains the relevant MSn-peaks from the xcmsRaw-objects, which were created temporarily with the paths in xcmsSet.

Value

An xcmsFragments object.

Author(s)

Joachim Kutzera, Steffen Neumann, (sneumann@ipb-halle.de)

See Also

xcmsFragments-class, collect

xcmsPapply

Description

An apply-like function which uses Rmpi to distribute the processing evenly across a cluster. Will use a non-MPI version if distributed processing is not available.

Usage

```
xcmsPapply(arg_sets, papply_action, papply_commondata = list(),
       show errors = TRUE, do trace = FALSE, also trace = c()
```

Arguments

arg_sets	a list, where each item will be given as an argument to papply_action		
papply_action			
	A function which takes one argument. It will be called on each element of		
	arg_sets		
papply_commondata			
	A list containing the names and values of variables to be accessible to the pap- ply_action. 'attach' is used locally to import this list.		
show_errors	If set to TRUE, overrides Rmpi's default, and messages for errors which occur in R slaves are produced.		
do_trace	If set to TRUE, causes the papply_action function to be traced. i.e. Each state- ment is output before it is executed by the slaves.		
also_trace	If supplied an array of function names, as strings, tracing will also occur for the specified functions.		

Details

Similar to apply and lapply, applies a function to all items of a list, and returns a list with the corresponding results.

Uses Rmpi to implement a pull idiom in order to distribute the processing evenly across a cluster. If Rmpi is not available, or there are no slaves, implements this as a non-parallel algorithm.

xcmsPapply is a modified version of the papply function from package papply 0.2 (Duane Currie). Parts of the slave function were wrapped in try() to make it failsafe and progress output was added.

Make sure Rmpi was installed properly by executing the example below. Rmpi was tested with

- OpenMPI: Unix, http://www.open-mpi.org/, don't forget to export MPI_ROOT before installing Rmpi e.g. export MPI_ROOT=/usr/lib/openmpi
- DeinoMPI: Windows, http://mpi.deino.net/, also see http://www.stats.uwo. ca/faculty/yu/Rmpi/

Value

A list of return values from papply_action. Each value corresponds to the element of arg_sets used as a parameter to papply_action

xcmsRaw-class

Note

Does not support distributing recursive calls in parallel. If papply is used inside papply_action, it will call a non-parallel version

Author(s)

Duane Currie <duane.currie@acadiau.ca>, modified by Ralf Tautenhahn <rtautenh@ipb-halle.de>.

References

http://ace.acadiau.ca/math/ACMMaC/software/papply/

Examples

```
## Not run:
library(Rmpi)
library(xcms)
number_lists <- list(1:10,4:40,2:27)
mpi.spawn.Rslaves(nslaves=2)
results <- xcmsPapply(number_lists,sum)
results
mpi.close.Rslaves()
## End(Not run)
```

xcmsRaw-class Class xcmsRaw, a class for handling raw data

Description

This class handles processing and visualization of the raw data from a single LC/MS or GS/MS run. It includes methods for producing a standard suite of plots including individual spectra, multi-scan average spectra, TIC, and EIC. It will also produce a feature list of significant peaks using matched filtration.

Objects from the Class

Objects can be created with the xcmsRaw constructor which reads data from a NetCDF file into a new object.

Slots

- **env:** environment with three variables: mz concatenated m/z values for all scans, intensity corresponding signal intensity for each m/z value, and profile matrix represention of the intensity values with columns representing scans and rows representing equally spaced m/z values
- tic: numeric vector with total ion count (intensity) for each scan

scantime: numeric vector with acquisition time (in seconds) for each scan

- **scanindex:** integer vector with starting positions of each scan in the mz and intensity variables (note that index values are based off a 0 initial position instead of 1)
- profmethod: characer value with name of method used for generating the profile matrix
- **mzrange:** numeric vector of length 2 with minimum and maximum m/z values represented in the profile matrix
- gradient: matrix with first row, time, containing the time point for interpolation and successive columns representing solvent fractions at each point
- **msmsinfo:** matrix with first row, parent, containing parent ion m/z and successive columns representing additional information about fragmentation (energy, etc.)

Methods

- getEIC signature(object = "xcmsRaw"): get extracted ion chromatograms in specified m/z ranges
- getPeaks signature(object = "xcmsRaw"): get data for peaks in specified m/z and time
 ranges
- getSpec signature(object = "xcmsRaw"): get average m/z and intensity values for multiple mass scans

image signature (x = "xcmsRaw"): get data for peaks in specified m/z and time ranges

plotChrom signature(object = "xcmsRaw"): plot a chromatogram from profile data

plotRaw signature(object = "xcmsRaw"): plot locations of raw intensity data points

plotScan signature(object = "xcmsRaw"): plot a mass spectrum of an individual scan
from the raw data

plotSpec signature(object = "xcmsRaw"): plot a mass spectrum from profile data

plotSurf signature(object = "xcmsRaw"): experimental method for plotting 3D surface of profile data with rgl.

plotTIC signature(object = "xcmsRaw"): plot total ion count chromatogram

- profMedFilt signature(object = "xcmsRaw"): median filter profile data in time and m/z dimensions
- profMethod<- signature(object = "xcmsRaw"): change the method of generating the
 profile matrix</pre>
- profMethod signature(object = "xcmsRaw"): get the method of generating the profile
 matrix
- profMz signature(object = "xcmsRaw"): get vector of m/z values for each row of the
 profile matrix
- profRange signature(object = "xcmsRaw"): interpret flexible ways of specifying subsets of the profile matrix
- profStep<- signature(object = "xcmsRaw"): change the m/z step used for generating
 the profile matrix</pre>
- profStep signature(object = "xcmsRaw"): get the m/z step used for generating the
 profile matrix

xcmsRaw

Note

No notes yet.

Author(s)

Colin A. Smith, (csmith@scripps.edu)

References

A parallel effort in metabolite profiling data sharing: http://metlin.scripps.edu/

See Also

xcmsRaw

xcmsRaw

Constructor for xcmsRaw objects which reads NetCDF/mzXML files

Description

This function handles the task of reading a NetCDF/mzXML file containing LC/MS or GC/MS data into a new xcmsRaw object. It also transforms the data into profile (maxrix) mode for efficient plotting and data exploration.

Usage

```
xcmsRaw(filename, profstep = 1, profmethod = "intlin", profparam =
list(), includeMSn=FALSE)
```

Arguments

filename	path name of the NetCDF or mzXML file to read
profstep	step size (in m/z) to use for profile generation
profmethod	method to use for profile generation
profparam	extra parameters to use for profile generation
includeMSn	only for XML file formats: also read MS \hat{n} (Tandem-MS of Ion-/Orbi- Trap spectra)

Details

If profstep is set to 0, no profile matrix is generated. Unless includeMSn=TRUE only first level MS data is read, not MS/MS, etc.)

Value

A xcmsRaw object.

Author(s)

Colin A. Smith, (csmith@scripps.edu)

References

```
NetCDF file format: http://my.unidata.ucar.edu/content/software/netcdf/
http://www.astm.org/Standards/E2077.htmhttp://www.astm.org/Standards/
E2078.htm
```

mzXML file format: http://sashimi.sourceforge.net/software_glossolalia. html

PSI-MS working group who developed mzData and mzML file formats: http://www.psidev. info/index.php?q=node/80

Parser used for XML file formats: http://tools.proteomecenter.org/wiki/index. php?title=Software:RAMP

See Also

xcmsRaw-class, profStep, profMethod xcmsFragments

xcmsSet-class Class xcmsSet, a class for preprocessing peak data

Description

This class transforms a set of peaks from multiple LC/MS or GC/MS samples into a matrix of preprocessed data. It groups the peaks and does nonlinear retention time correction without internal standards. It fills in missing peak values from raw data. Lastly, it generates extracted ion chromatograms for ions of interest.

Objects from the Class

Objects can be created with the xcmsSet constructor which gathers peaks from a set NetCDF files. Objects can also be created by calls of the form new ("xcmsSet", ...).

Slots

peaks: matrix containing peak data

groups: matrix containing statistics about peak groups

groupidx: list containing indices of peaks in each group

phenoData: a data frame containing the experimental design factors

rt: list containing two lists, raw and corrected, each containing retention times for every scan of every sample

filepaths: character vector with absolute path name of each NetCDF file

profinfo: list containing two values, method - profile generation method, and step - profile
 m/z step size

46

xcmsSet-class

Methods

c signature("xcmsSet"): combine objects together filepaths<- signature(object = "xcmsSet"): set filepaths slot</pre> filepaths signature(object = "xcmsSet"): get filepaths slot diffreport signature (object = "xcmsSet"): create report of differentially regulated ions including EICs fillPeaks signature (object = "xcmsSet"): fill in peak data for groups with missing peaks getEIC signature (object = "xcmsSet"): get list of EICs for each sample in the set groupidx<- signature(object = "xcmsSet"): set groupidx slot</pre> groupidx signature(object = "xcmsSet"): get groupidx slot groupnames signature (object = "xcmsSet"): get textual names for peak groups groups<- signature (object = "xcmsSet"): set groups slot groups signature(object = "xcmsSet"): get groups slot groupval signature (object = "xcmsSet"): get matrix of values from peak data with a row for each peak group group signature (object = "xcmsSet"): find groups of peaks across samples that share similar m/z and retention times peaks<- signature(object = "xcmsSet"): set peaks slot</pre> peaks signature(object = "xcmsSet"): get peaks slot plotrt signature(object = "xcmsSet"): plot retention time deviation profiles profinfo<- signature(object = "xcmsSet"): set profinfo slot</pre> profinfo signature(object = "xcmsSet"): get profinfo slot retcor signature (object = "xcmsSet"): use initial grouping of peaks to do nonlinear loess retention time correction sampclass<- signature (object = "xcmsSet"): DEPRECATED. If used, the experimental design will be replaced with a data frame with a single column matching the supplied factor. sampclass signature(object = "xcmsSet"): get the interaction of the experimental design factors phenoData<- signature(object = "xcmsSet"): set the phenoData slot</pre> phenoData signature(object = "xcmsSet"): set the phenoData slot sampnames<- signature (object = "xcmsSet"): set rownames in the phenoData slot sampnames signature(object = "xcmsSet"): get rownames in the phenoData slot

split signature("xcmsSet"): divide into a list of objects

Note

No notes yet.

Author(s)

Colin A. Smith, (csmith@scripps.edu)

xcmsSet

References

A parallel effort in metabolite profiling data sharing: http://metlin.scripps.edu/

See Also

xcmsSet

xcmsSet	Constructor for xcmsSet objects which finds peaks in NetCDF/mzXML
	files

Description

This function handles the construction of xcmsSet objects. It finds peaks in batch mode and presorts files from subdirectories into different classes suitable for grouping.

Usage

```
xcmsSet(files = NULL, snames = NULL, sclass = NULL, phenoData = NULL,
profmethod = "bin", profparam = list(), nSlaves=0, ...)
```

Arguments

files	path names of the NetCDF/mzXML files to read
snames	sample names
sclass	sample classes
phenoData	sample names and classes
profmethod	method to use for profile generation
profparam	parameters to use for profile generation
nSlaves	number of MPI-slaves to use for parallel peak detection, works only if Rmpi is installed properly, see xcmsPapply.
•••	further arguments to the findPeaks method of the xcmsRaw class

Details

The default values of the files, snames, sclass, and phenoData arguments cause the function to recursively search for readable files. The filename without extention is used for the sample name. The subdirectory path is used for the sample class.

Value

A xcmsSet object.

Author(s)

Colin A. Smith, (csmith@scripps.edu)

See Also

xcmsSet-class, findPeaks, profStep, profMethod

48

Index

*Topic classes xcmsEIC-class, 39 xcmsFragments-class, 40 xcmsRaw-class, 43 xcmsSet-class,46 *Topic **file** calibrate-methods, 2 diffreport-methods,4 fillPeaks-methods, 7 getEIC-methods, 14 group-methods, 18 group.mzClust, 18 groupnames-methods, 19 retcor-methods, 31 sampnames-methods, 32 write.cdf-methods, 38 xcmsFragments, 41 xcmsRaw, 45 xcmsSet,48 *Topic **hplot** image-methods, 21 plot.xcmsEIC, 22 plotChrom-methods, 23 plotPeaks-methods, 24 plotRaw-methods, 24 plotrt-methods, 27 plotScan-methods, 25 plotSpec-methods, 25 plotSurf-methods, 26 plotTIC-methods, 27 *Topic **iplot** plotChrom-methods, 23 plotSpec-methods, 25 plotSurf-methods, 26 plotTIC-methods, 27 *Topic **manip** c-methods, 2 getPeaks-methods, 15 getScan-methods, 16 getSpec-methods, 16 groupval-methods, 20 medianFilter, 21 profMedFilt-methods, 28

profMethod-methods, 28 profRange-methods, 29 profStep-methods, 30 retexp. 32 specNoise, 36 specPeaks, 37 split.xcmsSet, 38 *Topic **methods** calibrate-methods, 2 collect-methods, 3 diffreport-methods,4 fillPeaks-methods,7 findPeaks-methods.7 findPeaks.centWave-methods, 11 findPeaks.matchedFilter-methods, 12 findPeaks.MS1-methods,8 findPeaks.MSW-methods, 10 getEIC-methods, 14 getPeaks-methods, 15 getScan-methods, 16 getSpec-methods, 16 group-methods, 17, 18 group.mzClust, 18 groupnames-methods, 19 groupval-methods, 20plot.xcmsEIC, 22 plotChrom-methods, 23 plotPeaks-methods, 24 plotRaw-methods, 24 plotrt-methods, 27 plotScan-methods, 25 plotSpec-methods, 25 plotSurf-methods, 26 plotTIC-methods, 27 profMedFilt-methods, 28 profMethod-methods, 28 profRange-methods, 29 profStep-methods, 30 rawEIC-methods, 30 retcor-methods, 31 sampnames-methods, 32

```
searchMetlin, 33
simSearch, 35
write.cdf-methods, 38
*Topic models
etg, 6
*Topic nonlinear
SSgauss, 1
```

```
c, 47
c, c-methods(c-methods), 2
c-methods, 2
c.xcmsSet(c-methods), 2
calibrate(calibrate-methods), 2
calibrate, xcmsSet-method
        (calibrate-methods), 2
calibrate-methods, 2
collect, 40, 41
collect(collect-methods), 3
collect, xcmsFragments-method
        (collect-methods), 3
collect, xcmsRaw-method
        (collect-methods), 3
collect, methods, 3
collect-methods, 3
```

etg,<mark>6</mark>

```
filepaths (xcmsSet-class), 46
filepaths, xcmsSet-method
       (xcmsSet-class), 46
filepaths <- (xcmsSet-class), 46
filepaths<-,xcmsSet-method</pre>
       (xcmsSet-class), 46
fillPeaks, 47
fillPeaks(fillPeaks-methods),7
fillPeaks, xcmsSet-method
       (fillPeaks-methods),7
fillPeaks-methods,7
findPeaks, 15, 24, 28, 44, 48
findPeaks (findPeaks-methods), 7
findPeaks, xcmsRaw-method
       (findPeaks-methods), 7
findPeaks-methods, 9, 10, 12, 13
findPeaks-methods, 7
findPeaks.centWave, 4, 8
findPeaks.centWave
       (findPeaks.centWave-methods),
       11
```

findPeaks.centWave,xcmsRaw-method (findPeaks.centWave-methods). 11 findPeaks.centWave-methods, 11 findPeaks.matchedFilter,8 findPeaks.matchedFilter (findPeaks.matchedFilter-methods), 12 findPeaks.matchedFilter,xcmsRaw-method (findPeaks.matchedFilter-methods), 12 findPeaks.matchedFilter-methods. 12 findPeaks.MS1 (findPeaks.MS1-methods), 8 findPeaks.MS1, xcmsRaw-method (findPeaks.MS1-methods), 8 findPeaks.MS1-methods, 8 findPeaks.MSW (findPeaks.MSW-methods), 10 findPeaks.MSW, xcmsRaw-method (findPeaks.MSW-methods), 10 findPeaks.MSW-methods, 10 getEIC, 30, 32, 39, 40, 44, 47 getEIC (getEIC-methods), 14 getEIC, xcmsRaw-method (getEIC-methods), 14 getEIC, xcmsSet-method (getEIC-methods), 14 getEIC-methods, 14 getPeaks, 7, 44 getPeaks (getPeaks-methods), 15 getPeaks, xcmsRaw-method (getPeaks-methods), 15 getPeaks-methods, 15 getScan, 17, 44 getScan (getScan-methods), 16 getScan, xcmsRaw-method (getScan-methods), 16 getScan-methods, 16 getSpec, 16, 37, 44 getSpec(getSpec-methods), 16 getSpec, xcmsRaw-method (getSpec-methods), 16 getSpec-methods, 16 group, 47 group (group-methods), 17 group, xcmsSet-method (group-methods), 17 group-methods, 17, 18 group.density, 17 group.density (group-methods), 18

50

group.density,xcmsSet-method (group-methods), 18 group.mzClust, 17, 18 group.mzClust, xcmsSet-method (group.mzClust), 18 groupidx (xcmsSet-class), 46 groupidx, xcmsSet-method (xcmsSet-class), 46 groupidx<-(xcmsSet-class), 46</pre> groupidx<-,xcmsSet-method</pre> (xcmsSet-class), 46 groupnames, 39, 47 groupnames (groupnames-methods), 19 groupnames, xcmsEIC-method (groupnames-methods), 19 groupnames, xcmsSet-method (groupnames-methods), 19 groupnames-methods, 19 groups (xcmsSet-class), 46 groups, xcmsSet-method (xcmsSet-class), 46 groups <- (xcmsSet-class), 46 groups<-, xcmsSet-method (xcmsSet-class), 46 groupval, 47 groupval (groupval-methods), 20 groupval, xcmsSet-method (groupval-methods), 20 groupval-methods, 20

image, 44
image, image-methods
 (image-methods), 21
image-methods, 21
image.xcmsRaw(image-methods), 21

loess,*31*

nls, 1

 peaks <- (xcmsSet-class), 46 peaks<-, xcmsSet-method</pre> (xcmsSet-class), 46 phenoData (xcmsSet-class), 46 phenoData, xcmsSet-method (xcmsSet-class), 46 phenoData <- (xcmsSet-class), 46 phenoData<-, xcmsSet-method (xcmsSet-class), 46 plot,*39* plot, plot-methods (plot.xcmsEIC), 22 plot.xcmsEIC, 22 plotChrom, 28, 44 plotChrom (plotChrom-methods), 23 plotChrom, xcmsRaw-method (plotChrom-methods), 23 plotChrom-methods, 23 plotPeaks (plotPeaks-methods), 24 plotPeaks, xcmsRaw-method (plotPeaks-methods), 24 plotPeaks-methods, 24 plotRaw, 44 plotRaw (plotRaw-methods), 24 plotRaw, xcmsRaw-method (plotRaw-methods), 24 plotRaw-methods, 24 plotrt,47 plotrt (plotrt-methods), 27 plotrt, xcmsSet-method (plotrt-methods), 27 plotrt-methods, 27 plotScan,44 plotScan (plotScan-methods), 25 plotScan, xcmsRaw-method (plotScan-methods), 25 plotScan-methods, 25 plotSpec, 28, 44 plotSpec(plotSpec-methods), 25 plotSpec, xcmsRaw-method (plotSpec-methods), 25 plotSpec-methods, 25 plotSurf,44 plotSurf(plotSurf-methods), 26 plotSurf, xcmsRaw-method (plotSurf-methods), 26 plotSurf-methods, 26 plotTIC,44 plotTIC(plotTIC-methods), 27 plotTIC, xcmsRaw-method (plotTIC-methods), 27 plotTIC-methods, 27

plotTree (xcmsFragments-class), 40 plotTree, xcmsFragments-method (xcmsFragments-class), 40 png, 23 postscript, 23 profBin, 28 profinfo(xcmsSet-class), 46 profinfo, xcmsSet-method (xcmsSet-class), 46 profinfo<-(xcmsSet-class), 46</pre> profinfo<-,xcmsSet-method</pre> (xcmsSet-class), 46 profMedFilt,44 profMedFilt (profMedFilt-methods), 28 profMedFilt, xcmsRaw-method (profMedFilt-methods), 28 profMedFilt-methods, 28 profMethod, 28, 30, 44, 46, 48 profMethod (profMethod-methods), 28 profMethod, xcmsRaw-method (profMethod-methods), 28 profMethod-methods, 28 profMethod<-(profMethod-methods), 28 profMethod<-,xcmsRaw-method</pre> (profMethod-methods), 28 profMethod <-, 44 profMz (xcmsRaw-class), 43 profMz, xcmsRaw-method (xcmsRaw-class), 43 profRange, 16, 17, 23, 25, 26, 44 profRange (profRange-methods), 29 profRange, xcmsRaw-method (profRange-methods), 29 profRange-methods, 29 profStep, 44, 46, 48 profStep(profStep-methods), 30 profStep, xcmsRaw-method (profStep-methods), 30 profStep-methods, 30 profStep<-(profStep-methods), 30</pre> profStep<-,xcmsRaw-method</pre> (profStep-methods), 30 profStep<-,44 rawEIC (rawEIC-methods), 30 rawEIC, xcmsRaw-method (rawEIC-methods), 30

rawEIC-methods, 30
retcor, 27, 47
retcor (retcor-methods), 31

retcor, xcmsSet-method (retcor-methods), 31 retcor-methods, 31 retexp, 32 revMz (xcmsRaw-class), 43 revMz, xcmsRaw-method (xcmsRaw-class), 43 rtrange (xcmsEIC-class), 39 rtrange, xcmsEIC-method (xcmsEIC-class), 39 sampclass(xcmsSet-class), 46 sampclass,xcmsSet-method (xcmsSet-class), 46 sampclass<-(xcmsSet-class), 46</pre> sampclass<-,xcmsSet-method</pre> (xcmsSet-class), 46 sampnames, 39, 47 sampnames (sampnames-methods), 32 sampnames, xcmsEIC-method (sampnames-methods), 32 sampnames, xcmsSet-method (sampnames-methods), 32 sampnames-methods, 32 sampnames<-(xcmsSet-class), 46</pre> sampnames<-,xcmsSet-method</pre> (xcmsSet-class), 46 score_fun, 33 searchMetlin, 33 searchMetlin,xcmsFragments-method (searchMetlin), 33 selfStart, 1 show, 40 show, xcmsEIC-method (xcmsEIC-class), 39 show, xcmsFragments-method (xcmsFragments-class), 40 show, xcmsRaw-method (xcmsRaw-class), 43 show, xcmsSet-method (xcmsSet-class), 46 simSearch, 35 simSearch, xcmsFragments-method (simSearch), 35 sortMz (xcmsRaw-class), 43 sortMz, xcmsRaw-method (xcmsRaw-class), 43 specNoise, 36, 37 specPeaks, 37, 37 split,47 split, split-methods (split.xcmsSet), 38 split.screen,24

52

```
split.xcmsSet, 38
SSgauss, 1
write.cdf(write.cdf-methods), 38
write.cdf, xcmsRaw-method
       (write.cdf-methods), 38
write.cdf-methods, 38
xcmsEIC-class, 14, 20, 23, 32
xcmsEIC-class, 39
xcmsFragments, 3, 40, 41, 46
xcmsFragments-class, 3, 41
xcmsFragments-class, 40
xcmsPapply, 42, 48
xcmsRaw, 3, 39, 40, 43, 45, 45
xcmsRaw-class, 7-10, 12-17, 21, 23-28,
       30, 39, 46
xcmsRaw-class, 43
xcmsSet, 3, 40, 46, 48, 48
xcmsSet-class, 2, 3, 6, 7, 14, 17-20, 27,
        31, 32, 38, 41, 48
xcmsSet-class, 46
```