
Biostrings
April 19, 2009

AAString-class AAString objects

Description

An AAString object allows efficient storage and manipulation of a long amino acid sequence.

Details

The AAString class is a direct XString subtype (with no additional slot). Therefore all functions
and methods described in the XString man page also work with an AAString object (inheritance).

Unlike the BString container that allows storage of any single string (based on a single-byte char-
acter set) the AAString container can only store a string based on the Amino Acid alphabet (see
below).

The Amino Acid alphabet

This alphabet contains all letters from the Single-Letter Amino Acid Code (see ?AMINO_ACID_CODE)
+ the stop ("*"), the gap ("-") and the hard masking ("+") letters. It is stored in the AA_ALPHABET
constant (character vector). The alphabet method also returns AA_ALPHABET when applied to
an AAString object and is provided for convenience only.

Constructor-like functions and generics

In the code snippet below, x can be a single string (character vector of length 1) or a BString object.

AAString(x, start=1, nchar=NA, check=TRUE): Tries to convert x into an AAS-
tring object by reading nchar letters starting at position start in x.

Accessor methods

In the code snippet below, x is an AAString object.

alphabet(x): If x is an AAString object, then return the Amino Acid alphabet (see above).
See the corresponding man pages when x is a BString, DNAString or RNAString object.

Author(s)

H. Pages

1

2 AlignedXStringSet-class

See Also

AMINO_ACID_CODE, letter, XString-class, alphabetFrequency

Examples

AA_ALPHABET
a <- AAString("MARKSLEMSIR*")
length(a)
alphabet(a)

AMINO_ACID_CODE The Single-Letter Amino Acid Code

Description

Named character vector mapping single-letter amino acid representations to 3-letter amino acid
representations.

See Also

AAString, GENETIC_CODE

Examples

See all the 3-letter codes
AMINO_ACID_CODE

Convert an AAString object to a vector of 3-letter amino acid codes
aa <- AAString("LANDEECQW")
AMINO_ACID_CODE[strsplit(as.character(aa), NULL)[[1]]]

AlignedXStringSet-class
AlignedXStringSet and QualityAlignedXStringSet objects

Description

The AlignedXStringSet and QualityAlignedXStringSet classes are containers for
storing an aligned XStringSet.

Details

Before we define the notion of alignment, we introduce the notion of "filled-with-gaps subse-
quence". A "filled-with-gaps subsequence" of a string string1 is obtained by inserting 0 or any
number of gaps in a subsequence of s1. For example L-A–ND and A–N-D are "filled-with-gaps
subsequences" of LAND. An alignment between two strings string1 and string2 results in two
strings (align1 and align2) that have the same length and are "filled-with-gaps subsequences" of
string1 and string2.

For example, this is an alignment between LAND and LEAVES:

AlignedXStringSet-class 3

L-A
LEA

An alignment can be seen as a compact representation of one set of basic operations that transforms
string1 into align1. There are 3 different kinds of basic operations: "insertions" (gaps in align1),
"deletions" (gaps in align2), "replacements". The above alignment represents the following basic
operations:

insert E at pos 2
insert V at pos 4
insert E at pos 5
replace by S at pos 6 (N is replaced by S)
delete at pos 7 (D is deleted)

Note that "insert X at pos i" means that all letters at a position >= i are moved 1 place to the right
before X is actually inserted.

There are many possible alignments between two given strings string1 and string2 and a common
problem is to find the one (or those ones) with the highest score, i.e. with the lower total cost in
terms of basic operations.

Accesor methods

In the code snippets below, x is a AlignedXStringSet object.

unaligned(x): The original string.

aligned(x): The "filled-with-gaps subsequence" representing the aligned substring.

start(x): The start of the aligned substring.

end(x): The end of the aligned substring.

width(x): The width of the aligned substring, ignoring gaps.

indel(x): The positions, in the form of an IRanges object, of the insertions or deletions
(depending on what the AlignedXStringSet object represents).

nindel(x): A two-column matrix containing the length and sum of the widths for each of the
elements returned by indel.

length(x): The length of the aligned(x).

nchar(x): The nchar of the aligned(x).

alphabet(x): Equivalent to alphabet(unaligned(x)).

as.character(x): Converts aligned(x) to a character vector.

toString(x): Equivalent to toString(as.character(x)).

Subsetting methods

x[i]: Returns a new AlignedXStringSet object made of the selected elements.

rep(x, times): Returns a new AlignedXStringSet object made of the repeated ele-
ments.

Author(s)

P. Aboyoun and H. Pages

4 DNAString-class

See Also

pairwiseAlignment, PairwiseAlignedFixedSubject-class, XStringSet-class

Examples

pattern <- AAString("LAND")
subject <- AAString("LEAVES")
nw1 <- pairwiseAlignment(pattern, subject, substitutionMatrix = "BLOSUM50", gapOpening = -3, gapExtension = -1)
alignedPattern <- pattern(nw1)
unaligned(alignedPattern)
aligned(alignedPattern)
as.character(alignedPattern)
nchar(alignedPattern)

BOC_SubjectString-class
BOC_SubjectString and BOC2_SubjectString objects

Description

The BOC_SubjectString and BOC2_SubjectString classes are experimental and might not work
properly.

Please DO NOT TRY TO USE them for now. Thanks for your comprehension!

Author(s)

H. Pages

DNAString-class DNAString objects

Description

A DNAString object allows efficient storage and manipulation of a long DNA sequence.

Details

The DNAString class is a direct XString subtype (with no additional slot). Therefore all functions
and methods described in the XString man page also work with a DNAString object (inheritance).

Unlike the BString container that allows storage of any single string (based on a single-byte char-
acter set) the DNAString container can only store a string based on the DNA alphabet (see below).
In addition, the letters stored in a DNAString object are encoded in a way that optimizes fast search
algorithms.

The DNA alphabet

This alphabet contains all letters from the IUPAC Extended Genetic Alphabet (see ?IUPAC_CODE_MAP)
+ the gap ("-") and the hard masking ("+") letters. It is stored in the DNA_ALPHABET con-
stant (character vector). The alphabet method also returns DNA_ALPHABET when applied to a
DNAString object and is provided for convenience only.

GENETIC_CODE 5

Constructor-like functions and generics

In the code snippet below, x can be a single string (character vector of length 1), a BString object
or an RNAString object.

DNAString(x, start=1, nchar=NA, check=TRUE): Tries to convert x into a DNAS-
tring object by reading nchar letters starting at position start in x.

Accessor methods

In the code snippet below, x is a DNAString object.

alphabet(x): If x is a DNAString object, then return the DNA alphabet (see above). See the
corresponding man pages when x is a BString, RNAString or AAString object.

Author(s)

H. Pages

See Also

IUPAC_CODE_MAP, letter, XString-class, RNAString-class, reverseComplement, alphabetFrequency

Examples

DNA_BASES
DNA_ALPHABET
d <- DNAString("TTGAAAA-CTC-N")
length(d)
alphabet(d) # DNA_ALPHABET

GENETIC_CODE The Standard Genetic Code

Description

Two predefined objects (GENETIC_CODE and RNA_GENETIC_CODE) that represent The Stan-
dard Genetic Code.

Usage

GENETIC_CODE
RNA_GENETIC_CODE

Details

Formally, a genetic code is a mapping between tri-nucleotide sequences called codons, and amino
acids.

The Standard Genetic Code (aka The Canonical Genetic Code, or simply The Genetic Code) is the
particular mapping that encodes the vast majority of genes in nature.

GENETIC_CODE and RNA_GENETIC_CODE are predefined named character vectors that repre-
sent this mapping.

6 IUPAC_CODE_MAP

Value

GENETIC_CODE and RNA_GENETIC_CODE are both named character vectors of length 64 (the
number of all possible tri-nucleotide sequences) where each element is a single letter representing
either an amino acid or the stop codon "*" (aka termination codon).

The names of the GENETIC_CODE vector are the DNA codons i.e. the tri-nucleotide sequences
(directed 5’ to 3’) that are assumed to belong to the "coding DNA strand" (aka "sense DNA strand"
or "non-template DNA strand") of the gene.

The names of the RNA_GENETIC_CODE are the RNA codons i.e. the tri-nucleotide sequences
(directed 5’ to 3’) that are assumed to belong to the mRNA of the gene.

Note that the values in the GENETIC_CODE and RNA_GENETIC_CODE vectors are the same, only
their names are different. The names of the latter are those of the former where all occurences of T
(thymine) have been replaced by U (uracil).

Author(s)

H. Pages

References

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

See Also

AA_ALPHABET, AMINO_ACID_CODE, trinucleotideFrequency, DNAString, RNAString,
AAString

Examples

GENETIC_CODE
RNA_GENETIC_CODE
all(GENETIC_CODE == RNA_GENETIC_CODE) # TRUE

IUPAC_CODE_MAP The IUPAC Extended Genetic Alphabet

Description

The IUPAC_CODE_MAP named character vector contains the mapping from the IUPAC nucleotide
ambiguity codes to their meaning.

The mergeIUPACLetters function provides the reverse mapping.

Usage

IUPAC_CODE_MAP
mergeIUPACLetters(x)

Arguments

x A vector of non-empty character strings made of IUPAC letters.

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

InDel-class 7

Details

IUPAC nucleotide ambiguity codes are used for representing sequences of nucleotides where the
exact nucleotides that occur at some given positions are not known with certainty.

Value

IUPAC_CODE_MAP is a named character vector where the names are the IUPAC nucleotide ambi-
guity codes and the values are their corresponding meanings. The meaning of each code is described
by a string that enumarates the base letters ("A", "C", "G" or "T") associated with the code.

The value returned by mergeIUPACLetters is an unnamed character vector of the same length
as its argument x where each element is an IUPAC nucleotide ambiguity code.

Author(s)

H. Pages

References

http://www.chick.manchester.ac.uk/SiteSeer/IUPAC_codes.html

IUPAC-IUB SYMBOLS FOR NUCLEOTIDE NOMENCLATURE: Cornish-Bowden (1985) Nucl.
Acids Res. 13: 3021-3030.

See Also

DNAString, RNAString

Examples

IUPAC_CODE_MAP
some_iupac_codes <- c("R", "M", "G", "N", "V")
IUPAC_CODE_MAP[some_iupac_codes]
mergeIUPACLetters(IUPAC_CODE_MAP[some_iupac_codes])

mergeIUPACLetters(c("Ca", "Acc", "aA", "MAAmC", "gM", "AB", "bS", "mk"))

InDel-class InDel objects

Description

The InDel class is a container for storing insertion and deletion information.

Details

This is a generic class that stores any insertion and deletion information.

Accesor methods

In the code snippets below, x is a InDel object.

insertion(x): The insertion information.

deletion(x): The deletion information.

http://www.chick.manchester.ac.uk/SiteSeer/IUPAC_codes.html

8 MIndex-class

Author(s)

P. Aboyoun

See Also

pairwiseAlignment, PairwiseAlignedFixedSubject-class

MIndex-class MIndex objects

Description

The MIndex class is the basic container for storing the matches of a set of patterns in a subject
sequence.

Details

THIS IS STILL WORK IN PROGRESS!

An MIndex object contains the matches (start/end locations) of a set of patterns found in an XString
object called "the subject string" or "the subject sequence" or simply "the subject".

The matchPDict function returns an MIndex object.

MORE TO COME SOON...

Accesor methods

In the code snippets below, x is an MIndex object.

length(x): The number of patterns that matches are stored for.

names(x): The names of the patterns that matches are stored for.

startIndex(x): A list containing the starting positions of the matches for each pattern.

endIndex(x): A list containing the ending positions of the matches for each pattern.

countIndex(x): An integer vector containing the number of matches for each pattern.

Subsetting methods

In the code snippets below, x is an MIndex object.

x[[i]]: Extract the matches for the i-th pattern as an IRanges object.

Other utility methods and functions

In the code snippets below, x and mindex are MIndex objects and subject is the XString object
containing the sequence in which the matches were found.

unlist(x, recursive=TRUE, use.names=TRUE): Return all the matches in a single
IRanges object. recursive and use.names are ignored.

extractAllMatches(subject, mindex): Return all the matches in a single XStringViews
object.

MaskedXString-class 9

Author(s)

H. Pages

See Also

matchPDict, PDict-class, IRanges-class, XStringViews-class

Examples

See ?matchPDict and ?`matchPDict-inexact` for some examples.

MaskedXString-class
MaskedXString objects

Description

The MaskedBString, MaskedDNAString, MaskedRNAString and MaskedAAString classes are con-
tainers for storing masked sequences.

All those containers derive directly (and with no additional slots) from the MaskedXString virtual
class. They are also said to be MaskedXString subtypes.

Details

In Biostrings, a pile of masks can be put on top of a sequence. A pile of masks is represented by
a MaskCollection object and the sequence by an XString object. A MaskedXString object is the
result of bundling them together in a single object.

Note that, no matter what masks are put on top of it, the original sequence is always stored unmod-
ified in a MaskedXString object. This allows the user to activate/deactivate masks without having
to worry about losing the information stored in the masked/unmasked regions. Also this allows
efficient memory management since the original sequence never needs to be copied (modifying it
would require to make a copy of it first - sequences cannot and should never be modified in place in
Biostrings), even when the set of active/inactive masks changes.

Accesor methods

In the code snippets below, x is a MaskedXString object. For masks(x) and masks(x) <- y,
it can also be an XString object and y must be NULL or a MaskCollection object.

unmasked(x): Turns x into an XString object by dropping the masks.
masks(x): Turns x into a MaskCollection object by dropping the sequence.
masks(x) <- y: If x is an XString object and y is NULL, then this doesn’t do anything.

If x is an XString object and y is a MaskCollection object, then this turns x into a MaskedXString
object by putting the masks in y on top of it.
If x is a MaskedXString object and y is NULL, then this is equivalent to x <- unmasked(x).
If x is a MaskedXString object and y is a MaskCollection object, then this replaces the masks
currently on top of x by the masks in y.

alphabet(x): Equivalent to alphabet(unmasked(x)). See ?alphabet for more infor-
mation.

length(x): Equivalent to length(unmasked(x)). See ¿length,XString-method‘
for more information.

10 MaskedXString-class

"maskedwidth" and related methods

In the code snippets below, x is a MaskedXString object.

maskedwidth(x): Get the number of masked letters in x. A letter is considered masked iff it’s
masked by at least one active mask.

maskedratio(x): Equivalent to maskedwidth(x) / length(x).

nchar(x): Equivalent to length(x) - maskedwidth(x).

Coercion

In the code snippets below, x is a MaskedXString object.

as(x, "XStringViews"): Turns x into an XStringViews object where the views are the
unmasked regions of the original sequence ("unmasked" means not masked by at least one
active mask).

Other methods

In the code snippets below, x is a MaskedXString object.

reduce(x): Reduce the set of masks in x to a single mask made of all active masks.

gaps(x): Reverses all the masks i.e. each mask is replaced by a mask where previously un-
masked regions are now masked and previously masked regions are now unmasked.

Author(s)

H. Pages

See Also

maskMotif, injectHardMask, alphabetFrequency, reverse,MaskedXString-method,
XString-class, MaskCollection-class, XStringViews-class, IRanges-utils

Examples

A. MASKING BY POSITION

mask0 <- Mask(mask.width=29, start=c(3, 10, 25), width=c(6, 8, 5))
x <- DNAString("ACACAACTAGATAGNACTNNGAGAGACGC")
length(x) # same as width(mask0)
nchar(x) # same as length(x)
masks(x) <- mask0
x
length(x) # has not changed
nchar(x) # has changed
gaps(x)

Prepare a MaskCollection object of 3 masks ('mymasks') by running the
examples in the man page for these objects:
example(MaskCollection, package="IRanges")

Put it on 'x':
masks(x) <- mymasks

PDict-class 11

x
alphabetFrequency(x)

Deactivate all masks:
active(masks(x)) <- FALSE
x

Activate mask "C":
active(masks(x))["C"] <- TRUE
x

Turn MaskedXString object into an XStringViews object:
as(x, "XStringViews")

Drop the masks:
masks(x) <- NULL
x
alphabetFrequency(x)

B. MASKING BY CONTENT

See ?maskMotif for masking by content

PDict-class PDict objects

Description

The PDict class is a container for storing a preprocessed dictionary of DNA patterns that can later
be passed to the matchPDict function for fast matching.

PDict is the constructor function for creating new PDict objects.

Usage

PDict(x, max.mismatch=NA, tb.start=NA, tb.end=NA, tb.width=NA,
type="ACtree", skip.invalid.patterns=FALSE)

Arguments

x A character vector, a DNAStringSet object or an XStringViews object with a
DNAString subject.

max.mismatch A single non-negative integer or NA. See the "Allowing a small number of mis-
matching letters" section below.

tb.start A single integer or NA. See the "Trusted Band" section below.

tb.end A single integer or NA. See the "Trusted Band" section below.

tb.width A single integer or NA. See the "Trusted Band" section below.

type "ACtree" or "Twobit"
skip.invalid.patterns

This argument is not supported yet (and might in fact be replaced by the filter
argument very soon).

12 PDict-class

Details

THIS IS STILL WORK IN PROGRESS!

If the original dictionary x is a character vector or an XStringViews object with a DNAString
subject, then the PDict constructor will first try to turn it into a DNAStringSet object.

By default (i.e. if PDict is called with max.mismatch=NA, tb.start=NA, tb.end=NA and
tb.width=NA) the following limitations apply: (1) the original dictionary can only contain base
letters (i.e. only As, Cs, Gs and Ts), therefore IUPAC extended letters are not allowed; (2) all the
patterns in the dictionary must have the same length ("constant width" dictionary); and (3) later
matchPdict can only be used with max.mismatch=0.

A Trusted Band can be used in order to relax these limitations (see the "Trusted Band" section
below).

If you are planning to use the resulting PDict object in order to do inexact matching where valid
hits are allowed to have a small number of mismatching letters, then see the "Allowing a small
number of mismatching letters" section below.

Two types of preprocessing are currently supported: type="ACtree" (the default) and type="Twobit".
With the "ACtree" type, all the oligonucleotides in the Trusted Band are stored in a 4-ary Aho-
Corasick tree. With the "Twobit" type, the 2-bit-per-letter signatures of all the oligonucleotides
in the Trusted Band are computed and the mapping from these signatures to the 1-based posi-
tion of the corresponding oligonucleotide in the Trusted Band is stored in a way that allows very
fast lookup. Only with PDict objects of type "ACtree" can matchPdict then be called with
fixed="pattern" (instead of fixed=TRUE, the default) so that IUPAC extended letters in the
subject are treated as ambiguities. PDict objects of type "Twobit" don’t allow this.

Trusted Band

What’s a Trusted Band?

A Trusted Band is a region defined in the original dictionary where the limitations described above
will apply.

Why use a Trusted Band?

Because the limitations described above will apply to the Trusted Band only! For example the
Trusted Band cannot contain IUPAC extended letters but the "head" and the "tail" can (see be-
low for what those are). Also with a Trusted Band, if matchPdict is called with a non-null
max.mismatch value then mismatching letters will be allowed in the head and the tail. Or, if
matchPdict is called with fixed="subject", then IUPAC extended letters in the head and
the tail will be treated as ambiguities.

How to specify a Trusted Band?

Use the tb.start, tb.end and tb.width arguments of the PDict constructor in order to
specify a Trusted Band. This will divide each pattern in the original dictionary into three parts: a left
part, a middle part and a right part. The middle part is defined by its starting and ending nucleotide
positions given relatively to each pattern thru the tb.start, tb.end and tb.width arguments.
It must have the same length for all patterns (this common length is called the width of the Trusted
Band). The left and right parts are defined implicitely: they are the parts that remain before (prefix)
and after (suffix) the middle part, respectively. Therefore three DNAStringSet objects result from
this division: the first one is made of all the left parts and forms the head of the PDict object, the
second one is made of all the middle parts and forms the Trusted Band of the PDict object, and the
third one is made of all the right parts and forms the tail of the PDict object.

In other words you can think of the process of specifying a Trusted Band as drawing 2 vertical
lines on the original dictionary (note that these 2 lines are not necessarily straight lines but the
horizontal space between them must be constant). When doing this, you are dividing the dictionary

PDict-class 13

into three regions (from left to right): the head, the Trusted Band and the tail. Each of them is a
DNAStringSet object with the same number of elements than the original dictionary and the original
dictionary could easily be reconstructed from those three regions.

The width of the Trusted Band must be >= 1 because Trusted Bands of width 0 are not supported.

Finally note that calling PDict with tb.start=NA, tb.end=NA and tb.width=NA (the de-
fault) is equivalent to calling it with tb.start=1, tb.end=-1 and tb.width=NA, which
results in a full-width Trusted Band i.e. a Trusted Band that covers the entire dictionary (no head
and no tail).

Allowing a small number of mismatching letters

TODO

Accesor methods

In the code snippets below, x is a PDict object.

length(x): The number of patterns in x.

width(x): A vector of non-negative integers containing the number of letters for each pattern
in x.

names(x): The names of the patterns in x.

head(x): The head of x or NULL if x has no head.

tb(x): The Trusted Band defined on x.

tb.width(x): The width of the Trusted Band defined on x. Note that, unlike width(tb(x)),
this is a single integer. And because the Trusted Band has a constant width, tb.width(x)
is in fact equivalent to unique(width(tb(x))), or to width(tb(x))[1].

tail(x): The tail of x or NULL if x has no tail.

Subsetting methods

In the code snippets below, x is a PDict object.

x[[i]]: Extract the i-th pattern from x as a DNAString object.

Other methods

In the code snippet below, x is a PDict object.

duplicated(x): [TODO]

patternFrequency(x): [TODO]

Author(s)

H. Pages

References

Aho, Alfred V.; Margaret J. Corasick (June 1975). "Efficient string matching: An aid to biblio-
graphic search". Communications of the ACM 18 (6): 333-340.

14 PairwiseAlignedFixedSubject-class

See Also

matchPDict, DNA_ALPHABET, DNAStringSet-class, XStringViews-class

Examples

A. NO HEAD AND NO TAIL (THE DEFAULT)

library(drosophila2probe)
dict0 <- DNAStringSet(drosophila2probe$sequence)
dict0 # The original dictionary.
length(dict0) # Hundreds of thousands of patterns.
unique(nchar(dict0)) # Patterns are 25-mers.

pdict0 <- PDict(dict0) # Store the original dictionary in
a PDict object (preprocessing).

pdict0
class(pdict0)
length(pdict0) # Same as length(dict0).
tb.width(pdict0) # The width of the (implicit)

Trusted Band.
sum(duplicated(pdict0))
table(patternFrequency(pdict0)) # 9 patterns are repeated 3 times.
pdict0[[1]]
pdict0[[5]]

B. NO HEAD AND A TAIL

dict1 <- c("ACNG", "GT", "CGT", "AC")
pdict1 <- PDict(dict1, tb.end=2)
pdict1
class(pdict1)
length(pdict1)
width(pdict1)
head(pdict1)
tb(pdict1)
tb.width(pdict1)
width(tb(pdict1))
tail(pdict1)
pdict1[[3]]

PairwiseAlignedFixedSubject-class
PairwiseAlignedFixedSubject and PairwiseAlignedFixedSubjectSum-
mary objects

Description

The PairwiseAlignedFixedSubject class is a container for storing an alignment. The
PairwiseAlignedFixedSubjectSummary class is a container for storing the summary of
an alignment.

PairwiseAlignedFixedSubject-class 15

Details

Before we define the notion of alignment, we introduce the notion of "filled-with-gaps subse-
quence". A "filled-with-gaps subsequence" of a string string1 is obtained by inserting 0 or any
number of gaps in a subsequence of s1. For example L-A–ND and A–N-D are "filled-with-gaps
subsequences" of LAND. An alignment between two strings string1 and string2 results in two
strings (align1 and align2) that have the same length and are "filled-with-gaps subsequences" of
string1 and string2.

For example, this is an alignment between LAND and LEAVES:

L-A
LEA

An alignment can be seen as a compact representation of one set of basic operations that transforms
string1 into align1. There are 3 different kinds of basic operations: "insertions" (gaps in align1),
"deletions" (gaps in align2), "replacements". The above alignment represents the following basic
operations:

insert E at pos 2
insert V at pos 4
insert E at pos 5
replace by S at pos 6 (N is replaced by S)
delete at pos 7 (D is deleted)

Note that "insert X at pos i" means that all letters at a position >= i are moved 1 place to the right
before X is actually inserted.

There are many possible alignments between two given strings string1 and string2 and a common
problem is to find the one (or those ones) with the highest score, i.e. with the lower total cost in
terms of basic operations.

Accesor methods

In the code snippets below, x is a PairwiseAlignedFixedSubject object, except otherwise
noted.

pattern(x): The AlignedXStringSet object for the pattern.

subject(x): The AlignedXStringSet object for the subject.

type(x): The type of the alignment ("global", "local", "overlap", "patternOverlap",
or "subjectOverlap"). There is a method for PairwiseAlignedFixedSubjectSummary
as well.

score(x): The score of the alignment (integer). There is a method for PairwiseAlignedFixedSubjectSummary
as well.

nindel(x): An InDel object containing the number of insertions and deletions.

length(x): The length of the aligned(pattern(x)) and aligned(subject(x)).
There is a method for PairwiseAlignedFixedSubjectSummary as well.

nchar(x): The nchar of the aligned(pattern(x)) and aligned(subject(x)). There
is a method for PairwiseAlignedFixedSubjectSummary as well.

alphabet(x): Equivalent to alphabet(unaligned(subject(x))).

summary(object, ...): Generates a summary for the PairwiseAlignedFixedSubject.

aligned(x): Returns an XStringSet object containing the aligned patterns without inser-
tions. This operation “aligns" the alignments.

16 QualityScaledXStringSet-class

as.character(x): Converts aligned(x) to a character vector.

as.matrix(x): Returns an "exploded" character matrix representation of aligned(x).

Views(subject, start=NA, end=NA, names=NULL): The XStringViews object
that represents the pairwise alignments along unaligned(subject(subject)). The
start and end arguments must be either NA or an integer vector of length 1 that denotes the
offset from start(subject(subject)).

toString(x): Equivalent to toString(as.character(x)).

Subsetting methods

x[i]: Returns a new PairwiseAlignedFixedSubject object made of the selected ele-
ments.

rep(x, times): Returns a new PairwiseAlignedFixedSubject object made of the
repeated elements.

Author(s)

P. Aboyoun and H. Pages

See Also

pairwiseAlignment, AlignedXStringSet-class, XString-class, XStringViews-
class, match-utils

Examples

pattern <- AAStringSet(c("HLDNLKGTF", "HVDDMPNAL"))
subject <- AAString("SMDDTEKMSMKL")
nw1 <- pairwiseAlignment(pattern, subject, substitutionMatrix = "BLOSUM50", gapOpening = -3, gapExtension = -1)
pattern(nw1)
subject(nw1)
aligned(nw1)
as.character(nw1)
as.matrix(nw1)
nchar(nw1)
score(nw1)
nw1

QualityScaledXStringSet-class
QualityScaledBStringSet, QualityScaledDNAStringSet, QualityScale-
dRNAStringSet and QualityScaledAAStringSet objects

Description

The QualityScaledBStringSet class is a container for storing a BStringSet object with an XStringQuality
object.

Similarly, the QualityScaledDNAStringSet (or QualityScaledRNAStringSet, or QualityScaledAAS-
tringSet) class is a container for storing a DNAStringSet (or RNAStringSet, or AAStringSet)
objects with an XStringQuality object.

QualityScaledXStringSet-class 17

Usage

Constructors:
QualityScaledBStringSet(x, quality)
QualityScaledDNAStringSet(x, quality)
QualityScaledRNAStringSet(x, quality)
QualityScaledAAStringSet(x, quality)

Arguments

x Either a character vector, or an XString, XStringSet or XStringViews object.
quality An XStringQuality object.

Details

The QualityScaledBStringSet, QualityScaledDNAStringSet, QualityScaledRNAStringSet
and QualityScaledAAStringSet functions are constructors that can be used to "naturally"
turn x into an QualityScaledXStringSet object of the desired subtype.

Accesor methods

The QualityScaledXStringSet class derives from the XStringSet class hence all the accessor meth-
ods defined for an XStringSet object can also be used on an QualityScaledXStringSet object. Com-
mon methods include (in the code snippets below, x is an QualityScaledXStringSet object):

length(x): The number of sequences in x.
width(x): A vector of non-negative integers containing the number of letters for each element

in x.
nchar(x): The same as width(x).
names(x): NULL or a character vector of the same length as x containing a short user-provided

description or comment for each element in x.
quality(x): The quality of the strings.

Subsetting and appending

In the code snippets below, x and values are XStringSet objects, and i should be an index speci-
fying the elements to extract.

x[i]: Return a new QualityScaledXStringSet object made of the selected elements.

Author(s)

P. Aboyoun

See Also

BStringSet-class, DNAStringSet-class, RNAStringSet-class, AAStringSet-class, XStringQuality-
class

Examples

x1 <- DNAStringSet(c("TTGA", "CTCN"))
q1 <- PhredQuality(c("*+,-", "6789"))
qx1 <- QualityScaledDNAStringSet(x1, q1)
qx1

18 RNAString-class

RNAString-class RNAString objects

Description

An RNAString object allows efficient storage and manipulation of a long RNA sequence.

Details

The RNAString class is a direct XString subtype (with no additional slot). Therefore all functions
and methods described in the XString man page also work with an RNAString object (inheritance).

Unlike the BString container that allows storage of any single string (based on a single-byte charac-
ter set) the RNAString container can only store a string based on the RNA alphabet (see below). In
addition, the letters stored in an RNAString object are encoded in a way that optimizes fast search
algorithms.

The RNA alphabet

This alphabet contains all letters from the IUPAC Extended Genetic Alphabet (see ?IUPAC_CODE_MAP)
where "T" is replaced by "U" + the gap ("-") and the hard masking ("+") letters. It is stored in the
RNA_ALPHABET constant (character vector). The alphabetmethod also returns RNA_ALPHABET
when applied to an RNAString object and is provided for convenience only.

Constructor-like functions and generics

In the code snippet below, x can be a single string (character vector of length 1), a BString object
or a DNAString object.

RNAString(x, start=1, nchar=NA, check=TRUE): Tries to convert x into an RNAS-
tring object by reading nchar letters starting at position start in x.

Accessor methods

In the code snippet below, x is an RNAString object.

alphabet(x): If x is an RNAString object, then return the RNA alphabet (see above). See the
corresponding man pages when x is a BString, DNAString or AAString object.

Author(s)

H. Pages

See Also

IUPAC_CODE_MAP, letter, XString-class, DNAString-class, reverseComplement, alphabetFrequency

XString-class 19

Examples

RNA_BASES
RNA_ALPHABET
d <- DNAString("TTGAAAA-CTC-N")
r <- RNAString(d)
r
alphabet(r) # RNA_ALPHABET

When comparing an RNAString object with a DNAString object,
U and T are considered equals:
r == d # TRUE

XString-class BString objects

Description

The BString class is a general container for storing a big string (a long sequence of characters) and
for making its manipulation easy and efficient.

The DNAString, RNAString and AAString classes are similar containers but with the more biology-
oriented purpose of storing a DNA sequence (DNAString), an RNA sequence (RNAString), or a
sequence of amino acids (AAString).

All those containers derive directly (and with no additional slots) from the XString virtual class.
They are also said to be XString subtypes.

Details

The 2 main differences between an XString object and a standard character vector are: (1) the data
stored in an XString object are not copied on object duplication and (2) an XString object can only
store a single string (see the XStringSet container for an efficient way to store a big collection of
strings in a single object).

Unlike the DNAString, RNAString and AAString containers that accept only a predefined set of
letters (the alphabet), a BString object can be used for storing any single string based on a single-
byte character set.

Constructor-like functions and generics

In the code snippet below, x can be a single string (character vector of length 1) or an XString
object.

BString(x, start=1, nchar=NA, check=TRUE): Tries to convert x into a BString
object by reading nchar letters starting at position start in x.

Accessor methods

In the code snippets below, x is an XString object.

alphabet(x): NULL for a BString object. See the corresponding man pages when x is a
DNAString, RNAString or AAString object.

length(x) or nchar(x): Get the length of an XString object, i.e., its number of letters.

20 XString-class

Coercion

In the code snippets below, x is an XString object.

as.character(x): Converts x to a character string.

toString(x): Equivalent to as.character(x).

Subsetting

In the code snippets below, x is an XString object.

x[i]: Return a new XString object made of the selected letters (subscript i must be an NA-free
numeric vector specifying the positions of the letters to select). The returned object belongs
to the same class (i.e. same XString subtype) as x.
Note that, unlike subseq, x[i] does copy the sequence data and therefore will be very
inefficient for extracting a big number of letters (e.g. when i contains millions of positions).

Equality

In the code snippets below, e1 and e2 are XString objects.

e1 == e2: TRUE if e1 is equal to e2. FALSE otherwise.
Comparison between two XString objects of different subtypes (e.g. a BString object and a
DNAString object) is not supported with one exception: a DNAString object and an RNAS-
tring object can be compared (see RNAString-class for more details about this).
Comparison between a BString object and a character string is also supported (see examples
below).

e1 != e2: Equivalent to !(e1 == e2).

Author(s)

H. Pages

See Also

subseq, letter, DNAString-class, RNAString-class, AAString-class, XStringSet-class, XStringViews-
class, reverse,XString-method

Examples

b <- BString("I am a BString object")
b
length(b)

Extracting a linear subsequence
subseq(b)
subseq(b, start=3)
subseq(b, start=-3)
subseq(b, end=-3)
subseq(b, end=-3, width=5)

Subsetting
b2 <- b[length(b):1] # better done with reverse(b)

as.character(b2)

XStringPartialMatches-class 21

b2 == b # FALSE
b2 == as.character(b2) # TRUE

b[1:length(b)] is equal but not identical to b!
b == b[1:length(b)] # TRUE
identical(b, 1:length(b)) # FALSE
This is because subsetting an XString object with [makes a copy
of part or all its sequence data. Hence, for the resulting object,
the internal slot containing the memory address of the sequence
data differs from the original. This is enough for identical() to
see the 2 objects as different.

XStringPartialMatches-class
XStringPartialMatches objects

Description

WARNING: This class is currently under development and might not work properly! Full docu-
mentation will come later.

Please DO NOT TRY TO USE it for now. Thanks for your comprehension!

Accesor methods

In the code snippets below, x is an XStringPartialMatches object.

subpatterns(x): Not ready yet.

pattern(x): Not ready yet.

Standard generic methods

In the code snippets below, x is an XStringPartialMatches objects, and i can be a numeric or logical
vector.

x[i]: Return a new XStringPartialMatches object made of the selected views. i can be a numeric
vector, a logical vector, NULL or missing. The returned object has the same subject as x.

Author(s)

H. Pages

See Also

XStringViews-class, XString-class, letter

22 XStringQuality-class

XStringQuality-class
PhredQuality and SolexaQuality objects

Description

Objects for storing string quality measures.

Usage

Constructors:
PhredQuality(x)
SolexaQuality(x)

Arguments

x Either a character vector, BString, BStringSet, integer vector, or number vector
of error probabilities.

Details

PhredQuality objects store characters that are interpreted as [0 - 99] quality measures by sub-
tracting 33 from their ASCII decimal representation (e.g. ! = 0, " = 1, # = 2, ...).

SolexaQuality objects store characters are interpreted as [-5 - 99] quality measures by sub-
tracting 64 from their ASCII decimal representation (e.g. ; = -5, < = -4, = = -3, ...).

Author(s)

P. Aboyoun

See Also

pairwiseAlignment, PairwiseAlignedFixedSubject-class, DNAString-class, BStringSet-class

Examples

PhredQuality(0:40)
SolexaQuality(0:40)

PhredQuality(seq(1e-4,0.5,length=10))
SolexaQuality(seq(1e-4,0.5,length=10))

XStringSet-class 23

XStringSet-class BStringSet, DNAStringSet, RNAStringSet and AAStringSet objects

Description

The BStringSet class is a container for storing a set of BString objects and for making its manip-
ulation easy and efficient.

Similarly, the DNAStringSet (or RNAStringSet, or AAStringSet) class is a container for storing a
set of DNAString (or RNAString, or AAString) objects.

All those containers derive directly (and with no additional slots) from the XStringSet virtual class.
They are also said to be XStringSet subtypes.

Usage

Constructors:
BStringSet(x, start=NA, end=NA, width=NA, use.names=TRUE)
DNAStringSet(x, start=NA, end=NA, width=NA, use.names=TRUE)
RNAStringSet(x, start=NA, end=NA, width=NA, use.names=TRUE)
AAStringSet(x, start=NA, end=NA, width=NA, use.names=TRUE)

Arguments

x Either a character vector, or an XString, XStringSet or XStringViews object.

start Either NA, a single integer, or an integer vector of the same length as x specifying
how x should be "narrowed" (see ?narrow for the details).

end Either NA, a single integer, or an integer vector of the same length as x specifying
how x should be "narrowed" (see ?narrow for the details).

width Either NA, a single integer, or an integer vector of the same length as x specifying
how x should be "narrowed" (see ?narrow for the details).

use.names TRUE or FALSE. Should names be preserved?

Details

The BStringSet, DNAStringSet, RNAStringSet and AAStringSet functions are con-
structors that can be used to "naturally" turn x into an XStringSet object of the desired subtype.

They also allow the user to "narrow" the sequences contained in x via proper use of the start,
end and/or width arguments. In this context, "narrowing" means dropping unwanted parts of x
located at the beginning (prefix) or end (suffix) of each sequence in x.

The narrow function is a generic function (defined in the IRanges package) with a method for
narrowing IRanges objects. Because XStringSet objects are a particular kind of IRanges objects
(the XStringSet class is a subclass of the IRanges class), an XStringSet object y can be narrowed
with narrow(y). Therefore the two following expressions are equivalent:

DNAStringSet(x, start=s, end=e, width=w)

narrow(DNAStringSet(x), start=s, end=e, width=w)

but, besides being more convenient, the former is also more memory efficient on character vectors
and would work even if the dropped parts contained letters that are not in the DNA alphabet (see
?DNA_ALPHABET).

24 XStringSet-class

Accesor methods

The XStringSet class derives from the IRanges class hence all the accessor methods defined for a
IRanges object can also be used on an XStringSet object. In particular, the following methods are
available (in the code snippets below, x is an XStringSet object:

length(x): The number of sequences in x.

width(x): A vector of non-negative integers containing the number of letters for each element
in x.

nchar(x): The same as width(x).

names(x): NULL or a character vector of the same length as x containing a short user-provided
description or comment for each element in x. These are the only data in an XStringSet
object that can safely be changed by the user. All the other data are immutable! As a general
recommendation, the user should never try to modify an object by accessing its slots directly.

Subsetting and appending

In the code snippets below, x and values are XStringSet objects, and i should be an index speci-
fying the elements to extract.

x[i]: Return a new XStringSet object made of the selected elements.

x[[i]]: Extract the i-th XString object from x.

append(x, values, after=length(x)): Add sequences in values to x.

Other methods

In the code snippets below, x is an XStringSet object.

as.character(x, use.names): Convert x to a character vector of the same length as x.
use.names controls whether or not names(x) should be used to set the names of the
returned vector (default is TRUE).

as.matrix(x, use.names): Return a character matrix containing the "exploded" represen-
tation of the strings. This can only be used on an XStringSet object with equal-width strings.
use.names controls whether or not names(x) should be used to set the row names of the
returned matrix (default is TRUE).

toString(x): Equivalent to toString(as.character(x)).

Ordering and related methods

In the code snippets below, x is an XStringSet object.

order(x): Return a permutation which rearranges x into ascending or descending order.

sort(x): Sort x into ascending order (equivalent to x[order(x)]).

Author(s)

H. Pages

See Also

BString-class, DNAString-class, RNAString-class, AAString-class, XStringViews-class, narrow,
DNA_ALPHABET

XStringSet-io 25

Examples

x0 <- c("#TTGA", "#-CTC-N")
x1 <- DNAStringSet(x0, start=2)
x1
names(x1)
names(x1)[2] <- "seqB"
x1

library(drosophila2probe)
x2 <- DNAStringSet(drosophila2probe$sequence)
x2

RNAStringSet(x2, start=2, end=-5) # does NOT copy the sequence data!

XStringSet-io Read/write an XStringSet or XStringViews object from/to a file

Description

Functions to read/write an XStringSet or XStringViews object from/to a file.

Usage

XStringSet object
read.BStringSet(file, format)
read.DNAStringSet(file, format)
read.RNAStringSet(file, format)
read.AAStringSet(file, format)
write.XStringSet(x, file="", format, width=80)

XStringViews object
read.XStringViews(file, format, subjectClass, collapse="")
write.XStringViews(x, file="", format, width=80)

Some related helper functions
FASTArecordsToCharacter(FASTArecs, use.names=TRUE)
CharacterToFASTArecords(x)
FASTArecordsToXStringViews(FASTArecs, subjectClass, collapse="")
XStringSetToFASTArecords(x)

Arguments

file Either a character string naming a file or a connection open for reading or writ-
ing. If "" (the default for write.XStringSet and write.XStringViews),
then the functions write to the standard output connection (the console) unless
redirected by sink.

format Only "fasta" is supported for now.

x For write.XStringSet and write.XStringViews, the object to write
to file. For CharacterToFASTArecords, the (possibly named) char-
acter vector to be converted to a list of FASTA records as one returned by
readFASTA. For XStringSetToFASTArecords, the XStringSet object
to be converted to a list of FASTA records as one returned by readFASTA.

26 XStringViews-class

width Only relevant if format is "fasta". The maximum number of letters per
line of sequence.

subjectClass The class to be given to the subject of the XStringViews object created and
returned by the function. Must be the name of one of the direct XString subtypes
i.e. "BString", "DNAString", "RNAString" or "AAString".

collapse An optional character string to be inserted between the views of the XStringViews
object created and returned by the function.

FASTArecs A list of FASTA records as one returned by readFASTA.

use.names Whether or not the description line preceding each FASTA records should be
used to set the names of the returned vector.

Details

Only FASTA files are supported for now.

Reading functions read.BStringSet, read.DNAStringSet, read.RNAStringSet, read.AAStringSet
and read.XStringViews load sequences from a file into an XStringSet or XStringViews ob-
ject.

Writing functions write.XStringSet and write.XStringViews write an XStringSet or
XStringViews object to a file or connection.

FASTArecordsToCharacter, CharacterToFASTArecords, FASTArecordsToXStringViews
and XStringSetToFASTArecords are helper functions used internally by write.XStringSet
and read.XStringViews for switching between different representations of the same object.

See Also

fasta.info, readFASTA, writeFASTA, XStringSet-class, XStringViews-class, BString-class,
DNAString-class, RNAString-class, AAString-class

Examples

file <- system.file("extdata", "someORF.fa", package="Biostrings")
x <- read.DNAStringSet(file, "fasta")
x
write.XStringSet(x, format="fasta") # writes to the console

Converting 'x'...
... to a list of FASTA records (as one returned by the "readFASTA" function)
x1 <- XStringSetToFASTArecords(x)
... to a named character vector
x2 <- FASTArecordsToCharacter(x1) # same as 'as.character(x)'

XStringViews-class The XStringViews class

Description

The XStringViews class is the basic container for storing a set of views (start/end locations) on the
same sequence (an XString object).

XStringViews-class 27

Usage

Constructors:

S4 method for signature 'character':
Views(subject, start=NA, end=NA, names=NULL)
S4 method for signature 'XString':
Views(subject, start=NA, end=NA, names=NULL)

Arguments

subject The subject sequence.

start, end Integer vectors specifying the starting and ending positions of each view.

names If not NULL, the names to assign to each view.

Details

An XStringViews object contains a set of views (start/end locations) on the same XString object
called "the subject string" or "the subject sequence" or simply "the subject". Each view is defined
by its start and end locations: both are integers such that start <= end. An XStringViews object is
in fact a particular case of an Views object (the XStringViews class contains the Views class) so it
can be manipulated in a similar manner: see ?Views for more information. Note that two views
can overlap and that a view can be "out of limits" i.e. it can start before the first letter of the subject
or/and end after its last letter.

Accesor methods

In the code snippets below, x is an XStringViews object.

subject(x): The subject of x. This is always an XString object.

nchar(x): A vector of non-negative integers containing the number of letters in each view.
Values in nchar(x) coincide with values in width(x) except for "out of limits" views
where they are lower.

Other methods

In the code snippets below, x, object, e1 and e2 are XStringViews objects, and i can be a
numeric or logical vector.

e1 == e2: A vector of logicals indicating the result of the view by view comparison. The views
in the shorter of the two XStringViews object being compared are recycled as necessary.
Like for comparison between XString objects, comparison between two XStringViews objects
with subjects of different classes is not supported with one exception: when the subjects are
DNAString and RNAString instances.
Also, like with XString objects, comparison between an XStringViews object with a BString
subject and a character vector is supported (see examples below).

e1 != e2: Equivalent to !(e1 == e2).

as.character(x, use.names, check.limits): Convert x to a character vector of
the same length as x. use.names controls whether or not names(x) should be used to
set the names of the returned vector (default is TRUE). check.limits controls whether
or not an error should be raised if x contains "out of limit" views (default is TRUE). With
check.limits=FALSE then "out of limit" views are padded with spaces.

28 XStringViews-class

as.matrix(x, mode, use.names, check.limits): Depending on what mode is cho-
sen ("integer" or "character"), return either a 2-column integer matrix containing
start(x) and end(x) or a character matrix containing the "exploded" representation of the
views. mode="character" can only be used on an XStringViews object with equal-width
views. Arguments use.names and check.limits are ignored with mode="integer".
With mode="character", use.names controls whether or not names(x) should be
used to set the row names of the returned matrix (default is TRUE), and check.limits
controls whether or not an error should be raised if x contains "out of limit" views (default is
TRUE). With check.limits=FALSE then "out of limit" views are padded with spaces.

toString(x): Equivalent to toString(as.character(x)).

Author(s)

H. Pages

See Also

Views-class, gaps, XStringViews-constructors, XString-class, XStringSet-class, letter, MIndex-
class

Examples

One standard way to create an XStringViews object is to use
the Views() constructor.

Views on a DNAString object:
s <- DNAString("-CTC-N")
v4 <- Views(s, start=3:0, end=5:8)
v4
subject(v4)
length(v4)
start(v4)
end(v4)
width(v4)

Attach a comment to views #3 and #4:
names(v4)[3:4] <- "out of limits"
names(v4)

A more programatical way to "tag" the "out of limits" views:
names(v4)[start(v4) < 1 | nchar(subject(v4)) < end(v4)] <- "out of limits"
or just:
names(v4)[nchar(v4) < width(v4)] <- "out of limits"

Two equivalent ways to extract a view as an XString object:
s2a <- v4[[2]]
s2b <- subseq(subject(v4), start=start(v4)[2], end=end(v4)[2])
identical(s2a, s2b) # TRUE

It is an error to try to extract an "out of limits" view:
#v4[[3]] # Error!

v12 <- Views(DNAString("TAATAATG"), start=-2:9, end=0:11)
v12 == DNAString("TAA")
v12[v12 == v12[4]]
v12[v12 == v12[1]]

XStringViews-constructors 29

v12[3] == Views(RNAString("AU"), start=0, end=2)

Here the first view doesn't even overlap with the subject:
Views(BString("aaa--b"), start=-3:4, end=-3:4 + c(3:6, 6:3))

'start' and 'end' are recycled
Views("abcdefghij", start=2:1, end=4)
Views("abcdefghij", start=5:7)
Views("abcdefghij", end=5:7)

Applying gaps() to an XStringViews object
v2 <- Views("abCDefgHIJK", start=c(8, 3), end=c(14, 4))
gaps(v2)

XStringViews-constructors
Basic functions for creating or modifying XStringViews objects

Description

A set of basic functions for creating or modifying XStringViews objects.

Usage

adjacentViews(subject, width, gapwidth=0)
XStringViews(x, subjectClass, collapse="")

Arguments

subject An XString object or a single string.
width An integer vector containing the widths of the views.
gapwidth An integer vector containing the widths of the gaps between the views.
x An XString object or a character vector for XStringViews. An XStringViews

object for trim and subviews.
subjectClass The class to be given to the subject of the XStringViews object created and

returned by the function. Must be the name of one of the direct XString subtypes
i.e. "BString", "DNAString", "RNAString" or "AAString".

collapse An optional character string to be inserted between the views of the XStringViews
object created and returned by the function.

Details

The adjacentViews function returns an XStringViews object containing views on subject
with widths given in the width vector and separated by gaps of width gapwidth. The first view
starts at position 1.

The XStringViews constructor will try to create an XStringViews object from the value passed
to its x argument. If x itself is an XStringViews object, the returned object is obtained by coercing
its subject to the class specified by subjectClass. If x is an XString object, the returned object
is made of a single view that starts at the first letter and ends at the last letter of x (in addition x itself
is coerced to the class specified by subjectClass when specified). If x is a character vector,
the returned object has one view per character string in x (and its subject is an instance of the class
specified by subjectClass).

30 align-utils

Value

These functions return an XStringViews object y. length(y) (the number of views in y) is
length(width) for the adjacentViews function. For the XStringViews constructor,
length(y) is 1 when x is an XString object and length(x) otherwise.

See Also

XStringViews-class, XString-class

Examples

adjacentViews("abcdefghij", 4:2, gapwidth=1)

v12 <- Views(DNAString("TAATAATG"), start=-2:9, end=0:11)
XStringViews(v12, subjectClass="RNAString")
XStringViews(AAString("MARKSLEMSIR*"))
XStringViews("abcdefghij", subjectClass="BString")

align-utils Utility functions related to sequence alignment

Description

A variety of different functions used to deal with sequence alignments.

Usage

mismatchTable(x, shiftLeft=0L, shiftRight=0L, ...)
mismatchSummary(x, ...)
S4 method for signature 'AlignedXStringSet':
coverage(x, start=NA, end=NA, weight=1L)
S4 method for signature 'PairwiseAlignedFixedSubject':
coverage(x, start=NA, end=NA, weight=1L)
compareStrings(pattern, subject)
S4 method for signature 'character':
consensusMatrix(x, freq=FALSE)
S4 method for signature 'XStringSet':
consensusMatrix(x, baseOnly=FALSE, freq=FALSE)
consensusString(x)

Arguments

x A character vector or matrix, XStringSet, XStringViews, PairwiseAlignedFixedSubject,
or list of FASTA records containing the equal-length strings.

shiftLeft, shiftRight
Non-positive and non-negative integers respectively that specify how many pre-
ceding and succeeding characters to and from the mismatch position to include
in the mismatch substrings.

... Further arguments to be passed to or from other methods.

start, end See ?coverage.

align-utils 31

weight An integer vector specifying how much each element in x counts.
pattern, subject

The strings to compare. Can be of type character, XString, XStringSet,
AlignedXStringSet, or, in the case of pattern, PairwiseAlignedFixedSubject.
If pattern is a PairwiseAlignedFixedSubject object, then subject
must be missing.

baseOnly TRUE or FALSE. If TRUE, the returned vector only contains frequencies for the
letters in the "base" alphabet i.e. "A", "C", "G", "T" if x is a "DNA input", and
"A", "C", "G", "U" if x is "RNA input". When x is a BString object (or an
XStringViews object with a BString subject, or a BStringSet object), then the
baseOnly argument is ignored.

freq If TRUE, then letter frequencies (per position) are reported, otherwise counts.

Details

mismatchTable: a data.frame containing the positions and substrings of the mismatches for the
AlignedXStringSet or PairwiseAlignedFixedSubject object.

mismatchSummary: a list of data.frame objects containing counts and frequencies of the mis-
matches for the AlignedXStringSet or PairwiseAlignedFixedSubject object.

compareStrings combines two equal-length strings that are assumed to be aligned into a single
character string containing that replaces mismatches with "?", insertions with "+", and deletions
with "-".

consensusMatrix computes a consensus matrix for a set of equal-length strings that are as-
sumed to be aligned.

consensusString creates the string based on a 50% + 1 vote from the consensus matrix with
unknowns labeled with "?".

See Also

pairwiseAlignment, XString-class, XStringSet-class, XStringViews-class, AlignedXStringSet-
class, PairwiseAlignedFixedSubject-class, match-utils

Examples

Compare two globally aligned strings
string1 <- "ACTTCACCAGCTCCCTGGCGGTAAGTTGATC---AAAGG---AAACGCAAAGTTTTCAAG"
string2 <- "GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC"
compareStrings(string1, string2)

Create a consensus matrix
nw1 <-
pairwiseAlignment(AAStringSet(c("HLDNLKGTF", "HVDDMPNAL")), AAString("SMDDTEKMSMKL"),
substitutionMatrix = "BLOSUM50", gapOpening = -3, gapExtension = -1)

consensusMatrix(nw1)

Examine the consensus between the bacteriophage phi X174 genomes
data(phiX174Phage)
phageConsmat <- consensusMatrix(phiX174Phage, baseOnly = TRUE)
phageDiffs <- which(apply(phageConsmat, 2, max) < length(phiX174Phage))
phageDiffs
phageConsmat[,phageDiffs]

Read in ORF data

32 alphabetFrequency

file <- system.file("extdata", "someORF.fa", package="Biostrings")
orf <- read.DNAStringSet(file, "fasta")

To illustrate, the following example assumes the ORF data
to be aligned for the first 10 positions (patently false):
orf10 <- DNAStringSet(orf, end=10)
consensusMatrix(orf10, baseOnly=TRUE, freq=TRUE)
consensusString(sort(orf10)[1:5])

For the character matrix containing the "exploded" representation
of the strings, do:
as.matrix(orf10, use.names=FALSE)

alphabetFrequency Function to calculate the frequency of letters in a biological sequence
and related functions

Description

Given a biological sequence, the alphabetFrequency function will calculate the frequency
of each letter in the (base) alphabet, the dinucleotideFrequency function the frequency of
all possible dinucleotides and the trinucleotideFrequency function the frequency of all
possible trinucleotides.

More generally, the oligonucleotideFrequency function will calculate the frequency of all
possible oligonucleotides of a given length (called the "width" in this particular context).

In this man page we call "DNA input" a DNAString object, or a DNAStringSet object, or an
XStringViews object with a DNAString subject, or a MaskedDNAString object. Similarly we call
"RNA input" an RNAString object, or an RNAStringSet object, or an XStringViews object with an
RNAString subject, or a MaskedRNAString object.

Usage

alphabetFrequency(x, baseOnly=FALSE, freq=FALSE, ...)
hasOnlyBaseLetters(x)
uniqueLetters(x)

dinucleotideFrequency(x, freq=FALSE, fast.moving.side="right",
as.matrix=FALSE, with.labels=TRUE, ...)

trinucleotideFrequency(x, freq=FALSE, fast.moving.side="right",
as.array=FALSE, with.labels=TRUE, ...)

oligonucleotideFrequency(x, width, freq=FALSE, fast.moving.side="right",
as.array=FALSE, with.labels=TRUE, ...)

oligonucleotideTransitions(x, left=1, right=1, freq=FALSE)

Some related utility functions
strrev(x)
mkAllStrings(alphabet, width, fast.moving.side="right")

alphabetFrequency 33

Arguments

x An XString, XStringSet, XStringViews or MaskedXString object for the *Frequency
and uniqueLetters functions.
"DNA or RNA input" for hasOnlyBaseLetters.
A character vector for strrev.

baseOnly TRUE or FALSE. If TRUE, the returned vector only contains frequencies for the
letters in the "base" alphabet i.e. "A", "C", "G", "T" if x is a "DNA input", and
"A", "C", "G", "U" if x is "RNA input". When x is a BString object (or an
XStringViews object with a BString subject, or a BStringSet object), then the
baseOnly argument is ignored.

freq If TRUE then frequencies are reported, otherwise counts.

... Further arguments to be passed to or from other methods. For the XStringViews
and XStringSet methods, the collapse argument is accepted.

fast.moving.side
Which side of the strings should move fastest?

as.matrix If TRUE then return a numeric matrix, otherwise a numeric vector with no dim
attribute.

as.array If TRUE then return a numeric array, otherwise a numeric vector with no dim
attribute.

with.labels If TRUE then return a named vector (or array).

width The number of nucleotides per oligonucleotide for oligonucleotideFrequency.
The number of letters per string for mkAllStrings.

left, right The number of nucleotides per oligonucleotide for the rows and columns respec-
tively in the transition matrix created by oligonucleotideTransitions.

alphabet The alphabet to use to make the strings.

Details

alphabetFrequency and oligonucleotideFrequency are generic functions defined in
the Biostrings package with methods defined for BString, DNAString, RNAString, XStringViews
and XStringSet objects.

Value

All the *Frequency functions return an integer vector if freq is FALSE (default), otherwise a
double vector. If as.matrix or as.array is TRUE, this vector is formatted as a matrix or an
array.

For alphabetFrequency: if x is a "DNA or RNA input", then the returned vector is named
with the letters in the alphabet (unless with.labels is FALSE). If the baseOnly argument is
TRUE, then the returned vector has only 5 elements: 4 elements corresponding to the 4 nucleotides
+ the ’other’ element.

dinucleotideFrequency (resp. trinucleotideFrequency and oligonucleotideFrequency)
only works on "DNA or RNA input" and returns a vector named with all the possible dinucleotides
(resp. trinucleotides or oligonucleotides).

If x is a multiple sequence input (i.e. an XStringViews or XStringSet object), then the returned ob-
ject is a matrix (or a list) with the same number of rows (or elements) as x unless collapse=TRUE
is specified. In that case the returned vector (or array) contains the frequencies cumulated across all
sequences in x.

34 alphabetFrequency

hasOnlyBaseLetters returns TRUE or FALSE indicating whether or not x contains only base
letters (i.e. As, Cs, Gs and Ts for "DNA input" and As, Cs, Gs and Us for "RNA input").

uniqueLetters returns a vector of 1-letter or empty strings. The empty string is used to repre-
sent the nul character if x happens to contain any. Note that this can only happen if XString base
subtype of x is BString.

Author(s)

H. Pages

See Also

countPDict, XString-class, XStringSet-class, XStringViews-class, MaskedXString-class, reverse,XString-
method, rev, strsplit, GENETIC_CODE, AMINO_ACID_CODE

Examples

data(yeastSEQCHR1)
yeast1 <- DNAString(yeastSEQCHR1)

alphabetFrequency(yeast1)
alphabetFrequency(yeast1, baseOnly=TRUE)
hasOnlyBaseLetters(yeast1)
uniqueLetters(yeast1)

dinucleotideFrequency(yeast1)
trinucleotideFrequency(yeast1)
oligonucleotideFrequency(yeast1, 4)

With a multiple sequence input
library(drosophila2probe)
x <- DNAStringSet(drosophila2probe$sequence)
alphabetFrequency(x[1:50], baseOnly=TRUE)
alphabetFrequency(x, baseOnly=TRUE, collapse=TRUE)

Get the less and most represented 6-mers
f6 <- oligonucleotideFrequency(yeast1, 6)
f6[f6 == min(f6)]
f6[f6 == max(f6)]

Get the result as an array
tri <- trinucleotideFrequency(yeast1, as.array=TRUE)
tri["A", "A", "C"] # == trinucleotideFrequency(yeast1)["AAC"]
tri["T", ,] # frequencies of trinucleotides starting with a "T"

Get nucleotide transition matrices for yeast1
oligonucleotideTransitions(yeast1)
oligonucleotideTransitions(yeast1, 2, freq=TRUE)

Note that when dropping the dimensions of the 'tri' array, elements
in the resulting vector are ordered as if they were obtained with
'fast.moving.side="left"':
triL <- trinucleotideFrequency(yeast1, fast.moving.side="left")
all(as.vector(tri) == triL) # TRUE

Convert the trinucleotide frequency into the amino acid frequency based on

chartr 35

translation
tri1 <- trinucleotideFrequency(yeast1)
names(tri1) <- GENETIC_CODE[names(tri1)]
sapply(split(tri1, names(tri1)), sum) # 12512 occurrences of the stop codon

When the returned vector is very long (e.g. width >= 10), using
'with.labels=FALSE' will improve the performance considerably (100x, 1000x
or more):
f12 <- oligonucleotideFrequency(yeast1, 12, with.labels=FALSE) # very fast!

Some related utility functions
dict1 <- mkAllStrings(LETTERS[1:3], 4)
dict2 <- mkAllStrings(LETTERS[1:3], 4, fast.moving.side="left")
identical(strrev(dict1), dict2) # TRUE

chartr Translating letters of a sequence

Description

Translate letters of a sequence.

Usage

chartr(old, new, x)

Arguments

old A character string specifying the characters to be translated.

new A character string specifying the translations.

x The sequence or set of sequences to translate. If x is an XString, XStringSet,
XStringViews or MaskedXString object, then the appropriate chartr method
is called, otherwise the standard chartr R function is called.

Details

See ?chartr for the details.

Note that, unlike the standard chartrR function, the methods for XString, XStringSet, XStringViews
and MaskedXString objects do NOT support character ranges in the specifications.

Value

An object of the same class and length as the original object.

See Also

chartr, replaceLetterAt, XString-class, XStringSet-class, XStringViews-class, MaskedXString-
class, alphabetFrequency, matchPattern, reverseComplement

36 findPalindromes

Examples

x <- BString("MiXeD cAsE 123")
chartr("iXs", "why", x)

TRANSFORMING DNA WITH BISULFITE (AND SEARCHING IT...)

library(BSgenome.Celegans.UCSC.ce2)
chrII <- Celegans[["chrII"]]
alphabetFrequency(chrII)
pattern <- DNAString("TGGGTGTATTTA")

Transforming and searching the + strand
plus_strand <- chartr("C", "T", chrII)
alphabetFrequency(plus_strand)
matchPattern(pattern, plus_strand)
matchPattern(pattern, chrII)

Transforming and searching the - strand
minus_strand <- chartr("G", "A", chrII)
alphabetFrequency(minus_strand)
matchPattern(reverseComplement(pattern), minus_strand)
matchPattern(reverseComplement(pattern), chrII)

findPalindromes Searching a sequence for palindromes or complemented palindromes

Description

The findPalindromes and findComplementedPalindromes functions can be used to
find palindromic or complemented palindromic regions in a sequence.

palindromeArmLength, palindromeLeftArm, palindromeRightArm, complementedPalindromeArmLength,
complementedPalindromeLeftArm and complementedPalindromeRightArm are util-
ity functions for operating on palindromic or complemented palindromic sequences.

Usage

findPalindromes(subject, min.armlength=4, max.looplength=1, min.looplength=0, max.mismatch=0)
palindromeArmLength(x, max.mismatch=0, ...)
palindromeLeftArm(x, max.mismatch=0, ...)
palindromeRightArm(x, max.mismatch=0, ...)

findComplementedPalindromes(subject, min.armlength=4, max.looplength=1, min.looplength=0, max.mismatch=0)
complementedPalindromeArmLength(x, max.mismatch=0, ...)
complementedPalindromeLeftArm(x, max.mismatch=0, ...)
complementedPalindromeRightArm(x, max.mismatch=0, ...)

Arguments

subject An XString object containing the subject string, or an XStringViews object.

findPalindromes 37

min.armlength
An integer giving the minimum length of the arms of the palindromes (or com-
plemented palindromes) to search for.

max.looplength
An integer giving the maximum length of "the loop" (i.e the sequence separat-
ing the 2 arms) of the palindromes (or complemented palindromes) to search
for. Note that by default (max.looplength=1), findPalindromes will
search for strict palindromes (or complemented palindromes) only.

min.looplength
An integer giving the minimum length of "the loop" of the palindromes (or com-
plemented palindromes) to search for.

max.mismatch The maximum number of mismatching letters allowed between the 2 arms of
the palindromes (or complemented palindromes) to search for.

x An XString object containing a 2-arm palindrome or complemented palindrome,
or an XStringViews object containing a set of 2-arm palindromes or comple-
mented palindromes.

... Additional arguments to be passed to or from methods.

Details

The findPalindromes function finds palindromic substrings in a subject string. The palin-
dromes that can be searched for are either strict palindromes or 2-arm palindromes (the former
being a particular case of the latter) i.e. palindromes where the 2 arms are separated by an arbitrary
sequence called "the loop".

Use the findComplementedPalindromes function to find complemented palindromic sub-
strings in a DNAString subject (in a complemented palindrome the 2 arms are reverse-complementary
sequences).

Value

findPalindromes and findComplementedPalindromes return an XStringViews object
containing all palindromes (or complemented palindromes) found in subject (one view per palin-
dromic substring found).

palindromeArmLength and complementedPalindromeArmLength return the arm length
(integer) of the 2-arm palindrome (or complemented palindrome) x. It will raise an error if x has
no arms. Note that any sequence could be considered a 2-arm palindrome if we were OK with arms
of length 0 but we are not: x must have arms of length greater or equal to 1 in order to be consid-
ered a 2-arm palindrome. The same apply to 2-arm complemented palindromes. When applied to an
XStringViews object x, palindromeArmLength and complementedPalindromeArmLength
behave in a vectorized fashion by returning an integer vector of the same length as x.

palindromeLeftArm and complementedPalindromeLeftArm return an object of the
same class as the original object x and containing the left arm of x.

palindromeRightArm does the same as palindromeLeftArm but on the right arm of x.

Like palindromeArmLength, both palindromeLeftArm and palindromeRightArm
will raise an error if x has no arms. Also, when applied to an XStringViews object x, both behave
in a vectorized fashion by returning an XStringViews object of the same length as x.

Author(s)

H. Pages

38 gregexpr2

See Also

maskMotif, matchPattern, matchLRPatterns, matchProbePair, XStringViews-class,
DNAString-class

Examples

Note that complemented palindromes (like palindromes) can be nested
findComplementedPalindromes(DNAString("ACGTTNAACGT-ACGTTNAACGT"))

A real use case
library(BSgenome.Dmelanogaster.UCSC.dm3)
chrX <- Dmelanogaster$chrX
chrX_pals <- findComplementedPalindromes(chrX, min.armlength=50, max.looplength=20)
complementedPalindromeArmLength(chrX_pals) # 251

Of course, whitespaces matter
palindromeArmLength(BString("was it a car or a cat I saw"))

Note that the 2 arms of a strict palindrome (or strict complemented
palindrome) are equal to the full sequence.
palindromeLeftArm(BString("Delia saw I was aileD"))
complementedPalindromeLeftArm(DNAString("N-ACGTT-AACGT-N"))
palindromeLeftArm(DNAString("N-AAA-N-N-TTT-N"))

gregexpr2 A replacement for R standard gregexpr function

Description

This is a replacement for the standard gregexpr function that does exact matching only. Standard
gregexpr() misses matches when they are overlapping. The gregexpr2 function finds all matches
but it only works in "fixed" mode i.e. for exact matching (regular expressions are not supported).

Usage

gregexpr2(pattern, text)

Arguments

pattern character string to be matched in the given character vector

text a character vector where matches are sought

Value

A list of the same length as text each element of which is an integer vector as in gregexpr,
except that the starting positions of all (even overlapping) matches are given. Note that, unlike
gregexpr, gregexpr2 doesn’t attach a "match.length" attribute to each element of the returned
list because, since it only works in "fixed" mode, then all the matches have the length of the pattern.
Another difference with gregexpr is that with gregexpr2, the pattern argument must be a
single (non-NA, non-empty) string.

injectHardMask 39

Author(s)

H. Pages

See Also

gregexpr, matchPattern

Examples

gregexpr("aa", c("XaaaYaa", "a"), fixed=TRUE)
gregexpr2("aa", c("XaaaYaa", "a"))

injectHardMask Injecting a hard mask in a sequence

Description

injectHardMask allows the user to "fill" the masked regions of a sequence with an arbitrary
letter (typically the "+" letter).

Usage

injectHardMask(x, letter="+")

Arguments

x A MaskedXString or XStringViews object.

letter A single letter.

Details

The name of the injectHardMask function was chosen because of the primary use that it is
intended for: converting a pile of active "soft masks" into a "hard mask". Here the pile of active
"soft masks" refers to the active masks that have been put on top of a sequence. In Biostrings, the
original sequence and the masks defined on top of it are bundled together in one of the dedicated
containers for this: the MaskedBString, MaskedDNAString, MaskedRNAString and MaskedAAS-
tring containers (this is the MaskedXString family of containers). The original sequence is always
stored unmodified in a MaskedXString object so no information is lost. This allows the user to acti-
vate/deactivate masks without having to worry about losing the letters that are in the regions that are
masked/unmasked. Also this allows better memory management since the original sequence never
needs to be copied, even when the set of active/inactive masks changes.

However, there are situations where the user might want to really get rid of the letters that are in
some particular regions by replacing them with a junk letter (e.g. "+") that is guaranteed to not
interfer with the analysis that s/he is currently doing. For example, it’s very likely that a set of
motifs or short reads will not contain the "+" letter (this could easily be checked) so they will never
hit the regions filled with "+". In a way, it’s like the regions filled with "+" were masked but we
call this kind of masking "hard masking".

Some important differences between "soft" and "hard" masking:

injectHardMask creates a (modified) copy of the original sequence. Using "soft masking"
does not.

40 letter

A function that is "mask aware" like alphabetFrequency or matchPatternwill really skip
the masked regions when "soft masking" is used i.e. they will not walk thru the regions that
are under active masks. This might lead to some speed improvements when a high percentage
of the original sequence is masked. With "hard masking", the entire sequence is walked thru.

Matches cannot span over masked regions with "soft masking". With "hard masking" they can.

Value

An XString object of the same length as the orignal object x if x is a MaskedXString object, or of
the same length as subject(x) if it’s an XStringViews object.

Author(s)

H. Pages

See Also

maskMotif, MaskedXString-class, replaceLetterAt, chartr, XString, XStringViews-class

Examples

A. WITH AN XStringViews OBJECT

v2 <- Views("abCDefgHIJK", start=c(8, 3), end=c(14, 4))
injectHardMask(v2)
injectHardMask(v2, letter="=")

B. WITH A MaskedXString OBJECT

mask0 <- Mask(mask.width=29, start=c(3, 10, 25), width=c(6, 8, 5))
x <- DNAString("ACACAACTAGATAGNACTNNGAGAGACGC")
masks(x) <- mask0
x
subject <- injectHardMask(x)

Matches can span over masked regions with "hard masking":
matchPattern("ACggggggA", subject, max.mismatch=6)
but not with "soft masking":
matchPattern("ACggggggA", x, max.mismatch=6)

letter Subsetting a string

Description

Extract a substring from a string by picking up individual letters by their position.

Usage

letter(x, i)

maskMotif 41

Arguments

x A character vector, or an XString, XStringViews or MaskedXString object.

i An integer vector with no NAs.

Details

Unlike with the substr or substring functions, i must contain valid positions.

Value

A character vector of length 1 when x is an XString or MaskedXString object (the masks are ignored
for the latter).

A character vector of the same length as x when x is a character vector or an XStringViews object.

Note that, because i must contain valid positions, all non-NA elements in the result are guaranteed
to have exactly length(i) characters.

See Also

subseq, XString-class, XStringViews-class, MaskedXString-class

Examples

x <- c("abcd", "ABC")
i <- c(3, 1, 1, 2, 1)

With a character vector
letter(x[1], 3:1)
letter(x, 3)
letter(x, i)
#letter(x, 4) # Error!

With a BString object
letter(BString(x[1]), i) # character vector
BString(x[1])[i] # BString object

With an XStringViews object
x2 <- XStringViews(x, "BString")
letter(x2, i)

maskMotif Masking by content (or by position)

Description

Functions for masking a sequence by content (or by position).

Usage

maskMotif(x, motif, min.block.width=1)
mask(x, start=NA, end=NA, pattern)

42 maskMotif

Arguments

x The sequence to mask.

motif The motif to mask in the sequence.
min.block.width

The minimum width of the blocks to mask.

start An integer vector containing the starting positions of the regions to mask.

end An integer vector containing the ending positions of the regions to mask.

pattern The motif to mask in the sequence.

Value

A MaskedXString object for maskMotif and an XStringViews object for mask.

Author(s)

H. Pages

See Also

read.Mask, XString-class, MaskedXString-class, XStringViews-class, MaskCollection-class

Examples

EXAMPLE 1

maskMotif(BString("AbcbbcbEEE"), "bcb")
maskMotif(BString("AbcbcbEEE"), "bcb")

maskMotif() can be used in an incremental way to mask more than 1
motif. Note that maskMotif() does not try to mask again what's
already masked (i.e. the new mask will never overlaps with the
previous masks) so the order in which the motifs are masked actually
matters as it will affect the total set of masked positions.
x0 <- BString("AbcbEEEEEbcbbEEEcbbcbc")
x1 <- maskMotif(x0, "E")
x1
x2 <- maskMotif(x1, "bcb")
x2
x3 <- maskMotif(x2, "b")
x3
Note that inverting the order in which "b" and "bcb" are masked would
lead to a different final set of masked positions.
Also note that the order doesn't matter if the motifs to mask don't
overlap (we assume that the motifs are unique) i.e. if the prefix of
each motif is not the suffix of any other motif. This is of course
the case when all the motifs have only 1 letter.

EXAMPLE 2

x <- DNAString("ACACAACTAGATAGNACTNNGAGAGACGC")

match-utils 43

Mask the N-blocks
x1 <- maskMotif(x, "N")
x1
as(x1, "XStringViews")
gaps(x1)
as(gaps(x1), "XStringViews")

Mask the AC-blocks
x2 <- maskMotif(x1, "AC")
x2
gaps(x2)

Mask the GA-blocks
x3 <- maskMotif(x2, "GA", min.block.width=5)
x3 # masks 2 and 3 overlap
gaps(x3)

EXAMPLE 3

library(BSgenome.Dmelanogaster.UCSC.dm3)
chrU <- Dmelanogaster$chrU
chrU
alphabetFrequency(chrU)
chrU <- maskMotif(chrU, "N")
chrU
alphabetFrequency(chrU)
as(chrU, "XStringViews")
as(gaps(chrU), "XStringViews")

mask2 <- Mask(mask.width=length(chrU), start=c(50000, 350000, 543900), width=25000)
names(mask2) <- "some ugly regions"
masks(chrU) <- append(masks(chrU), mask2)
chrU
as(chrU, "XStringViews")
as(gaps(chrU), "XStringViews")

EXAMPLE 4

Note that unlike maskMotif(), mask() returns an XStringViews object!

masking "by position"
mask("AxyxyxBC", 2, 6)

masking "by content"
mask("AxyxyxBC", "xyx")
noN_chrU <- mask(chrU, "N")
noN_chrU
alphabetFrequency(noN_chrU, collapse=TRUE)

match-utils Utility functions related to pattern matching

44 match-utils

Description

In this man page we define precisely and illustrate what a "match" of a pattern P in a subject S
is in the context of the Biostrings package. This definition of a "match" is central to most pattern
matching functions available in this package: unless specified otherwise, most of them will adhere
to the definition provided here.

neditStartingAt, neditEndingAt, isMatchingStartingAt and isMatchingEndingAt
are low-level functions that implement some basic concepts. Once these concepts are understood,
we can use them to provide a simple and concise definition of a "match".

Other utility functions related to pattern matching are described here: the mismatch function
for getting the positions of the mismatching letters of a given pattern relatively to its matches in
a given subject, the nmatch and nmismatch functions for getting the number of matching and
mismatching letters produced by the mismatch function, and the coverage function that can be
used to get the "coverage" of a subject by a given pattern or set of patterns.

Usage

neditStartingAt(pattern, subject, starting.at=1, with.indels=FALSE, fixed=TRUE)
neditEndingAt(pattern, subject, ending.at=1, with.indels=FALSE, fixed=TRUE)
neditAt(pattern, subject, at=1, with.indels=FALSE, fixed=TRUE)

isMatchingStartingAt(pattern, subject, starting.at=1,
max.mismatch=0, with.indels=FALSE, fixed=TRUE)

isMatchingEndingAt(pattern, subject, ending.at=1,
max.mismatch=0, with.indels=FALSE, fixed=TRUE)

isMatchingAt(pattern, subject, at=1,
max.mismatch=0, with.indels=FALSE, fixed=TRUE)

mismatch(pattern, x, fixed=TRUE)
nmatch(pattern, x, fixed=TRUE)
nmismatch(pattern, x, fixed=TRUE)
S4 method for signature 'MIndex':
coverage(x, start=NA, end=NA)
S4 method for signature 'XStringViews':
coverage(x, start=NA, end=NA, weight=1L)
S4 method for signature 'MaskedXString':
coverage(x, start=NA, end=NA, weight=1L)

Arguments

pattern The pattern string.

subject An XString object (or character vector) containing the subject sequence.
starting.at, ending.at, at

An integer vector specifying the starting (for starting.at and at) or ending
(for ending.at) positions of the pattern relatively to the subject.

max.mismatch See details below.

with.indels See details below.

fixed Only with a DNAString or RNAString subject can a fixed value other than the
default (TRUE) be used.
With fixed=FALSE, ambiguities (i.e. letters from the IUPAC Extended Ge-
netic Alphabet (see IUPAC_CODE_MAP) that are not from the base alphabet)

match-utils 45

in the pattern _and_ in the subject are interpreted as wildcards i.e. they match
any letter that they stand for.
fixed can also be a character vector, a subset of c("pattern", "subject").
fixed=c("pattern", "subject") is equivalent to fixed=TRUE (the
default). An empty vector is equivalent to fixed=FALSE. With fixed="subject",
ambiguities in the pattern only are interpreted as wildcards. With fixed="pattern",
ambiguities in the subject only are interpreted as wildcards.

x An XStringViews object for mismatch (typically, one returned by matchPattern(pattern,
subject)).
Typically an XStringViews or MIndex object for coverage but IRanges, MaskCol-
lection and MaskedXString objects are accepted too.

start, end Two single integers specifying where to start and end the extraction of the cov-
erage in x.

weight An integer vector specifying how much each element in x counts.

Details

A "match" of pattern P in subject S is a substring S’ of S that is considered similar enough to P
according to some distance (or metric) specified by the user. 2 distances are supported by most
pattern matching functions in the Biostrings package. The first (and simplest) one is the "number of
mismatching letters". It is defined only when the 2 strings to compare have the same length, so when
this distance is used, only matches that have the same number of letters as P are considered. The
second one is the "edit distance" (aka Levenshtein distance): it’s the minimum number of operations
needed to transform P into S’, where an operation is an insertion, deletion, or substitution of a single
letter. When this metric is used, matches can have a different number of letters than P.

The neditStartingAt (and neditEndingAt) function implements these 2 distances. If
with.indels is FALSE (the default), then the first distance is used i.e. neditStartingAt re-
turns the "number of mismatching letters" between the pattern P and the substring S’ of S starting at
the positions specified in starting.at (note that neditStartingAt and neditEndingAt
are vectorized so long vectors of integers can be passed thru the starting.at or ending.at
arguments). If with.indels is TRUE, then the "edit distance" distance is used: for each position
specified in starting.at, P is compared to all the substrings S’ of S starting at this position and
the smallest distance is returned. Note that this distance is guaranteed to be reached for a substrings
of length < 2*length(P) so, of course, in practise, P only needs to be compared to a small number
of substrings for every starting position.

Value

neditStartingAt and neditEndingAt: an integer vector of the same length as starting.at
(or ending.at).

isMatchingStartingAt(...) and isMatchingEndingAt(...): the logical vector
defined by neditStartingAt(...) <= max.mismatch or neditEndingAt(...)
<= max.mismatch, respectively.

neditAt and isMatchingAt are conveniency wrappers for neditStartingAt and isMatchingStartingAt,
respectively.

mismatch: a list of integer vectors.

nmismatch: an integer vector containing the length of the vectors produced by mismatch.

coverage: an XRleInteger object indicating the coverage of x in the interval specified by the
start and end arguments. An integer value called the "coverage" can be associated to each
position in x, indicating how many times this position is covered by the views or matches stored in

46 match-utils

x. For example, if x is an XStringViews object, the coverage of a given position in x is the number
of views it belongs to. If x is an MIndex object, the coverage of a given position in x is the number
of matches (or hits) it belongs to. Note that the positions in the returned XRleInteger object are to
be interpreted as relative to the interval specified by the start and end arguments.

See Also

matchPattern, matchPDict, IUPAC_CODE_MAP, XString-class, XStringViews-class, MIndex-
class, coverage, IRanges-class, MaskCollection-class, MaskedXString-class, align-utils

Examples

neditAt() / isMatchingAt()

subject <- DNAString("GTATA")

Pattern "AT" matches subject "GTATA" at position 3 (exact match)
neditAt("AT", subject, at=3)
isMatchingAt("AT", subject, at=3)

... but not at position 1
neditAt("AT", subject)
isMatchingAt("AT", subject)

... unless we allow 1 mismatching letter (inexact match)
isMatchingAt("AT", subject, max.mismatch=1)

Here we look at 6 different starting positions and find 3 matches if
we allow 1 mismatching letter
isMatchingAt("AT", subject, at=0:5, max.mismatch=1)

No match
neditAt("NT", subject, at=1:4)
isMatchingAt("NT", subject, at=1:4)

2 matches if N is interpreted as an ambiguity (fixed=FALSE)
neditAt("NT", subject, at=1:4, fixed=FALSE)
isMatchingAt("NT", subject, at=1:4, fixed=FALSE)

max.mismatch != 0 and fixed=FALSE can be used together
neditAt("NCA", subject, at=0:5, fixed=FALSE)
isMatchingAt("NCA", subject, at=0:5, max.mismatch=1, fixed=FALSE)

some_starts <- c(10:-10, NA, 6)
subject <- DNAString("ACGTGCA")
is_matching <- isMatchingAt("CAT", subject, at=some_starts, max.mismatch=1)
some_starts[is_matching]

mismatch() / nmismatch()

m <- matchPattern("NCA", subject, max.mismatch=1, fixed=FALSE)
mismatch("NCA", m)
nmismatch("NCA", m)

matchLRPatterns 47

coverage()

coverage(m)

See ?matchPDict for examples of using coverage() on an MIndex object...

matchLRPatterns Find paired matches in a sequence

Description

The matchLRPatterns function finds paired matches in a sequence i.e. matches specified by a
left pattern, a right pattern and a maximum distance between the left pattern and the right pattern.

Usage

matchLRPatterns(Lpattern, Rpattern, max.ngaps, subject,
max.Lmismatch=0, max.Rmismatch=0,
Lfixed=TRUE, Rfixed=TRUE)

Arguments

Lpattern The left part of the pattern.

Rpattern The right part of the pattern.

max.ngaps The max number of gaps in the middle i.e the max distance between the left and
right parts of the pattern.

subject An XString, XStringViews or MaskedXString object containing the target se-
quence.

max.Lmismatch
The maximum number of mismatching letters allowed in the left part of the pat-
tern. If non-zero, an inexact matching algorithm is used (see the matchPattern
function for more information).

max.Rmismatch
Same as max.Lmismatch but for the right part of the pattern.

Lfixed Only with a DNAString or RNAString subject can a Lfixed value other than
the default (TRUE) be used.
With Lfixed=FALSE, ambiguities (i.e. letters from the IUPAC Extended Ge-
netic Alphabet (see IUPAC_CODE_MAP) that are not from the base alphabet) in
the left pattern _and_ in the subject are interpreted as wildcards i.e. they match
any letter that they stand for.
See the fixed argument of the matchPattern function for more informa-
tion.

Rfixed Same as Lfixed but for the right part of the pattern.

Value

An XStringViews object containing all the matches, even when they are overlapping (see the ex-
amples below), and where the matches are ordered from left to right (i.e. by ascending starting
position).

48 matchPDict

Author(s)

H. Pages

See Also

matchPattern, matchProbePair, findPalindromes, reverseComplement, XString-
class, XStringViews-class, MaskedXString-class

Examples

library(BSgenome.Dmelanogaster.UCSC.dm3)
subject <- Dmelanogaster$chr3R
Lpattern <- "AGCTCCGAG"
Rpattern <- "TTGTTCACA"
matchLRPatterns(Lpattern, Rpattern, 500, subject) # 1 match

Note that matchLRPatterns() will return all matches, even when they are
overlapping:
subject <- DNAString("AAATTAACCCTT")
matchLRPatterns("AA", "TT", 0, subject) # 1 match
matchLRPatterns("AA", "TT", 1, subject) # 2 matches
matchLRPatterns("AA", "TT", 3, subject) # 3 matches
matchLRPatterns("AA", "TT", 7, subject) # 4 matches

matchPDict Searching a sequence for patterns stored in a preprocessed dictionary

Description

The matchPDict, countPDict and whichPDict functions efficiently find the occurrences in
a text (the subject) of all patterns stored in a preprocessed dictionary.

The three functions differ in what they return: matchPDict returns the "where" information i.e.
the positions in the subject of all the occurrences of every pattern; countPDict returns the "how
many times" information i.e. the number of occurrences for each pattern; and whichPDict returns
the "who" information i.e. which patterns in the preprocessed dictionary have at least one match.

This man page shows how to use matchPDict/countPDict/whichPDict for exact matching
of a constant width dictionary i.e. a dictionary where all the patterns have the same length (same
number of nucleotides).

See ¿matchPDict-inexact‘ for how to use these functions for inexact matching or when the
original dictionary has a variable width.

Usage

matchPDict(pdict, subject, algorithm="auto",
max.mismatch=0, fixed=TRUE, verbose=FALSE)

countPDict(pdict, subject, algorithm="auto",
max.mismatch=0, fixed=TRUE, verbose=FALSE)

whichPDict(pdict, subject, algorithm="auto",
max.mismatch=0, fixed=TRUE, verbose=FALSE)

vcountPDict(pdict, subject, algorithm="auto",
max.mismatch = 0, fixed=TRUE, verbose=FALSE)

matchPDict 49

Arguments

pdict A PDict object containing the preprocessed dictionary.

subject An XString object containing the subject string. For now, only XString subjects
of subtype DNAString are supported.

algorithm Not supported yet.

max.mismatch The maximum number of mismatching letters allowed (see ?isMatching for
the details). This man page focuses on exact matching of a constant width dic-
tionary so max.mismatch=0 in the examples below. See ¿matchPDict-
inexact‘ for inexact matching.

fixed If FALSE then IUPAC extended letters are interpreted as ambiguities (see ?isMatching
for the details). This man page focuses on exact matching of a constant width
dictionary so fixed=TRUE in the examples below. See ¿matchPDict-
inexact‘ for inexact matching.

verbose TRUE or FALSE.

Details

In this man page, we assume that you know how to preprocess a dictionary of DNA patterns that
can then be used with matchPDict, countPDict or whichPDict. Please see ?PDict if you
don’t.

When using matchPDict, countPDict or whichPDict for exact matching of a constant
width dictionary, the standard way to preprocess the original dictionary is by calling the PDict
constructor on it with no extra arguments. This returns the preprocessed dictionary in a PDict
object that can be used with matchPDict/countPDict/whichPDict.

Value

matchPDict returns an MIndex object with length equal to the number of patterns in the
pdict argument.

countPDict returns an integer vector with length equal to the number of patterns in the pdict
argument.

whichPDict returns an integer vector made of the indices of the patterns in the pdict argument
that have at least one match.

Author(s)

H. Pages

References

Aho, Alfred V.; Margaret J. Corasick (June 1975). "Efficient string matching: An aid to biblio-
graphic search". Communications of the ACM 18 (6): 333-340.

See Also

PDict-class, MIndex-class, matchPDict-inexact, isMatching, coverage,MIndex-method,
matchPattern, alphabetFrequency, XStringViews-class, DNAString-class

50 matchPDict

Examples

A. A SIMPLE EXAMPLE OF EXACT MATCHING

Creating the pattern dictionary:
library(drosophila2probe)
dict0 <- DNAStringSet(drosophila2probe$sequence)
dict0 # The original dictionary.
length(dict0) # Hundreds of thousands of patterns.
pdict0 <- PDict(dict0) # Store the original dictionary in

a PDict object (preprocessing).

Using the pattern dictionary on chromosome 3R:
library(BSgenome.Dmelanogaster.UCSC.dm3)
chr3R <- Dmelanogaster$chr3R # Load chromosome 3R
chr3R
mi0 <- matchPDict(pdict0, chr3R) # Search...

Looking at the matches:
start_index <- startIndex(mi0) # Get the start index.
length(start_index) # Same as the original dictionary.
start_index[[8220]] # Starts of the 8220th pattern.
end_index <- endIndex(mi0) # Get the end index.
end_index[[8220]] # Ends of the 8220th pattern.
count_index <- countIndex(mi0) # Get the number of matches per pattern.
count_index[[8220]]
mi0[[8220]] # Get the matches for the 8220th pattern.
start(mi0[[8220]]) # Equivalent to startIndex(mi0)[[8220]].
sum(count_index) # Total number of matches.
table(count_index)
i0 <- which(count_index == max(count_index))
pdict0[[i0]] # The pattern with most occurrences.
mi0[[i0]] # Its matches as an IRanges object.
Views(chr3R, start=start_index[[i0]], end=end_index[[i0]]) # And as an XStringViews object.

Get the coverage of the original subject:
cov3R <- as.integer(coverage(mi0, 1, length(chr3R)))
max(cov3R)
mean(cov3R)
sum(cov3R != 0) / length(cov3R) # Only 2.44
if (interactive()) {
plotCoverage <- function(coverage, start, end)
{
plot.new()
plot.window(c(start, end), c(0, 20))
axis(1)
axis(2)
axis(4)
lines(start:end, coverage[start:end], type="l")

}
plotCoverage(cov3R, 27600000, 27900000)

}

B. NAMING THE PATTERNS

matchPDict 51

The names of the original patterns, if any, are propagated to the
PDict and MIndex objects:
names(dict0) <- mkAllStrings(letters, 4)[seq_len(length(dict0))]
dict0
dict0[["abcd"]]
pdict0n <- PDict(dict0)
names(pdict0n)[1:30]
pdict0n[["abcd"]]
mi0n <- matchPDict(pdict0n, chr3R)
names(mi0n)[1:30]
mi0n[["abcd"]]

This is particularly useful when unlisting an MIndex object:
unlist(mi0)[1:10]
unlist(mi0n)[1:10] # keep track of where the matches are coming from

C. PERFORMANCE

If getting the number of matches is what matters only (without
regarding their positions), then countPDict() will be faster,
especially when there is a high number of matches:

count_index0 <- countPDict(pdict0, chr3R)
identical(count_index0, count_index) # TRUE

if (interactive()) {
What's the impact of the dictionary width on performance?
Below is some code that can be used to figure out (will take a long
time to run). For different widths of the original dictionary, we
look at:
o pptime: preprocessing time (in sec.) i.e. time needed for
building the PDict object from the truncated input
sequences;
o nnodes: nb of nodes in the resulting Aho-Corasick tree;
o nupatt: nb of unique truncated input sequences;
o matchtime: time (in sec.) needed to find all the matches;
o totalcount: total number of matches.
getPDictStats <- function(dict, subject)
{
ans_width <- width(dict[1])
ans_pptime <- system.time(pdict <- PDict(dict))[["elapsed"]]
pptb <- pdict@threeparts@pptb
ans_nnodes <- length(pptb@nodes)

Biostrings:::.ACtree.ints_per_acnode(pptb)
ans_nupatt <- sum(!duplicated(pdict))
ans_matchtime <- system.time(

mi0 <- matchPDict(pdict, subject)
)[["elapsed"]]

ans_totalcount <- sum(countIndex(mi0))
list(
width=ans_width,
pptime=ans_pptime,
nnodes=ans_nnodes,

52 matchPDict-inexact

nupatt=ans_nupatt,
matchtime=ans_matchtime,
totalcount=ans_totalcount

)
}
stats <- lapply(6:25,

function(width)
getPDictStats(DNAStringSet(dict0, end=width), chr3R))

stats <- data.frame(do.call(rbind, stats))
stats

}

D. vcountPDict()

subject <- Dmelanogaster$upstream1000[1:200]
mat1 <- vcountPDict(pdict0, subject)
dim(mat1) # length(pdict0) x length(subject)
nhit_per_probe <- rowSums(mat1)
table(nhit_per_probe)

Without vcountPDict(), 'mat1' could have been computed with:
mat2 <- sapply(unname(subject), function(x) countPDict(pdict0, x))
identical(mat1, mat2) # TRUE
but using vcountPDict() is faster (10x or more, depending of the
average length of the sequences in 'subject').

if (interactive()) {
This will fail (with message "allocMatrix: too many elements
specified") because, on most platforms, vectors and matrices in R
are limited to 2^31 elements:
subject <- Dmelanogaster$upstream1000
vcountPDict(pdict0, subject)
length(pdict0) * length(Dmelanogaster$upstream1000)
1 * length(pdict0) * length(Dmelanogaster$upstream1000) # > 2^31

}

matchPDict-inexact Inexact matching with matchPDict()/countPDict()/whichPDict()

Description

The matchPDict, countPDict and whichPDict functions efficiently find the occurrences in
a text (the subject) of all patterns stored in a preprocessed dictionary.

This man page shows how to use these functions for inexact matching or when the original dictio-
nary has a variable width.

See ?matchPDict for how to use these functions for exact matching of a constant width dictio-
nary i.e. a dictionary where all the patterns have the same length (same number of nucleotides).

matchPDict-inexact 53

Details

In this man page, we assume that you know how to preprocess a dictionary of DNA patterns that can
then be used with matchPDict, countPDict or \code{whichPDict}. Please see ?PDict
if you don’t.

When using matchPDict, countPDict or whichPDict for inexact matching or when the
original dictionary has a variable width, a Trusted Band must be defined during the preprocess-
ing step. This is done thru the tb.start, tb.end and tb.width arguments of the PDict
constructor (see ?PDict for the details).

Then matchPDict/countPDict/whichPDict can be called with a null or non-null max.mismatch
value and the search for exact or inexact matches happens in 2 steps: (1) find all the exact matches
of all the elements in the Trusted Band; then (2) for each element in the Trusted Band that has at
least one exact match, compare the head and the tail of this element with the flanking sequences of
the matches found in (1).

Note that the number of exact matches found in (1) will decrease exponentially with the width of the
Trusted Band. Here is a simple guideline in order to get reasonably good performance: if TBW is
the width of the Trusted Band (TBW <- tb.width(pdict)) and L the number of letters in the
subject (L <- nchar(subject)), then L / (4^TBW) should be kept as small as possible,
typically < 10 or 20.

In addition, when a Trusted Band has been defined during preprocessing, then matchPDict/countPDict/whichPDict
can be called with fixed=FALSE. In this case, IUPAC extended letters in the head or the tail of
the PDict object are treated as ambiguities.

Author(s)

H. Pages

References

Aho, Alfred V.; Margaret J. Corasick (June 1975). "Efficient string matching: An aid to biblio-
graphic search". Communications of the ACM 18 (6): 333-340.

See Also

PDict-class, MIndex-class, matchPDict

Examples

A. USING AN EXPLICIT TRUSTED BAND FOR EXACT OR INEXACT MATCHING

library(drosophila2probe)
dict0 <- DNAStringSet(drosophila2probe$sequence)
dict0 # the original dictionary

Preprocess the original dictionary by defining a Trusted Band that
spans nucleotides 1 to 9 of each pattern.
pdict9 <- PDict(dict0, tb.end=9)
pdict9
tail(pdict9)
sum(duplicated(pdict9))
table(patternFrequency(pdict9))

54 matchPDict-inexact

library(BSgenome.Dmelanogaster.UCSC.dm3)
chr3R <- Dmelanogaster$chr3R
chr3R
table(countPDict(pdict9, chr3R, max.mismatch=1))
table(countPDict(pdict9, chr3R, max.mismatch=3))
table(countPDict(pdict9, chr3R, max.mismatch=5))

B. COMPARISON WITH EXACT MATCHING

When the original dictionary is of constant width, exact matching
(i.e. 'max.mismatch=0' and 'fixed=TRUE) will be more efficient with
a full-width Trusted Band (i.e. a Trusted Band that covers the entire
dictionary) than with a Trusted Band of width < width(dict0).
pdict0 <- PDict(dict0)
count0 <- countPDict(pdict0, chr3R)
count0b <- countPDict(pdict9, chr3R, max.mismatch=0)
identical(count0b, count0) # TRUE

C. USING AN EXPLICIT TRUSTED BAND TO HANDLE A VARIABLE WIDTH
DICTIONARY

Here is a small variable width dictionary that contains IUPAC
ambiguities (pattern 1 and 3 contain an N):
dict0 <- DNAStringSet(c("TACCNG", "TAGT", "CGGNT", "AGTAG", "TAGT"))
(Note that pattern 2 and 5 are identical.)

If we only want to do exact matching, then it is recommended to use
the widest possible Trusted Band i.e. to set its width to
'min(width(dict0))' because this is what will give the best
performance. However, when 'dict0' contains IUPAC ambiguities (like
in our case), it could be that one of them is falling into the
Trusted Band so we get an error (only base letters can go in the
Trusted Band for now):
Not run:
PDict(dict0, tb.end=min(width(dict0))) # Error!

End(Not run)

In our case, the Trusted Band cannot be wider than 3:
pdict <- PDict(dict0, tb.end=3)
tail(pdict)

subject <- DNAString("TAGTACCAGTTTCGGG")

m <- matchPDict(pdict, subject)
countIndex(m) # pattern 2 and 5 have 1 exact match
m[[2]]

We can take advantage of the fact that our Trusted Band doesn't cover
the entire dictionary to allow inexact matching on the uncovered parts
(the tail in our case):

m <- matchPDict(pdict, subject, fixed=FALSE)

matchPWM 55

countIndex(m) # now pattern 1 has 1 match too
m[[1]]

m <- matchPDict(pdict, subject, max.mismatch=1)
countIndex(m) # now pattern 4 has 1 match too
m[[4]]

m <- matchPDict(pdict, subject, max.mismatch=1, fixed=FALSE)
countIndex(m) # now pattern 3 has 1 match too
m[[3]] # note that this match is "out of limit"
Views(subject, start=start(m[[3]]), end=end(m[[3]]))

m <- matchPDict(pdict, subject, max.mismatch=2)
countIndex(m) # pattern 4 gets 1 additional match
m[[4]]

Unlist all matches:
unlist(m)

matchPWM A simple PWM matching function and related utilities

Description

A function implementing a simple algorithm for matching a set of patterns represented by a Position
Weight Matrix (PWM) to a DNA sequence. PWM for amino acid sequences are not supported.

Usage

matchPWM(pwm, subject, min.score="80%")
countPWM(pwm, subject, min.score="80%")

Utility functions for basic manipulation of the Position Weight Matrix
maxWeights(pwm)
maxScore(pwm)
#reverseComplement(x, ...) # S4 method for matrix objects

Arguments

pwm A Position Weight Matrix (integer matrix with row names A, C, G and T).
subject A DNAString object containing the subject sequence.
min.score The minimum score for counting a match. Can be given as a percentage (e.g.

"85%") of the highest possible score or as an integer.

Value

An XStringViews object for matchPWM.

A single integer for countPWM.

An integer vector containing the max weight for each position in pwm for maxWeights.

The highest possible score for a given Position Weight Matrix for maxScore.

A PWM obtained by reverting the column order in PWM x and by reassigning each row to its
complementary nucleotide for reverseComplement.

56 matchPattern

See Also

matchPattern, reverseComplement, DNAString-class, XStringViews-class

Examples

pwm <- rbind(A=c(1, 0, 19, 20, 18, 1, 20, 7),
C=c(1, 0, 1, 0, 1, 18, 0, 2),
G=c(17, 0, 0, 0, 1, 0, 0, 3),
T=c(1, 20, 0, 0, 0, 1, 0, 8))

maxWeights(pwm)
maxScore(pwm)
reverseComplement(pwm)

subject <- DNAString("AGTAAACAA")
PWMscore(pwm, subject, c(2:1, NA))

library(BSgenome.Dmelanogaster.UCSC.dm3)
chr3R <- unmasked(Dmelanogaster$chr3R)
chr3R

Match the plus strand
matchPWM(pwm, chr3R)
countPWM(pwm, chr3R)

Match the minus strand
matchPWM(reverseComplement(pwm), chr3R)

matchPattern String searching functions

Description

A set of functions for finding all the occurences (aka "matches" or "hits") of a given pattern (typi-
cally short) in a (typically long) reference sequence or set of sequences (aka the subject)

Usage

matchPattern(pattern, subject, algorithm="auto",
max.mismatch=0, with.indels=FALSE, fixed=TRUE)

countPattern(pattern, subject, algorithm="auto",
max.mismatch=0, with.indels=FALSE, fixed=TRUE)

vmatchPattern(pattern, subject, algorithm="auto",
max.mismatch=0, with.indels=FALSE, fixed=TRUE)

vcountPattern(pattern, subject, algorithm="auto",
max.mismatch=0, with.indels=FALSE, fixed=TRUE)

Arguments

pattern The pattern string.

subject An XString, XStringViews or MaskedXString object for matchPattern and
countPattern.
An XStringSet or XStringViews object for vmatchPattern and vcountPattern.

matchPattern 57

algorithm One of the following: "auto", "naive-exact", "naive-inexact",
"boyer-moore", "shift-or" or "indels".

max.mismatch The maximum number of mismatching letters allowed (see isMatchingAt
for the details). If non-zero, an inexact matching algorithm is used.

with.indels If TRUE then indels are allowed. In that case max.mismatch is interpreted as
the maximum "edit distance" allowed between the pattern and a match. Note that
in order to avoid pollution by redundant matches, only the "best local matches"
are returned. Roughly speaking, a "best local match" is a match that is locally
both the closest (to the pattern P) and the shortest. More precisely, a substring
S’ of the subject S is a "best local match" iff:

(a) nedit(P, S') <= max.mismatch
(b) for every substring S1 of S':

nedit(P, S1) > nedit(P, S')
(c) for every substring S2 of S that contains S':

nedit(P, S2) <= nedit(P, S')

One nice property of "best local matches" is that their first and last letters are
guaranteed to be aligned with letters in P (i.e. they match letters in P).

fixed If FALSE then IUPAC extended letters are interpreted as ambiguities (see isMatchingAt
for the details).

Details

Available algorithms are: “naive exact”, “naive inexact”, “Boyer-Moore-like”, “shift-or” and “in-
dels”. Not all of them can be used in all situations: restrictions depend on the length of the pattern,
the class of the subject, and the values of max.mismatch, with.indels and fixed. All those
parameters form the search criteria.

Note that the choice of an algorithm is not part of the search criteria. This is because algorithms are
interchangeable, that is, if 2 different algorithms are compatible with a given search criteria, then
choosing one over the other will not affect the result (but will most likely affect the performance).
So there is no "wrong choice" of algorithm (strictly speaking).

Using algorithm="auto" is recommended because then the fastest algorithm will automati-
cally be picked up among the set of compatible algorithms (if there is more than one).

Value

An XStringViews object for matchPattern.

A single integer for countPattern.

An MIndex object for vmatchPattern.

An integer vector for vcountPattern, with each element in the vector corresponding to the
number of matches in the corresponding element of subject.

Note

Use matchPDict if you need to match a (big) set of patterns against a reference sequence.

Use pairwiseAlignment if you need to solve a (Needleman-Wunsch) global alignment, a
(Smith-Waterman) local alignment, or an (ends-free) overlap alignment problem.

58 matchPattern

See Also

matchPDict, pairwiseAlignment, isMatchingAt, mismatch, matchLRPatterns,
matchProbePair, maskMotif, alphabetFrequency, XStringViews-class, MIndex-class

Examples

A. matchPattern()/countPattern()

A simple inexact matching example with a short subject:
x <- DNAString("AAGCGCGATATG")
m1 <- matchPattern("GCNNNAT", x)
m1
m2 <- matchPattern("GCNNNAT", x, fixed=FALSE)
m2
as.matrix(m2)

With DNA sequence of yeast chromosome number 1:
data(yeastSEQCHR1)
yeast1 <- DNAString(yeastSEQCHR1)
PpiI <- "GAACNNNNNCTC" # a restriction enzyme pattern
match1.PpiI <- matchPattern(PpiI, yeast1, fixed=FALSE)
match2.PpiI <- matchPattern(PpiI, yeast1, max.mismatch=1, fixed=FALSE)

With a genome containing isolated Ns:
library(BSgenome.Celegans.UCSC.ce2)
chrII <- Celegans[["chrII"]]
alphabetFrequency(chrII)
matchPattern("N", chrII)
matchPattern("TGGGTGTCTTT", chrII) # no match
matchPattern("TGGGTGTCTTT", chrII, fixed=FALSE) # 1 match

Using wildcards ("N") in the pattern on a genome containing N-blocks:
library(BSgenome.Dmelanogaster.UCSC.dm3)
chrX <- maskMotif(Dmelanogaster$chrX, "N")
as(chrX, "XStringViews") # 4 non masked regions
matchPattern("TTTATGNTTGGTA", chrX, fixed=FALSE)
Can also be achieved with no mask:
masks(chrX) <- NULL
matchPattern("TTTATGNTTGGTA", chrX, fixed="subject")

B. vmatchPattern()/vcountPattern()

Ebox <- DNAString("CANNTG")
subject <- Celegans$upstream5000
mindex <- vmatchPattern(Ebox, subject, fixed=FALSE)
count_index <- countIndex(mindex) # Get the number of matches per

subject element.
sum(count_index) # Total number of matches.
table(count_index)
i0 <- which(count_index == max(count_index))
subject[i0] # The subject element with most matches.

matchProbePair 59

The matches in 'subject[i0]' as an IRanges object:
mindex[[i0]]
The matches in 'subject[i0]' as an XStringViews object:
Views(subject[[i0]], start=start(mindex[[i0]]), end=end(mindex[[i0]]))

C. With indels

library(BSgenome.Celegans.UCSC.ce2)
pattern <- DNAString("ACGGACCTAATGTTATC")
subject <- Celegans$chrI

Allowing up to 2 mismatching letters doesn't give any match:
matchPattern(pattern, subject, max.mismatch=2)

But allowing up to 2 edit operations gives 3 matches:
system.time(m <- matchPattern(pattern, subject, max.mismatch=2, with.indels=TRUE))
m

pairwiseAlignment() returns the (first) best match only:
mat <- nucleotideSubstitutionMatrix(match=1, mismatch=0, baseOnly=TRUE)
system.time(pwa <- pairwiseAlignment(pattern, subject, type="local",

substitutionMatrix=mat, gapOpening=0, gapExtension=1))
pwa

Only "best local matches" are reported:
- with deletions in the subject

subject <- BString("ACDEFxxxCDEFxxxABCE")
matchPattern("ABCDEF", subject, max.mismatch=2, with.indels=TRUE)
matchPattern("ABCDEF", subject, max.mismatch=2)
- with insertions in the subject

subject <- BString("AiBCDiEFxxxABCDiiFxxxAiBCDEFxxxABCiDEF")
matchPattern("ABCDEF", subject, max.mismatch=2, with.indels=TRUE)
matchPattern("ABCDEF", subject, max.mismatch=2)
- with substitutions (note that the "best local matches" can introduce
indels and therefore be shorter than 6)

subject <- BString("AsCDEFxxxABDCEFxxxBACDEFxxxABCEDF")
matchPattern("ABCDEF", subject, max.mismatch=2, with.indels=TRUE)
matchPattern("ABCDEF", subject, max.mismatch=2)

matchProbePair Find "theoretical amplicons" mapped to a probe pair

Description

In the context of a computer-simulated PCR experiment, one wants to find the amplicons mapped to
a given primer pair. The matchProbePair function can be used for this: given a forward and a
reverse probe (i.e. the chromosome-specific sequences of the forward and reverse primers used for
the experiment) and a target sequence (generally a chromosome sequence), the matchProbePair
function will return all the "theoretical amplicons" mapped to this probe pair.

Usage

matchProbePair(Fprobe, Rprobe, subject, algorithm="auto", logfile=NULL, verbose=FALSE)

60 matchProbePair

Arguments

Fprobe The forward probe.

Rprobe The reverse probe.

subject A DNAString object (or an XStringViews object with a DNAString sub-
ject) containing the target sequence.

algorithm One of the following: "auto", "naive-exact", "naive-inexact",
"boyer-moore" or "shift-or". See matchPattern for more infor-
mation.

logfile A file used for logging.

verbose TRUE or FALSE.

Details

The matchProbePair function does the following: (1) find all the "plus hits" i.e. the Fprobe
and Rprobe matches on the "plus" strand, (2) find all the "minus hits" i.e. the Fprobe and Rprobe
matches on the "minus" strand and (3) from the set of all (plus_hit, minus_hit) pairs, extract and
return the subset of "reduced matches" i.e. the (plus_hit, minus_hit) pairs such that (a) plus_hit <=
minus_hit and (b) there are no hits (plus or minus) between plus_hit and minus_hit. This set of
"reduced matches" is the set of "theoretical amplicons".

Value

An XStringViews object containing the set of "theoretical amplicons".

Author(s)

H. Pages

See Also

matchPattern, matchLRPatterns, findPalindromes, reverseComplement, XStringViews

Examples

library(BSgenome.Dmelanogaster.UCSC.dm3)
subject <- Dmelanogaster$chr3R

With 20-nucleotide forward and reverse probes:
Fprobe <- "AGCTCCGAGTTCCTGCAATA"
Rprobe <- "CGTTGTTCACAAATATGCGG"
matchProbePair(Fprobe, Rprobe, subject) # 1 "theoretical amplicon"

With shorter forward and reverse probes, the risk of having multiple
"theoretical amplicons" increases:
Fprobe <- "AGCTCCGAGTTCC"
Rprobe <- "CGTTGTTCACAA"
matchProbePair(Fprobe, Rprobe, subject) # 2 "theoretical amplicons"
Fprobe <- "AGCTCCGAGTT"
Rprobe <- "CGTTGTTCACA"
matchProbePair(Fprobe, Rprobe, subject) # 9 "theoretical amplicons"

needwunsQS 61

needwunsQS (Deprecated) Needleman-Wunsch Global Alignment

Description

Simple gap implementation of Needleman-Wunsch global alignment algorithm.

Usage

needwunsQS(s1, s2, substmat, gappen = 8)

Arguments

s1, s2 an R character vector of length 1 or an XString object.

substmat matrix of alignment score values.

gappen penalty for introducing a gap in the alignment.

Details

Follows specification of Durbin, Eddy, Krogh, Mitchison (1998). This function has been deprecated
and is being replaced by pairwiseAlignment.

Value

An instance of class "PairwiseAlignedFixedSubject".

Author(s)

Vince Carey (〈stvjc@channing.harvard.edu〉) (original author) and H. Pages (current maintainer).

References

R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis, Cambridge UP 1998,
sec 2.3.

See Also

pairwiseAlignment, PairwiseAlignedFixedSubject-class, substitution.matrices

Examples

Not run:
This function has been deprecated
Use 'pairwiseAlignment' instead.

nucleotide alignment
mat <- matrix(-5L, nrow = 4, ncol = 4)
for (i in seq_len(4)) mat[i, i] <- 0L
rownames(mat) <- colnames(mat) <- DNA_ALPHABET[1:4]
s1 <- DNAString(paste(sample(DNA_ALPHABET[1:4], 1000, replace=TRUE), collapse=""))
s2 <- DNAString(paste(sample(DNA_ALPHABET[1:4], 1000, replace=TRUE), collapse=""))
nw0 <- needwunsQS(s1, s2, mat, gappen = 0)
nw1 <- needwunsQS(s1, s2, mat, gappen = 1)

62 pairwiseAlignment

nw5 <- needwunsQS(s1, s2, mat, gappen = 5)

amino acid alignment
needwunsQS("PAWHEAE", "HEAGAWGHEE", substmat = "BLOSUM50")

End(Not run)

pairwiseAlignment Optimal Pairwise Alignment

Description

Solves (Needleman-Wunsch) global alignment, (Smith-Waterman) local alignment, and (ends-free)
overlap alignment problems.

Usage

pairwiseAlignment(pattern, subject, ...)
S4 method for signature 'XStringSet, XStringSet':
pairwiseAlignment(pattern, subject,

patternQuality = PhredQuality(22L), subjectQuality = PhredQuality(22L),
type = "global", substitutionMatrix = NULL, fuzzyMatrix = NULL,
gapOpening = -10, gapExtension = -4, scoreOnly = FALSE)

S4 method for signature 'QualityScaledXStringSet,
QualityScaledXStringSet':
pairwiseAlignment(pattern, subject,

type = "global", substitutionMatrix = NULL, fuzzyMatrix = NULL,
gapOpening = -10, gapExtension = -4, scoreOnly = FALSE)

Arguments

pattern a character vector of any length, an XString, or an XStringSet object.

subject a character vector of length 1 or an XString object.
patternQuality, subjectQuality

objects of class XStringQuality representing the respective quality scores
for pattern and subject that are used in a quality-based method for gener-
ating a substitution matrix. These two arguments are ignored if !is.null(substitutionMatrix)
or if its respective string set (pattern, subject) is of class QualityScaledXStringSet.

type type of alignment. One of "global", "local", "overlap", "patternOverlap",
and "subjectOverlap" where "global" = align whole strings with end
gap penalties, "local" = align string fragments, "overlap" = align whole
strings without end gap penalties, "patternOverlap" = align whole strings
without end gap penalties on pattern and with end gap penalties on subject,
"subjectOverlap" = align whole strings with end gap penalties on pattern
and without end gap penalties on subject.

substitutionMatrix
substitution matrix for a non-quality based alignment. It cannot be used in con-
junction with patternQuality and subjectQuality arguments.

fuzzyMatrix fuzzy match matrix for quality-based alignments. It takes values between 0 and
1; where 0 is an unambiguous mismatch, 1 is an unambiguous match, and values
in between represent a fraction of "matchiness".

pairwiseAlignment 63

gapOpening the cost for opening a gap in the alignment.

gapExtension the incremental cost incurred along the length of the gap in the alignment.

scoreOnly logical to denote whether or not to return just the scores of the optimal pairwise
alignment.

... optional arguments to generic function to support additional methods.

Details

If scoreOnly == FALSE, the pairwise alignment with the maximum alignment score is re-
turned. If more than one pairwise alignment has the maximum alignment score exists, the first
alignment along the subject is returned. If there are multiple pairwise alignments with the max-
imum alignment score at the chosen subject location, then at each location along the alignment
mismatches are given preference to insertions/deletions. For example, pattern: [1] ATTA;
subject: [1] AT-A is chosen above pattern: [1] ATTA; subject: [1] A-
TA if they both have the maximum alignment score.

General implementation based on Chapter 2 of Haubold and Wiehe (2006). Quality-based method
for generating a substitution matrix based on the Bioinformatics article by Ketil Malde given below.

Value

If scoreOnly == FALSE, an instance of class PairwiseAlignedFixedSubject is re-
turned. If scoreOnly == TRUE, a numeric vector containing the scores for the optimal pairwise
alignments is returned.

Note

Use matchPattern or vmatchPattern if you need to find all the occurences (eventually with
indels) of a given pattern in a reference sequence or set of sequences.

Use matchPDict if you need to match a (big) set of patterns against a reference sequence.

Author(s)

P. Aboyoun and H. Pages

References

R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis, Cambridge UP 1998,
sec 2.3.

B. Haubold, T. Wiehe, Introduction to Computational Biology, Birkhauser Verlag 2006, Chapter 2.

K. Malde, The effect of sequence quality on sequence alignment, Bioinformatics 2008 24(7):897-
900.

See Also

stringDist, PairwiseAlignedFixedSubject-class, XStringQuality-class, substitution.matrices, matchPattern

64 phiX174Phage

Examples

Nucleotide global, local, and overlap alignments
s1 <-
DNAString("ACTTCACCAGCTCCCTGGCGGTAAGTTGATCAAAGGAAACGCAAAGTTTTCAAG")

s2 <-
DNAString("GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC")

First use a fixed substitution matrix
mat <- nucleotideSubstitutionMatrix(match = 1, mismatch = -3, baseOnly = TRUE)
globalAlign <-
pairwiseAlignment(s1, s2, substitutionMatrix = mat, gapOpening = -5, gapExtension = -2)

localAlign <-
pairwiseAlignment(s1, s2, type = "local", substitutionMatrix = mat, gapOpening = -5, gapExtension = -2)

overlapAlign <-
pairwiseAlignment(s1, s2, type = "overlap", substitutionMatrix = mat, gapOpening = -5, gapExtension = -2)

Then use quality-based method for generating a substitution matrix
pairwiseAlignment(s1, s2,

patternQuality = SolexaQuality(rep(c(22L, 12L), times = c(36, 18))),
subjectQuality = SolexaQuality(rep(c(22L, 12L), times = c(40, 20))),
scoreOnly = TRUE)

Amino acid global alignment
pairwiseAlignment(AAString("PAWHEAE"), AAString("HEAGAWGHEE"), substitutionMatrix = "BLOSUM50",

gapOpening = 0, gapExtension = -8)

phiX174Phage Versions of bacteriophage phiX174 complete genome and sample
short reads

Description

Six versions of the complete genome for bacteriophage φ X174 as well as a small number of Solexa
short reads, qualities associated with those short reads, and counts for the number times those short
reads occurred.

Details

The phiX174Phage object is a DNAStringSet containing the following six naturally occurring
versions of the bacteriophage φ X174 genome cited in Smith et al.:

Genbank: The version of the genome from GenBank (NC_001422.1, GI:9626372).
RF70s: A preparation of φ X double-stranded replicative form (RF) of DNA by Clyde A. Hutchi-

son III from the late 1970s.
SS78: A preparation of φ X virion single-stranded DNA from 1978.
Bull: The sequence of wild-type φ X used by Bull et al.
G’97: The φ X replicative form (RF) of DNA from Bull et al.
NEB’03: A φ X replicative form (RF) of DNA from New England BioLabs (NEB).

The srPhiX174 object is a DNAStringSet containing short reads from a Solexa machine.

The quPhiX174 object is a BStringSet containing Solexa quality scores associated with srPhiX174.

The wtPhiX174 object is an integer vector containing counts associated with srPhiX174.

pid 65

References

http://www.genome.jp/dbget-bin/www_bget?refseq+NC_001422

Bull, J. J., Badgett, M. R., Wichman, H. A., Huelsenbeck, Hillis, D. M., Gulati, A., Ho, C. &
Molineux, J. (1997) Genetics 147, 1497-1507.

Smith, Hamilton O.; Clyde A. Hutchison, Cynthia Pfannkoch, J. Craig Venter (2003-12-23). "Gen-
erating a synthetic genome by whole genome assembly: {phi}X174 bacteriophage from synthetic
oligonucleotides". Proceedings of the National Academy of Sciences 100 (26): 15440-15445.
doi:10.1073/pnas.2237126100.

Examples

data(phiX174Phage)
nchar(phiX174Phage)
genBankPhage <- phiX174Phage[[1]]
genBankSubstring <- substring(genBankPhage, 2793-34, 2811+34)

data(srPhiX174)
srPhiX174
quPhiX174
summary(wtPhiX174)

alignPhiX174 <-
pairwiseAlignment(srPhiX174, genBankSubstring,

patternQuality = SolexaQuality(quPhiX174),
subjectQuality = SolexaQuality(99L),
type = "subjectOverlap")

summary(alignPhiX174, weight = wtPhiX174)

pid Percent Sequence Identity

Description

Calculates the percent sequence identity for a pairwise sequence alignment.

Usage

pid(x, type="PID1")

Arguments

x a PairwiseAlignedFixedSubject object.

type one of percent sequence identity. One of "PID1", "PID2", "PID3", and
"PID4". See Details for more information.

Details

Since there is no universal definition of percent sequence identity, the pid function calculates this
statistic in the following types:

"PID1": 100 * (identical positions) / (aligned positions + internal gap positions)

http://www.genome.jp/dbget-bin/www_bget?refseq+NC_001422

66 pmatchPattern

"PID2": 100 * (identical positions) / (aligned positions)

"PID3": 100 * (identical positions) / (length shorter sequence)

"PID4": 100 * (identical positions) / (average length of the two sequences)

Value

A numeric vector containing the specified sequence identity measures.

Author(s)

P. Aboyoun

References

A. May, Percent Sequence Identity: The Need to Be Explicit, Structure 2004, 12(5):737.

G. Raghava and G. Barton, Quantification of the variation in percentage identity for protein se-
quence alignments, BMC Bioinformatics 2006, 7:415.

See Also

pairwiseAlignment, PairwiseAlignedFixedSubject-class, match-utils

Examples

s1 <- DNAString("AGTATAGATGATAGAT")
s2 <- DNAString("AGTAGATAGATGGATGATAGATA")

palign1 <- pairwiseAlignment(s1, s2)
palign1
pid(palign1)

palign2 <-
pairwiseAlignment(s1, s2,
substitutionMatrix =
nucleotideSubstitutionMatrix(match = 2, mismatch = 10, baseOnly = TRUE))

palign2
pid(palign2, type = "PID4")

pmatchPattern Longest Common Prefix/Suffix/Substring searching functions

Description

Functions for searching the Longest Common Prefix/Suffix/Substring of two strings.

WARNING: These functions are experimental and might not work properly! Full documentation
will come later.

Please send questions/comments to hpages@fhcrc.org

Thanks for your comprehension!

readFASTA 67

Usage

lcprefix(s1, s2)
lcsuffix(s1, s2)
lcsubstr(s1, s2)
pmatchPattern(pattern, subject, maxlength.out=1L)

Arguments

s1 1st string, a character string or an XString object.

s2 2nd string, a character string or an XString object.

pattern The pattern string.

subject An XString object containing the subject string.
maxlength.out

The maximum length of the output i.e. the maximum number of views in the
returned object.

See Also

matchPattern, XStringViews-class, XString-class

readFASTA Functions to read/write FASTA formatted files

Description

FASTA is a simple file format for biological sequence data. A file may contain one or more se-
quences, for each sequence there is a description line which begins with a >.

Usage

fasta.info(file, use.descs=TRUE)
readFASTA(file, checkComments=TRUE, strip.descs=TRUE)
writeFASTA(x, file="", width=80)

Arguments

file Either a character string naming a file or a connection open for reading or writ-
ing. If "" (the default for writeFASTA), then the function writes to the stan-
dard output connection (the console) unless redirected by sink.

use.descs TRUE or FALSE. Whether or not the description lines should be used to name
the elements of the returned integer vector.

checkComments
Whether or not comments, lines beginning with a semi-colon should be found
and removed.

strip.descs Whether or not the ">" marking the beginning of the description lines should
be removed. Note that this argument is new in Biostrings >= 2.8. In previous
versions readFASTA was keeping the ">".

x A list as one returned by readFASTA.

width The maximum number of letters per line of sequence.

68 replaceLetterAt

Details

FASTA is a widely used format in biology. It is a relatively simple markup. I am not aware of
a standard. It might be nice to check to see if the data that were parsed are sequences of some
appropriate type, but without a standard that does not seem possible.

There are many other packages that provide similar, but different capabilities. The one in the pack-
age seqinr seems most similar but they separate the biological sequence into single character strings,
which is too inefficient for large problems.

Value

An integer vector (for fasta.info) or a list (for readFASTA) with one element for each se-
quence in the file. For readFASTA, the elements are in two parts, one the description and the
second a character string of the biological sequence.

Author(s)

R. Gentleman, H. Pages

See Also

read.BStringSet, read.DNAStringSet, read.RNAStringSet, read.AAStringSet,
write.XStringSet, read.table, scan, write.table

Examples

f1 <- system.file("extdata", "someORF.fa", package="Biostrings")
file.info(f1)
ff <- readFASTA(f1, strip.descs=TRUE)
desc <- sapply(ff, function(x) x$desc)
Keep the "reverse complement" sequences only
ff2 <- ff[grep("reverse complement", desc, fixed=TRUE)]
writeFASTA(ff2, file.path(tempdir(), "someORF2.fa"))

replaceLetterAt Replacing letters in a sequence at some specified locations

Description

replaceLetterAt first makes a copy of a sequence and then replaces the original letters by new
letters at some specified locations in the copied sequence.

.inplaceReplaceLetterAt is the IN PLACE version of replaceLetterAt: it will mod-
ify the original sequence in place i.e. without copying it first. Note that in place modification of a
sequence is fundamentally dangerous because it alters all objects defined in your session that make
reference to the modified sequence. NEVER use .inplaceReplaceLetterAt, unless you
know what you are doing!

Usage

replaceLetterAt(x, at, letter, if.not.extending="replace", verbose=FALSE)

NEVER USE THIS FUNCTION!
.inplaceReplaceLetterAt(x, at, letter)

replaceLetterAt 69

Arguments

x A DNAString object.

at An integer vector with no NAs specifying the locations where the replacements
must occur. Note that locations can be repeated and in this case the last replace-
ment to occur at a given location prevails.

letter Character vector with no NAs. The total number of letters in letter (sum(nchar(letter)))
must be equal to the number of locations (length(at)).

if.not.extending
What to do if the new letter is not "extending" the old letter? The new letter
"extends" the old letter if both are IUPAC letters and the new letter is as spe-
cific or less specific than the old one (e.g. M extends A, Y extends Y, but Y
doesn’t extend S). Possible values are "replace" (the default) for replacing
in all cases, "skip" for not replacing when the new letter does not extend the
old letter, "merge" for merging the new IUPAC letter with the old one, and
"error" for raising an error.
Note that the gap ("-") and hard masking ("+") letters are not extending or
extended by any other letter.
Also note that "merge" is the only value for the if.not.extending argu-
ment that guarantees the final result to be independent on the order the replace-
ment is performed (although this is only relevant when at contains duplicated
locations, otherwise the result is of course always independent on the order,
whatever the value of if.not.extending is).

verbose When TRUE, a warning will report the number of skipped or merged letters.

Details

.inplaceReplaceLetterAt semantic is equivalent to calling replaceLetterAtwith if.not.extending="merge"
and verbose=FALSE.

Never use .inplaceReplaceLetterAt! It is used by the injectSNPs function in the
BSgenome package, as part of the "lazy sequence loading" mechanism, for altering the original
sequences of a BSgenome object at "sequence-load time". This alteration consists in injecting the
IUPAC ambiguity letters representing the SNPs into the just loaded sequence, which is the only
time where in place modification of the external data of an XString object is safe.

Value

A DNAString object of the same length as the orignal object x for replaceLetterAt.

Author(s)

H. Pages

See Also

IUPAC_CODE_MAP, chartr, injectHardMask, DNAString, injectSNPs, BSgenome

Examples

replaceLetterAt(DNAString("AAMAA"), c(5, 1, 3, 1), "TYNC")
replaceLetterAt(DNAString("AAMAA"), c(5, 1, 3, 1), "TYNC", if.not.extending="merge")

70 reverseComplement

reverseComplement Sequence reversing and complementing

Description

Use these functions for reversing a sequence and/or complementing a DNA sequence.

Usage

S4 method for signature 'XString':
reverse(x, ...)
complement(x, ...)
reverseComplement(x, ...)

Arguments

x An IRanges, NormalIRanges, MaskCollection, XString, XStringSet, XStringViews
or MaskedXString object for reverse.

A DNAString, RNAString, DNAStringSet, RNAStringSet, XStringViews (with
DNAString or RNAString subject), MaskedDNAString or MaskedRNAString
object for complement and reverseComplement.

... Additional arguments to be passed to or from methods.

Details

Given an XString object x, reverse(x) returns an object of the same XString subtype as xwhere
letters in x have been reordered in the reverse order.

If x is a DNAString or RNAString object, complement(x) returns an object where each base in
x is "complemented" i.e. A, C, G, T in a DNAString object are replaced by T, G, C, A respectively
and A, C, G, U in a RNAString object are replaced by U, G, C, A respectively.

Letters belonging to the "IUPAC extended genetic alphabet" are also replaced by their complement
(M <-> K, R <-> Y, S <-> S, V <-> B, W <-> W, H <-> D, N <-> N) and the gap ("-") and hard
masking ("+") letters are unchanged.

reverseComplement(x) is equivalent to reverse(complement(x)) but is faster and
more memory efficient.

Value

An object of the same class and length as the original object.

See Also

IRanges-class, NormalIRanges-class, MaskCollection-class, DNAString-class, RNAString-class,
DNAStringSet-class, RNAStringSet-class, XStringViews-class, MaskedXString-class, strrev, chartr,
findPalindromes

reverseComplement 71

Examples

A. SIMPLE EXAMPLES

x <- DNAString("ACGT-YN-")
reverseComplement(x)

library(drosophila2probe)
x <- DNAStringSet(drosophila2probe$sequence)
x
alphabetFrequency(x, collapse=TRUE)
rcx <- reverseComplement(x)
rcx
alphabetFrequency(rcx, collapse=TRUE)

B. SEARCHING THE REVERSE STRAND OF A CHROMOSOME

Applying reverseComplement() to the pattern before calling
matchPattern() is the recommended way to search hits on the reverse
strand of a chromosome.

library(BSgenome.Dmelanogaster.UCSC.dm3)
chrX <- Dmelanogaster$chrX
pattern <- DNAString("ACCAACNNGGTTG")
matchPattern(pattern, chrX, fixed=FALSE) # 3 hits on strand +
rcpattern <- reverseComplement(pattern)
rcpattern
m0 <- matchPattern(rcpattern, chrX, fixed=FALSE)
m0 # 5 hits on strand -

Applying reverseComplement() to the subject instead of the pattern is not
a good idea for 2 reasons:
(1) Chromosome sequences are generally big and sometimes very big
so computing the reverse complement of the positive strand will
take time and memory proportional to its length.
chrXminus <- reverseComplement(chrX) # needs to allocate 22M of memory!
chrXminus
(2) Chromosome locations are generally given relatively to the positive
strand, even for features located in the negative strand, so after
doing this:
m1 <- matchPattern(pattern, chrXminus, fixed=FALSE)
the start/end of the matches are now relative to the negative strand.
You need to apply reverseComplement() again on the result if you want
them to be relative to the positive strand:
m2 <- reverseComplement(m1) # allocates 22M of memory, again!
and finally to apply rev() to sort the matches from left to right
(5'3' direction) like in m0:
m3 <- rev(m2) # same as m0, finally!

WARNING: Before you try the example below on human chromosome 1, be aware
that it will require the allocation of about 500Mb of memory!
if (interactive()) {
library(BSgenome.Hsapiens.UCSC.hg18)
chr1 <- Hsapiens$chr1

72 stringDist

matchPattern(pattern, reverseComplement(chr1)) # DON'T DO THIS!
matchPattern(reverseComplement(pattern), chr1) # DO THIS INSTEAD

}

stringDist String Distance/Alignment Score Matrix

Description

Computes the Levenshtein edit distance or pairwise alignment score matrix for a set of strings.

Usage

stringDist(x, method = "levenshtein", ignoreCase = FALSE, diag = FALSE, upper = FALSE, ...)
S4 method for signature 'XStringSet':
stringDist(x, method = "levenshtein", ignoreCase = FALSE, diag = FALSE,

upper = FALSE, type = "global", quality = PhredQuality(22L),
substitutionMatrix = NULL, fuzzyMatrix = NULL, gapOpening = 0,
gapExtension = -1)

S4 method for signature 'QualityScaledXStringSet':
stringDist(x, method = "quality", ignoreCase = FALSE,

diag = FALSE, upper = FALSE, type = "global", substitutionMatrix = NULL,
fuzzyMatrix = NULL, gapOpening = 0, gapExtension = -1)

Arguments

x a character vector or an XStringSet object.
method calculation method. One of "levenshtein", "quality", or "substitutionMatrix".
ignoreCase logical value indicating whether to ignore case during scoring.
diag logical value indicating whether the diagonal of the matrix should be printed by

print.dist.
upper logical value indicating whether the diagonal of the matrix should be printed by

print.dist.
type type of alignment. One of "global", "local", and "overlap", where

"global" = align whole strings with end gap penalties, "local" = align
string fragments, "overlap" = align whole strings without end gap penalties.
This argument is ignored if method == "levenshtein".

quality object of class XStringQuality representing the quality scores for x that
are used in a quality-based method for generating a substitution matrix. This
argument is ignored if method != "quality".

substitutionMatrix
symmetric substitution matrix for a non-quality based alignment. This argument
is ignored if method != "substitutionMatrix".

fuzzyMatrix fuzzy match matrix for quality-based alignments. It takes values between 0 and
1; where 0 is an unambiguous mismatch, 1 is an unambiguous match, and values
in between represent a fraction of "matchiness".

gapOpening penalty for opening a gap in the alignment. This argument is ignored if method
== "levenshtein".

gapExtension penalty for extending a gap in the alignment. This argument is ignored if method
== "levenshtein".

... optional arguments to generic function to support additional methods.

subXString 73

Details

Uses the underlying pairwiseAlignment code to compute the distance/alignment score matrix.

Value

Returns an object of class "dist".

Author(s)

P. Aboyoun

See Also

dist, agrep, pairwiseAlignment, substitution.matrices

Examples

stringDist(c("lazy", "HaZy", "crAzY"))
stringDist(c("lazy", "HaZy", "crAzY"), ignoreCase = TRUE)

data(phiX174Phage)
plot(hclust(stringDist(phiX174Phage), method = "single"))

data(srPhiX174)
stringDist(srPhiX174[1:4])
stringDist(srPhiX174[1:4], method = "quality",

quality = SolexaQuality(quPhiX174[1:4]),
gapOpening = -10, gapExtension = -4)

subXString Fast substring extraction

Description

Functions for fast substring extraction.

Usage

subXString(x, start=NA, end=NA, length=NA)
substr(x, start=NA, stop=NA)
substring(text, first=NA, last=NA)

Arguments

x An XString object for subXString. A character vector, an XStringViews,
XString, or MaskedXString object for substr or substring.

start A numeric vector.
end A numeric vector.
length A numeric vector.
stop A numeric vector.
text A character vector, an XStringViews or an XString object.
first A numeric vector.
last A numeric vector.

74 substitution.matrices

Details

subXString is deprecated in favor of subseq.

Value

An XString object of the same subtype as x for subXString.

A character vector for substr and substring.

See Also

subseq, letter, XString-class, XStringViews-class

substitution.matrices
Scoring matrices

Description

Predefined substitution matrices for nucleotide and amino acid alignments.

Usage

data(BLOSUM45)
data(BLOSUM50)
data(BLOSUM62)
data(BLOSUM80)
data(BLOSUM100)
data(PAM30)
data(PAM40)
data(PAM70)
data(PAM120)
data(PAM250)
nucleotideSubstitutionMatrix(match = 1, mismatch = 0, baseOnly = FALSE, type = "DNA")
qualitySubstitutionMatrices(fuzzyMatch = c(0, 1), alphabetLength = 4L, qualityClass = "PhredQuality", bitScale = 1)
errorSubstitutionMatrices(errorProbability, fuzzyMatch = c(0, 1), alphabetLength = 4L, bitScale = 1)

Arguments

match the scoring for a nucleotide match.

mismatch the scoring for a nucleotide mismatch.

baseOnly TRUE or FALSE. If TRUE, only uses the letters in the "base" alphabet i.e. "A",
"C", "G", "T".

type either "DNA" or "RNA".

fuzzyMatch a named or unnamed numeric vector representing the base match probability.
errorProbability

a named or unnamed numeric vector representing the error probability.
alphabetLength

an integer representing the number of letters in the underlying string alphabet.
For DNA and RNA, this would be 4L. For Amino Acids, this could be 20L.

substitution.matrices 75

qualityClass a character string of either "PhredQuality" or "SolexaQuality".

bitScale a numeric value to scale the quality-based substitution matrices. By default, this
is 1, representing bit-scale scoring.

Format

The BLOSUM and PAM matrices are square symmetric matrices with integer coefficients, whose
row and column names are identical and unique: each name is a single letter representing a nu-
cleotide or an amino acid.

nucleotideSubstitutionMatrix produces a substitution matrix for all IUPAC nucleic acid
codes based upon match and mismatch parameters.

errorSubstitutionMatrices produces a two element list of numeric square symmetric ma-
trices, one for matches and one for mismatches.

qualitySubstitutionMatrices produces the substitution matrices for Phred or Solexa
quality-based reads.

Details

The BLOSUM and PAM matrices are not unique. For example, the definition of the widely used
BLOSUM62 matrix varies depending on the source, and even a given source can provide different
versions of "BLOSUM62" without keeping track of the changes over time. NCBI provides many
matrices here ftp://ftp.ncbi.nih.gov/blast/matrices/ but their definitions don’t match those of the
matrices bundled with their stand-alone BLAST software available here ftp://ftp.ncbi.nih.gov/blast/

The BLOSUM45, BLOSUM62, BLOSUM80, PAM30 and PAM70 matrices were taken from NCBI
stand-alone BLAST software.

The BLOSUM50, BLOSUM100, PAM40, PAM120 and PAM250 matrices were taken from ftp://ftp.ncbi.nih.gov/blast/matrices/

The quality matrices computed in qualitySubstitutionMatrices are based on the paper
by Ketil Malde. Let εi be the probability of an error in the base read. For "Phred" quality
measures Q in [0, 99], these error probabilities are given by εi = 10−Q/10. For "Solexa" quality
measures Q in [−5, 99], they are given by εi = 1 − 1/(1 + 10−Q/10). Assuming independence
within and between base reads, the combined error probability of a mismatch when the underlying
bases do match is εc = ε1 + ε2 − (n/(n − 1)) ∗ ε1 ∗ ε2, where n is the number of letters in the
underlying alphabet. Using εc, the substitution score is given by when two bases match is given by
b∗ log2(γx,y ∗ (1− εc)∗n+(1−γx,y)∗ εc ∗ (n/(n−1))), where b is the bit-scaling for the scoring
and γx,y is the probability that characters x and y represents the same underlying information (e.g.
using IUPAC, γA,A = 1 and γA,N = 1/4. In the arguments listed above fuzzyMatch represents
γx,y and errorProbability represents εi.

Author(s)

H. Pages and P. Aboyoun

References

K. Malde, The effect of sequence quality on sequence alignment, Bioinformatics, Feb 23, 2008.

See Also

pairwiseAlignment, PairwiseAlignedFixedSubject-class, DNAString-class, AAString-class,
PhredQuality-class, SolexaQuality-class

76 toComplex

Examples

s1 <-
DNAString("ACTTCACCAGCTCCCTGGCGGTAAGTTGATCAAAGGAAACGCAAAGTTTTCAAG")

s2 <-
DNAString("GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC")

Fit a global pairwise alignment using edit distance scoring
pairwiseAlignment(s1, s2,

substitutionMatrix = nucleotideSubstitutionMatrix(0, -1, TRUE),
gapOpening = 0, gapExtension = -1)

Examine quality-based match and mismatch bit scores for DNA/RNA
strings in pairwiseAlignment.
By default patternQuality and subjectQuality are PhredQuality(22L).
qualityMatrices <- qualitySubstitutionMatrices()
qualityMatrices["22", "22", "1"]
qualityMatrices["22", "22", "0"]

pairwiseAlignment(s1, s2)

Get the substitution scores when the error probability is 0.1
subscores <- errorSubstitutionMatrices(errorProbability = 0.1)
submat <- matrix(subscores[,,"0"], 4, 4)
diag(submat) <- subscores[,,"1"]
dimnames(submat) <- list(DNA_ALPHABET[1:4], DNA_ALPHABET[1:4])
submat
pairwiseAlignment(s1, s2, substitutionMatrix = submat)

Align two amino acid sequences with the BLOSUM62 matrix
aa1 <- AAString("HXBLVYMGCHFDCXVBEHIKQZ")
aa2 <- AAString("QRNYMYCFQCISGNEYKQN")
pairwiseAlignment(aa1, aa2, substitutionMatrix = "BLOSUM62", gapOpening = -3, gapExtension = -1)

See how the gap penalty influences the alignment
pairwiseAlignment(aa1, aa2, substitutionMatrix = "BLOSUM62", gapOpening = -6, gapExtension = -2)

See how the substitution matrix influences the alignment
pairwiseAlignment(aa1, aa2, substitutionMatrix = "BLOSUM50", gapOpening = -3, gapExtension = -1)

Compare our BLOSUM62 with BLOSUM62 from ftp://ftp.ncbi.nih.gov/blast/matrices/
data(BLOSUM62)
BLOSUM62["Q", "Z"]
file <- "ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM62"
b62 <- as.matrix(read.table(file, check.names=FALSE))
b62["Q", "Z"]

toComplex Turning a DNA sequence into a vector of complex numbers

Description

The toComplex utility function turns a DNAString object into a complex vector.

translate 77

Usage

toComplex(x, baseValues)

Arguments

x A DNAString object.

baseValues A named complex vector containing the values associated to each base e.g.
c(A=1+0i, G=0+1i, T=-1+0i, C=0-1i)

Value

A complex vector of the same length as x.

Author(s)

H. Pages

See Also

DNAString

Examples

seq <- DNAString("accacctgaccattgtcct")
baseValues1 <- c(A=1+0i, G=0+1i, T=-1+0i, C=0-1i)
toComplex(seq, baseValues1)

GC content:
baseValues2 <- c(A=0, C=1, G=1, T=0)
sum(as.integer(toComplex(seq, baseValues2)))
Note that there are better ways to do this (see ?alphabetFrequency)

translate DNA/RNA transcription and translation

Description

Functions for transcription and/or translation of DNA or RNA sequences, and related utilities.

Usage

transcribe(x)
cDNA(x)
codons(x)
translate(x)

Related utilities
dna2rna(x)
rna2dna(x)

78 translate

Arguments

x A DNAString object for transcribe and dna2rna.
An RNAString object for cDNA and rna2dna.
A DNAString, RNAString, MaskedDNAString or MaskedRNAString object for
codons.
A DNAString, RNAString, DNAStringSet, RNAStringSet, MaskedDNAString
or MaskedRNAString object for translate.

Details

transcribe reproduces the biological process of DNA transcription that occurs in the cell.

cDNA reproduces the process of synthesizing complementary DNA from a mature mRNA template.

translate reproduces the biological process of RNA translation that occurs in the cell. The input
of the function can be either RNA or coding DNA. The Standard Genetic Code (see ?GENETIC_CODE)
is used to translate codons into amino acids. codons is a utility for extracting the codons involved
in this translation without translating them.

dna2rna and rna2dna are low-level utilities for converting sequences from DNA to RNA and
vice-versa. All what this converstion does is to replace each occurence of T by a U and vice-versa.

Value

An RNAString object for transcribe and dna2rna.

A DNAString object for cDNA and rna2dna.

Note that if the sequence passed to transcribe or cDNA is considered to be oriented 5’-3’, then
the returned sequence is oriented 3’-5’.

An XStringViews object with 1 view per codon for codons. When x is a MaskedDNAString or
MaskedRNAString object, its masked parts are interpreted as introns and filled with the + letter in
the returned object. Therefore codons that span across masked regions are represented by views
that have a width > 3 and contain the + letter. Note that each view is guaranteed to contain exactly
3 base letters.

An AAString object for translate.

See Also

reverseComplement, GENETIC_CODE, DNAString-class, RNAString-class, AAString-class,
XStringSet-class, XStringViews-class, MaskedXString-class

Examples

file <- system.file("extdata", "someORF.fa", package="Biostrings")
x <- read.DNAStringSet(file, "fasta")
x

The first and last 1000 nucleotides are not part of the ORFs:
x <- DNAStringSet(x, start=1001, end=-1001)

Before calling translate() on an ORF, we need to mask the introns
if any. We can get this information fron the SGD database
(http://www.yeastgenome.org/).
According to SGD, the 1st ORF (YAL001C) has an intron at 71..160
(see http://db.yeastgenome.org/cgi-bin/locus.pl?locus=YAL001C)

yeastSEQCHR1 79

y1 <- x[[1]]
mask1 <- Mask(length(y1), start=71, end=160)
masks(y1) <- mask1
y1
translate(y1)

Codons
codons(y1)
which(width(codons(y1)) != 3)
codons(y1)[20:28]

yeastSEQCHR1 An annotation data file for CHR1 in the yeastSEQ package

Description

This is a single character string containing DNA sequence of yeast chromosome number 1. The data
were obtained from the Saccharomyces Genome Database(urlftp://genome-ftp.stanford.edu/pub/yeast/data_download/sequence/genomic_sequence/chromosomes/fasta/).

Details

Annotation based on data provided by Yeast Genome project.

Source data built:Yeast Genome data are built at various time intervals. Sources used were down-
loaded Fri Nov 21 14:00:47 2003 Package built: Fri Nov 21 14:00:47 2003

References

http://www.yeastgenome.org/DownloadContents.shtml

Examples

data(yeastSEQCHR1)
nchar(yeastSEQCHR1)

http://www.yeastgenome.org/DownloadContents.shtml

Index

!=,BString,character-method
(XString-class), 19

!=,XString,XString-method
(XString-class), 19

!=,XString,XStringViews-method
(XStringViews-class), 26

!=,XStringViews,XString-method
(XStringViews-class), 26

!=,XStringViews,XStringViews-method
(XStringViews-class), 26

!=,XStringViews,character-method
(XStringViews-class), 26

!=,character,BString-method
(XString-class), 19

!=,character,XStringViews-method
(XStringViews-class), 26

∗Topic category
alphabetFrequency, 32

∗Topic character
stringDist, 72

∗Topic classes
AAString-class, 1
AlignedXStringSet-class, 2
BOC_SubjectString-class, 4
DNAString-class, 4
InDel-class, 7
MaskedXString-class, 9
MIndex-class, 8
PairwiseAlignedFixedSubject-class,

14
PDict-class, 11
QualityScaledXStringSet-class,

16
RNAString-class, 18
XString-class, 19
XStringPartialMatches-class,

21
XStringQuality-class, 22
XStringSet-class, 23
XStringViews-class, 26

∗Topic cluster
stringDist, 72

∗Topic datasets

phiX174Phage, 64
substitution.matrices, 74
yeastSEQCHR1, 79

∗Topic data
AMINO_ACID_CODE, 2
GENETIC_CODE, 5
IUPAC_CODE_MAP, 6
substitution.matrices, 74

∗Topic manip
chartr, 35
gregexpr2, 38
injectHardMask, 39
maskMotif, 41
matchPWM, 55
readFASTA, 67
replaceLetterAt, 68
reverseComplement, 70
subXString, 73
translate, 77
XStringSet-io, 25

∗Topic methods
AAString-class, 1
align-utils, 30
AlignedXStringSet-class, 2
BOC_SubjectString-class, 4
chartr, 35
DNAString-class, 4
findPalindromes, 36
InDel-class, 7
letter, 40
MaskedXString-class, 9
maskMotif, 41
match-utils, 43
matchLRPatterns, 47
matchPattern, 56
matchPDict, 48
matchPDict-inexact, 52
matchProbePair, 59
matchPWM, 55
MIndex-class, 8
needwunsQS, 61
PairwiseAlignedFixedSubject-class,

14

80

INDEX 81

pairwiseAlignment, 62
PDict-class, 11
pid, 65
pmatchPattern, 66
QualityScaledXStringSet-class,

16
reverseComplement, 70
RNAString-class, 18
subXString, 73
toComplex, 76
translate, 77
XString-class, 19
XStringPartialMatches-class,

21
XStringQuality-class, 22
XStringSet-class, 23
XStringViews-class, 26
XStringViews-constructors, 29

∗Topic models
needwunsQS, 61
pairwiseAlignment, 62

∗Topic multivariate
stringDist, 72

∗Topic utilities
AMINO_ACID_CODE, 2
GENETIC_CODE, 5
injectHardMask, 39
IUPAC_CODE_MAP, 6
matchPWM, 55
readFASTA, 67
replaceLetterAt, 68
substitution.matrices, 74
XStringSet-io, 25

.inplaceReplaceLetterAt
(replaceLetterAt), 68

==,BString,character-method
(XString-class), 19

==,XString,XString-method
(XString-class), 19

==,XString,XStringViews-method
(XStringViews-class), 26

==,XStringViews,XString-method
(XStringViews-class), 26

==,XStringViews,XStringViews-method
(XStringViews-class), 26

==,XStringViews,character-method
(XStringViews-class), 26

==,character,BString-method
(XString-class), 19

==,character,XStringViews-method
(XStringViews-class), 26

[,ACtree,ANY,ANY,ANY-method

(PDict-class), 11
[,AlignedXStringSet,ANY,ANY,ANY-method

(AlignedXStringSet-class),
2

[,PairwiseAlignedFixedSubject,ANY,ANY,ANY-method
(PairwiseAlignedFixedSubject-class),
14

[,QualityAlignedXStringSet,ANY,ANY,ANY-method
(AlignedXStringSet-class),
2

[,QualityScaledXStringSet,ANY,ANY,ANY-method
(QualityScaledXStringSet-class),
16

[,XString,ANY,ANY,ANY-method
(XString-class), 19

[,XStringPartialMatches,ANY,ANY,ANY-method
(XStringPartialMatches-class),
21

[,XStringSet,ANY,ANY,ANY-method
(XStringSet-class), 23

[<-,AlignedXStringSet,ANY,ANY,ANY-method
(AlignedXStringSet-class),
2

[<-,PairwiseAlignedFixedSubject,ANY,ANY,ANY-method
(PairwiseAlignedFixedSubject-class),
14

[[,ByPos_MIndex-method
(MIndex-class), 8

[[,PDict-method (PDict-class), 11
[[,XStringSet-method

(XStringSet-class), 23
[[<-,XStringSet-method

(XStringSet-class), 23

AA_ALPHABET, 6
AA_ALPHABET (AAString-class), 1
AAString, 1, 2, 5, 6, 18, 19, 23, 78
AAString (AAString-class), 1
AAString-class, 1, 20, 24, 26, 75, 78
AAStringSet, 16
AAStringSet (XStringSet-class), 23
AAStringSet-class, 17
AAStringSet-class

(XStringSet-class), 23
ACtree (PDict-class), 11
ACtree-class (PDict-class), 11
ACtree2 (PDict-class), 11
ACtree2-class (PDict-class), 11
adjacentViews

(XStringViews-constructors),
29

agrep, 73
align-utils, 30, 46

82 INDEX

aligned
(AlignedXStringSet-class),
2

aligned,AlignedXStringSet-method
(AlignedXStringSet-class),
2

aligned,PairwiseAlignedFixedSubject-method
(PairwiseAlignedFixedSubject-class),
14

AlignedXStringSet
(AlignedXStringSet-class),
2

AlignedXStringSet-class, 16
AlignedXStringSet-class, 2, 31
alignScore (needwunsQS), 61
alphabet, 9
alphabet (XString-class), 19
alphabet,AAString-method

(AAString-class), 1
alphabet,AlignedXStringSet-method

(AlignedXStringSet-class),
2

alphabet,BString-method
(XString-class), 19

alphabet,DNAString-method
(DNAString-class), 4

alphabet,MaskedXString-method
(MaskedXString-class), 9

alphabet,PairwiseAlignedFixedSubject-method
(PairwiseAlignedFixedSubject-class),
14

alphabet,RNAString-method
(RNAString-class), 18

alphabet,XStringSet-method
(XStringSet-class), 23

alphabet,XStringViews-method
(XStringViews-class), 26

alphabetFrequency, 2, 5, 10, 18, 32, 35,
49, 58

alphabetFrequency,DNAString-method
(alphabetFrequency), 32

alphabetFrequency,DNAStringSet-method
(alphabetFrequency), 32

alphabetFrequency,MaskedXString-method
(alphabetFrequency), 32

alphabetFrequency,RNAString-method
(alphabetFrequency), 32

alphabetFrequency,RNAStringSet-method
(alphabetFrequency), 32

alphabetFrequency,XString-method
(alphabetFrequency), 32

alphabetFrequency,XStringSet-method

(alphabetFrequency), 32
alphabetFrequency,XStringViews-method

(alphabetFrequency), 32
AMINO_ACID_CODE, 1, 2, 2, 6, 34
append,QualityScaledXStringSet,QualityScaledXStringSet-method

(QualityScaledXStringSet-class),
16

append,XStringSet,XStringSet-method
(XStringSet-class), 23

as.character,AlignedXStringSet-method
(AlignedXStringSet-class),
2

as.character,MaskedXString-method
(MaskedXString-class), 9

as.character,PairwiseAlignedFixedSubject-method
(PairwiseAlignedFixedSubject-class),
14

as.character,XString-method
(XString-class), 19

as.character,XStringSet-method
(XStringSet-class), 23

as.character,XStringViews-method
(XStringViews-class), 26

as.complex,DNAString-method
(toComplex), 76

as.integer,PhredQuality-method
(XStringQuality-class), 22

as.integer,SolexaQuality-method
(XStringQuality-class), 22

as.list,MTB_PDict-method
(PDict-class), 11

as.matrix,ACtree-method
(PDict-class), 11

as.matrix,PairwiseAlignedFixedSubject-method
(PairwiseAlignedFixedSubject-class),
14

as.matrix,XStringSet-method
(XStringSet-class), 23

as.matrix,XStringViews-method
(XStringViews-class), 26

as.numeric,PhredQuality-method
(XStringQuality-class), 22

as.numeric,SolexaQuality-method
(XStringQuality-class), 22

BLOSUM100
(substitution.matrices), 74

BLOSUM45 (substitution.matrices),
74

BLOSUM50 (substitution.matrices),
74

BLOSUM62 (substitution.matrices),
74

INDEX 83

BLOSUM80 (substitution.matrices),
74

BOC2_SubjectString
(BOC_SubjectString-class),
4

BOC2_SubjectString-class
(BOC_SubjectString-class),
4

BOC_SubjectString
(BOC_SubjectString-class),
4

BOC_SubjectString-class, 4
BSgenome, 69
BString, 1, 4, 5, 18, 22, 23, 31, 33, 34
BString (XString-class), 19
BString-class, 24, 26
BString-class (XString-class), 19
BStringSet, 16, 22, 31, 33
BStringSet (XStringSet-class), 23
BStringSet-class, 17, 22
BStringSet-class

(XStringSet-class), 23
BStringViews

(XStringViews-constructors),
29

BStringViews,ANY-method
(XStringViews-constructors),
29

BStringViews,file-method
(XStringViews-constructors),
29

BStringViews,XString-method
(XStringViews-constructors),
29

BStringViews,XStringViews-method
(XStringViews-constructors),
29

ByPos_MIndex-class
(MIndex-class), 8

cDNA (translate), 77
CharacterToFASTArecords

(XStringSet-io), 25
chartr, 35, 35, 40, 69, 70
chartr,MaskedXString-method

(chartr), 35
chartr,XString-method (chartr), 35
chartr,XStringSet-method

(chartr), 35
chartr,XStringViews-method

(chartr), 35
class:AAString (AAString-class), 1

class:AAStringSet
(XStringSet-class), 23

class:ACtree (PDict-class), 11
class:ACtree2 (PDict-class), 11
class:AlignedXStringSet

(AlignedXStringSet-class),
2

class:BOC2_SubjectString
(BOC_SubjectString-class),
4

class:BOC_SubjectString
(BOC_SubjectString-class),
4

class:BString (XString-class), 19
class:BStringSet

(XStringSet-class), 23
class:ByPos_MIndex

(MIndex-class), 8
class:DNAString

(DNAString-class), 4
class:DNAStringSet

(XStringSet-class), 23
class:InDel (InDel-class), 7
class:MaskedAAString

(MaskedXString-class), 9
class:MaskedBString

(MaskedXString-class), 9
class:MaskedDNAString

(MaskedXString-class), 9
class:MaskedRNAString

(MaskedXString-class), 9
class:MaskedXString

(MaskedXString-class), 9
class:MIndex (MIndex-class), 8
class:MTB_PDict (PDict-class), 11
class:PairwiseAlignedFixedSubject

(PairwiseAlignedFixedSubject-class),
14

class:PairwiseAlignedFixedSubjectSummary
(PairwiseAlignedFixedSubject-class),
14

class:PDict (PDict-class), 11
class:PDict3Parts (PDict-class),

11
class:PhredQuality

(XStringQuality-class), 22
class:PreprocessedTB

(PDict-class), 11
class:QualityAlignedXStringSet

(AlignedXStringSet-class),
2

class:QualityScaledAAStringSet

84 INDEX

(QualityScaledXStringSet-class),
16

class:QualityScaledBStringSet
(QualityScaledXStringSet-class),
16

class:QualityScaledDNAStringSet
(QualityScaledXStringSet-class),
16

class:QualityScaledRNAStringSet
(QualityScaledXStringSet-class),
16

class:QualityScaledXStringSet
(QualityScaledXStringSet-class),
16

class:RNAString
(RNAString-class), 18

class:RNAStringSet
(XStringSet-class), 23

class:SolexaQuality
(XStringQuality-class), 22

class:TB_PDict (PDict-class), 11
class:Twobit (PDict-class), 11
class:XString (XString-class), 19
class:XStringPartialMatches

(XStringPartialMatches-class),
21

class:XStringQuality
(XStringQuality-class), 22

class:XStringSet
(XStringSet-class), 23

class:XStringViews
(XStringViews-class), 26

codons (translate), 77
codons,DNAString-method

(translate), 77
codons,MaskedDNAString-method

(translate), 77
codons,MaskedRNAString-method

(translate), 77
codons,RNAString-method

(translate), 77
coerce,AAString,MaskedAAString-method

(MaskedXString-class), 9
coerce,BString,MaskedBString-method

(MaskedXString-class), 9
coerce,BString,PhredQuality-method

(XStringQuality-class), 22
coerce,BString,SolexaQuality-method

(XStringQuality-class), 22
coerce,BStringSet,PhredQuality-method

(XStringQuality-class), 22
coerce,BStringSet,SolexaQuality-method

(XStringQuality-class), 22
coerce,character,PhredQuality-method

(XStringQuality-class), 22
coerce,character,SolexaQuality-method

(XStringQuality-class), 22
coerce,DNAString,MaskedDNAString-method

(MaskedXString-class), 9
coerce,integer,PhredQuality-method

(XStringQuality-class), 22
coerce,integer,SolexaQuality-method

(XStringQuality-class), 22
coerce,MaskedAAString,AAString-method

(MaskedXString-class), 9
coerce,MaskedBString,BString-method

(MaskedXString-class), 9
coerce,MaskedDNAString,DNAString-method

(MaskedXString-class), 9
coerce,MaskedRNAString,RNAString-method

(MaskedXString-class), 9
coerce,MaskedXString,MaskCollection-method

(MaskedXString-class), 9
coerce,MaskedXString,NormalIRanges-method

(MaskedXString-class), 9
coerce,MaskedXString,XStringViews-method

(MaskedXString-class), 9
coerce,numeric,PhredQuality-method

(XStringQuality-class), 22
coerce,numeric,SolexaQuality-method

(XStringQuality-class), 22
coerce,PhredQuality,integer-method

(XStringQuality-class), 22
coerce,PhredQuality,numeric-method

(XStringQuality-class), 22
coerce,RNAString,MaskedRNAString-method

(MaskedXString-class), 9
coerce,SolexaQuality,integer-method

(XStringQuality-class), 22
coerce,SolexaQuality,numeric-method

(XStringQuality-class), 22
coerce,XStringSet,AAStringSet-method

(XStringSet-class), 23
coerce,XStringSet,BStringSet-method

(XStringSet-class), 23
coerce,XStringSet,DNAStringSet-method

(XStringSet-class), 23
coerce,XStringSet,RNAStringSet-method

(XStringSet-class), 23
compareStrings (align-utils), 30
compareStrings,AlignedXStringSet,AlignedXStringSet-method

(align-utils), 30
compareStrings,character,character-method

(align-utils), 30

INDEX 85

compareStrings,PairwiseAlignedFixedSubject,missing-method
(align-utils), 30

compareStrings,XString,XString-method
(align-utils), 30

compareStrings,XStringSet,XStringSet-method
(align-utils), 30

complement (reverseComplement), 70
complement,DNAString-method

(reverseComplement), 70
complement,DNAStringSet-method

(reverseComplement), 70
complement,MaskedDNAString-method

(reverseComplement), 70
complement,MaskedRNAString-method

(reverseComplement), 70
complement,RNAString-method

(reverseComplement), 70
complement,RNAStringSet-method

(reverseComplement), 70
complement,XStringViews-method

(reverseComplement), 70
complementedPalindromeArmLength

(findPalindromes), 36
complementedPalindromeArmLength,DNAString-method

(findPalindromes), 36
complementedPalindromeArmLength,XStringViews-method

(findPalindromes), 36
complementedPalindromeLeftArm

(findPalindromes), 36
complementedPalindromeLeftArm,DNAString-method

(findPalindromes), 36
complementedPalindromeLeftArm,XStringViews-method

(findPalindromes), 36
complementedPalindromeRightArm

(findPalindromes), 36
complementedPalindromeRightArm,DNAString-method

(findPalindromes), 36
complementedPalindromeRightArm,XStringViews-method

(findPalindromes), 36
consensusMatrix (align-utils), 30
consensusMatrix,character-method

(align-utils), 30
consensusMatrix,list-method

(align-utils), 30
consensusMatrix,matrix-method

(align-utils), 30
consensusMatrix,PairwiseAlignedFixedSubject-method

(align-utils), 30
consensusMatrix,XStringSet-method

(align-utils), 30
consensusMatrix,XStringViews-method

(align-utils), 30

consensusString (align-utils), 30
consensusString,ANY-method

(align-utils), 30
consmat (align-utils), 30
consmat,ANY-method (align-utils),

30
countIndex (MIndex-class), 8
countIndex,ByPos_MIndex-method

(MIndex-class), 8
countIndex,MIndex-method

(MIndex-class), 8
countPattern (matchPattern), 56
countPattern,BOC2_SubjectString-method

(BOC_SubjectString-class),
4

countPattern,character-method
(matchPattern), 56

countPattern,MaskedXString-method
(matchPattern), 56

countPattern,XString-method
(matchPattern), 56

countPattern,XStringSet-method
(matchPattern), 56

countPattern,XStringViews-method
(matchPattern), 56

countPDict, 34
countPDict (matchPDict), 48
countPDict,MaskedXString-method

(matchPDict), 48
countPDict,XString-method

(matchPDict), 48
countPDict,XStringSet-method

(matchPDict), 48
countPDict,XStringViews-method

(matchPDict), 48
countPWM (matchPWM), 55
coverage, 30, 46
coverage,AlignedXStringSet-method

(align-utils), 30
coverage,MaskedXString-method

(match-utils), 43
coverage,MIndex-method, 49
coverage,MIndex-method

(match-utils), 43
coverage,PairwiseAlignedFixedSubject-method

(align-utils), 30
coverage,PairwiseAlignedFixedSubjectSummary-method

(align-utils), 30
coverage,XStringViews-method

(match-utils), 43

deletion (InDel-class), 7

86 INDEX

deletion,InDel-method
(InDel-class), 7

dinucleotideFrequency
(alphabetFrequency), 32

dist, 73
dna2rna (translate), 77
DNA_ALPHABET, 14, 23, 24
DNA_ALPHABET (DNAString-class), 4
DNA_BASES (DNAString-class), 4
DNAString, 1, 6, 7, 11–13, 18–20, 23, 27,

32, 33, 37, 44, 47, 49, 55, 60, 69, 70,
76–78

DNAString (DNAString-class), 4
DNAString-class, 4, 18, 20, 22, 24, 26,

38, 49, 56, 70, 75, 78
DNAStringSet, 11–13, 16, 32, 70, 78
DNAStringSet (XStringSet-class),

23
DNAStringSet-class, 14, 17, 70
DNAStringSet-class

(XStringSet-class), 23
duplicated,PDict-method

(PDict-class), 11
duplicated,PreprocessedTB-method

(PDict-class), 11

end,AlignedXStringSet-method
(AlignedXStringSet-class),
2

endIndex (MIndex-class), 8
endIndex,ByPos_MIndex-method

(MIndex-class), 8
errorSubstitutionMatrices

(substitution.matrices), 74
extractAllMatches (matchPDict), 48

fasta.info, 26
fasta.info (readFASTA), 67
FASTArecordsToBStringViews

(XStringSet-io), 25
FASTArecordsToCharacter

(XStringSet-io), 25
FASTArecordsToXStringViews

(XStringSet-io), 25
findComplementedPalindromes

(findPalindromes), 36
findComplementedPalindromes,DNAString-method

(findPalindromes), 36
findComplementedPalindromes,MaskedXString-method

(findPalindromes), 36
findComplementedPalindromes,XStringViews-method

(findPalindromes), 36
findPalindromes, 36, 48, 60, 70

findPalindromes,MaskedXString-method
(findPalindromes), 36

findPalindromes,XString-method
(findPalindromes), 36

findPalindromes,XStringViews-method
(findPalindromes), 36

gaps, 28
gaps,MaskedXString-method

(MaskedXString-class), 9
GENETIC_CODE, 2, 5, 34, 78
gregexpr, 39
gregexpr2, 38

hasOnlyBaseLetters
(alphabetFrequency), 32

hasOnlyBaseLetters,DNAString-method
(alphabetFrequency), 32

hasOnlyBaseLetters,DNAStringSet-method
(alphabetFrequency), 32

hasOnlyBaseLetters,MaskedDNAString-method
(alphabetFrequency), 32

hasOnlyBaseLetters,MaskedRNAString-method
(alphabetFrequency), 32

hasOnlyBaseLetters,RNAString-method
(alphabetFrequency), 32

hasOnlyBaseLetters,RNAStringSet-method
(alphabetFrequency), 32

hasOnlyBaseLetters,XStringViews-method
(alphabetFrequency), 32

head,PDict3Parts-method
(PDict-class), 11

head,TB_PDict-method
(PDict-class), 11

InDel (InDel-class), 7
indel (AlignedXStringSet-class), 2
indel,AlignedXStringSet-method

(AlignedXStringSet-class),
2

InDel-class, 7
initialize,ACtree-method

(PDict-class), 11
initialize,ACtree2-method

(PDict-class), 11
initialize,AlignedXStringSet-method

(AlignedXStringSet-class),
2

initialize,BOC2_SubjectString-method
(BOC_SubjectString-class),
4

initialize,BOC_SubjectString-method
(BOC_SubjectString-class),
4

INDEX 87

initialize,PairwiseAlignedFixedSubject-method
(PairwiseAlignedFixedSubject-class),
14

initialize,PreprocessedTB-method
(PDict-class), 11

initialize,QualityAlignedXStringSet-method
(AlignedXStringSet-class),
2

initialize,Twobit-method
(PDict-class), 11

injectHardMask, 10, 39, 69
injectHardMask,MaskedXString-method

(injectHardMask), 39
injectHardMask,XStringViews-method

(injectHardMask), 39
injectSNPs, 69
insertion (InDel-class), 7
insertion,InDel-method

(InDel-class), 7
IRanges, 8, 23, 24, 45, 70
IRanges-class, 9, 46, 70
IRanges-utils, 10
isMatching, 49
isMatching (match-utils), 43
isMatchingAt, 57, 58
isMatchingAt (match-utils), 43
isMatchingEndingAt (match-utils),

43
isMatchingEndingAt,character-method

(match-utils), 43
isMatchingEndingAt,XString-method

(match-utils), 43
isMatchingStartingAt

(match-utils), 43
isMatchingStartingAt,character-method

(match-utils), 43
isMatchingStartingAt,XString-method

(match-utils), 43
IUPAC_CODE_MAP, 4, 5, 6, 18, 44, 46, 47, 69

lcprefix (pmatchPattern), 66
lcprefix,character,character-method

(pmatchPattern), 66
lcprefix,character,XString-method

(pmatchPattern), 66
lcprefix,XString,character-method

(pmatchPattern), 66
lcprefix,XString,XString-method

(pmatchPattern), 66
lcsubstr (pmatchPattern), 66
lcsubstr,character,character-method

(pmatchPattern), 66

lcsubstr,character,XString-method
(pmatchPattern), 66

lcsubstr,XString,character-method
(pmatchPattern), 66

lcsubstr,XString,XString-method
(pmatchPattern), 66

lcsuffix (pmatchPattern), 66
lcsuffix,character,character-method

(pmatchPattern), 66
lcsuffix,character,XString-method

(pmatchPattern), 66
lcsuffix,XString,character-method

(pmatchPattern), 66
lcsuffix,XString,XString-method

(pmatchPattern), 66
length,AlignedXStringSet-method

(AlignedXStringSet-class),
2

length,MaskedXString-method
(MaskedXString-class), 9

length,MIndex-method
(MIndex-class), 8

length,PairwiseAlignedFixedSubject-method
(PairwiseAlignedFixedSubject-class),
14

length,PairwiseAlignedFixedSubjectSummary-method
(PairwiseAlignedFixedSubject-class),
14

length,PDict-method
(PDict-class), 11

length,PDict3Parts-method
(PDict-class), 11

length,PreprocessedTB-method
(PDict-class), 11

length,XString-method, 9
length,XString-method

(XString-class), 19
length,XStringSet-method

(XStringSet-class), 23
letter, 2, 5, 18, 20, 21, 28, 40, 74
letter,character-method (letter),

40
letter,MaskedXString-method

(letter), 40
letter,XString-method (letter), 40
letter,XStringViews-method

(letter), 40

mask (maskMotif), 41
MaskCollection, 9, 45, 70
MaskCollection-class, 10, 42, 46, 70
MaskedAAString, 39

88 INDEX

MaskedAAString
(MaskedXString-class), 9

MaskedAAString-class
(MaskedXString-class), 9

MaskedBString, 39
MaskedBString

(MaskedXString-class), 9
MaskedBString-class

(MaskedXString-class), 9
MaskedDNAString, 32, 39, 70, 78
MaskedDNAString

(MaskedXString-class), 9
MaskedDNAString-class

(MaskedXString-class), 9
maskedratio,MaskedXString-method

(MaskedXString-class), 9
MaskedRNAString, 32, 39, 70, 78
MaskedRNAString

(MaskedXString-class), 9
MaskedRNAString-class

(MaskedXString-class), 9
maskedwidth,MaskedXString-method

(MaskedXString-class), 9
MaskedXString, 33, 35, 39–42, 45, 47, 56,

70, 73
MaskedXString

(MaskedXString-class), 9
MaskedXString-class, 9, 34, 35, 40–42,

46, 48, 70, 78
maskMotif, 10, 38, 40, 41, 58
maskMotif,MaskedXString,character-method

(maskMotif), 41
maskMotif,MaskedXString,XString-method

(maskMotif), 41
maskMotif,XString,ANY-method

(maskMotif), 41
masks (MaskedXString-class), 9
masks,MaskedXString-method

(MaskedXString-class), 9
masks,XString-method

(MaskedXString-class), 9
masks<- (MaskedXString-class), 9
masks<-,MaskedXString,MaskCollection-method

(MaskedXString-class), 9
masks<-,MaskedXString,NULL-method

(MaskedXString-class), 9
masks<-,XString,ANY-method

(MaskedXString-class), 9
masks<-,XString,NULL-method

(MaskedXString-class), 9
match-utils, 16
match-utils, 31, 43, 66

matchDNAPattern (matchPattern), 56
matchLRPatterns, 38, 47, 58, 60
matchLRPatterns,MaskedXString-method

(matchLRPatterns), 47
matchLRPatterns,XString-method

(matchLRPatterns), 47
matchLRPatterns,XStringViews-method

(matchLRPatterns), 47
matchPattern, 35, 38, 39, 46–49, 56, 56,

60, 63, 67
matchPattern,BOC2_SubjectString-method

(BOC_SubjectString-class),
4

matchPattern,BOC_SubjectString-method
(BOC_SubjectString-class),
4

matchPattern,character-method
(matchPattern), 56

matchPattern,MaskedXString-method
(matchPattern), 56

matchPattern,XString-method
(matchPattern), 56

matchPattern,XStringSet-method
(matchPattern), 56

matchPattern,XStringViews-method
(matchPattern), 56

matchPDict, 8, 9, 11, 14, 46, 48, 52, 53, 57,
58, 63

matchPDict,MaskedXString-method
(matchPDict), 48

matchPDict,XString-method
(matchPDict), 48

matchPDict,XStringSet-method
(matchPDict), 48

matchPDict,XStringViews-method
(matchPDict), 48

matchPDict-inexact, 48, 49
matchPDict-exact (matchPDict), 48
matchPDict-inexact, 49, 52
matchProbePair, 38, 48, 58, 59
matchProbePair,DNAString-method

(matchProbePair), 59
matchProbePair,MaskedDNAString-method

(matchProbePair), 59
matchProbePair,XStringViews-method

(matchProbePair), 59
matchPWM, 55
maxScore (matchPWM), 55
maxWeights (matchPWM), 55
mergeIUPACLetters

(IUPAC_CODE_MAP), 6
MIndex, 45, 46, 49, 57

INDEX 89

MIndex (MIndex-class), 8
MIndex-class, 8, 28, 46, 49, 53, 58
mismatch, 58
mismatch (match-utils), 43
mismatch,AlignedXStringSet,missing-method

(align-utils), 30
mismatch,ANY,XStringViews-method

(match-utils), 43
mismatchSummary (align-utils), 30
mismatchSummary,AlignedXStringSet-method

(align-utils), 30
mismatchSummary,PairwiseAlignedFixedSubject-method

(align-utils), 30
mismatchSummary,PairwiseAlignedFixedSubjectSummary-method

(align-utils), 30
mismatchSummary,QualityAlignedXStringSet-method

(align-utils), 30
mismatchTable (align-utils), 30
mismatchTable,AlignedXStringSet-method

(align-utils), 30
mismatchTable,PairwiseAlignedFixedSubject-method

(align-utils), 30
mismatchTable,QualityAlignedXStringSet-method

(align-utils), 30
mkAllStrings (alphabetFrequency),

32
MTB_PDict (PDict-class), 11
MTB_PDict-class (PDict-class), 11

names,MIndex-method
(MIndex-class), 8

names,PDict-method (PDict-class),
11

names,XStringSet-method
(XStringSet-class), 23

names<-,MIndex-method
(MIndex-class), 8

names<-,PDict-method
(PDict-class), 11

names<-,XStringSet-method
(XStringSet-class), 23

narrow, 23, 24
narrow,QualityScaledXStringSet-method

(QualityScaledXStringSet-class),
16

narrow,XStringSet-method
(XStringSet-class), 23

nchar,AlignedXStringSet-method
(AlignedXStringSet-class),
2

nchar,MaskedXString-method
(MaskedXString-class), 9

nchar,PairwiseAlignedFixedSubject-method
(PairwiseAlignedFixedSubject-class),
14

nchar,PairwiseAlignedFixedSubjectSummary-method
(PairwiseAlignedFixedSubject-class),
14

nchar,XString-method
(XString-class), 19

nchar,XStringSet-method
(XStringSet-class), 23

nchar,XStringViews-method
(XStringViews-class), 26

neditAt (match-utils), 43
neditEndingAt (match-utils), 43
neditEndingAt,character-method

(match-utils), 43
neditEndingAt,XString-method

(match-utils), 43
neditStartingAt (match-utils), 43
neditStartingAt,character-method

(match-utils), 43
neditStartingAt,XString-method

(match-utils), 43
needwunsQS, 61
needwunsQS,character,character-method

(needwunsQS), 61
needwunsQS,character,XString-method

(needwunsQS), 61
needwunsQS,XString,character-method

(needwunsQS), 61
needwunsQS,XString,XString-method

(needwunsQS), 61
nindel (AlignedXStringSet-class),

2
nindel,AlignedXStringSet-method

(AlignedXStringSet-class),
2

nindel,PairwiseAlignedFixedSubject-method
(PairwiseAlignedFixedSubject-class),
14

nindel,PairwiseAlignedFixedSubjectSummary-method
(PairwiseAlignedFixedSubject-class),
14

nmatch (match-utils), 43
nmatch,ANY,XStringViews-method

(match-utils), 43
nmatch,PairwiseAlignedFixedSubject,missing-method

(align-utils), 30
nmatch,PairwiseAlignedFixedSubjectSummary,missing-method

(align-utils), 30
nmismatch (match-utils), 43
nmismatch,AlignedXStringSet,missing-method

90 INDEX

(align-utils), 30
nmismatch,ANY,XStringViews-method

(match-utils), 43
nmismatch,PairwiseAlignedFixedSubject,missing-method

(align-utils), 30
nmismatch,PairwiseAlignedFixedSubjectSummary,missing-method

(align-utils), 30
nmismatchEndingAt (match-utils),

43
nmismatchStartingAt

(match-utils), 43
NormalIRanges, 70
NormalIRanges-class, 70
nucleotideSubstitutionMatrix

(substitution.matrices), 74

oligonucleotideFrequency
(alphabetFrequency), 32

oligonucleotideFrequency,DNAString-method
(alphabetFrequency), 32

oligonucleotideFrequency,MaskedXString-method
(alphabetFrequency), 32

oligonucleotideFrequency,RNAString-method
(alphabetFrequency), 32

oligonucleotideFrequency,XStringSet-method
(alphabetFrequency), 32

oligonucleotideFrequency,XStringViews-method
(alphabetFrequency), 32

oligonucleotideTransitions
(alphabetFrequency), 32

order (XStringSet-class), 23
order,XStringSet-method

(XStringSet-class), 23

PairwiseAlignedFixedSubject, 63,
65

PairwiseAlignedFixedSubject
(PairwiseAlignedFixedSubject-class),
14

PairwiseAlignedFixedSubject-
class, 4,
8

PairwiseAlignedFixedSubject-class,
14, 22, 31, 61, 63, 66, 75

PairwiseAlignedFixedSubjectSummary
(PairwiseAlignedFixedSubject-class),
14

PairwiseAlignedFixedSubjectSummary-class
(PairwiseAlignedFixedSubject-class),
14

pairwiseAlignment, 4, 8, 16, 22, 31, 57,
58, 61, 62, 66, 73, 75

pairwiseAlignment,character,character-method
(pairwiseAlignment), 62

pairwiseAlignment,character,QualityScaledXStringSet-method
(pairwiseAlignment), 62

pairwiseAlignment,character,XString-method
(pairwiseAlignment), 62

pairwiseAlignment,character,XStringSet-method
(pairwiseAlignment), 62

pairwiseAlignment,QualityScaledXStringSet,character-method
(pairwiseAlignment), 62

pairwiseAlignment,QualityScaledXStringSet,QualityScaledXStringSet-method
(pairwiseAlignment), 62

pairwiseAlignment,QualityScaledXStringSet,XString-method
(pairwiseAlignment), 62

pairwiseAlignment,QualityScaledXStringSet,XStringSet-method
(pairwiseAlignment), 62

pairwiseAlignment,XString,character-method
(pairwiseAlignment), 62

pairwiseAlignment,XString,QualityScaledXStringSet-method
(pairwiseAlignment), 62

pairwiseAlignment,XString,XString-method
(pairwiseAlignment), 62

pairwiseAlignment,XString,XStringSet-method
(pairwiseAlignment), 62

pairwiseAlignment,XStringSet,character-method
(pairwiseAlignment), 62

pairwiseAlignment,XStringSet,QualityScaledXStringSet-method
(pairwiseAlignment), 62

pairwiseAlignment,XStringSet,XString-method
(pairwiseAlignment), 62

pairwiseAlignment,XStringSet,XStringSet-method
(pairwiseAlignment), 62

palindromeArmLength
(findPalindromes), 36

palindromeArmLength,XString-method
(findPalindromes), 36

palindromeArmLength,XStringViews-method
(findPalindromes), 36

palindromeLeftArm
(findPalindromes), 36

palindromeLeftArm,XString-method
(findPalindromes), 36

palindromeLeftArm,XStringViews-method
(findPalindromes), 36

palindromeRightArm
(findPalindromes), 36

palindromeRightArm,XString-method
(findPalindromes), 36

palindromeRightArm,XStringViews-method
(findPalindromes), 36

PAM120 (substitution.matrices), 74
PAM250 (substitution.matrices), 74

INDEX 91

PAM30 (substitution.matrices), 74
PAM40 (substitution.matrices), 74
PAM70 (substitution.matrices), 74
pattern

(XStringPartialMatches-class),
21

pattern,PairwiseAlignedFixedSubject-method
(PairwiseAlignedFixedSubject-class),
14

pattern,XStringPartialMatches-method
(XStringPartialMatches-class),
21

patternFrequency (PDict-class), 11
patternFrequency,PDict-method

(PDict-class), 11
PDict, 49, 53
PDict (PDict-class), 11
PDict,AsIs-method (PDict-class),

11
PDict,character-method

(PDict-class), 11
PDict,DNAStringSet-method

(PDict-class), 11
PDict,XStringViews-method

(PDict-class), 11
PDict-class, 9, 11, 49, 53
PDict3Parts (PDict-class), 11
PDict3Parts-class (PDict-class),

11
phiX174Phage, 64
PhredQuality

(XStringQuality-class), 22
PhredQuality-class, 75
PhredQuality-class

(XStringQuality-class), 22
pid, 65
pid,PairwiseAlignedFixedSubject-method

(pid), 65
pmatchPattern, 66
pmatchPattern,character-method

(pmatchPattern), 66
pmatchPattern,XString-method

(pmatchPattern), 66
pmatchPattern,XStringViews-method

(pmatchPattern), 66
PreprocessedTB (PDict-class), 11
PreprocessedTB-class

(PDict-class), 11
print.needwunsQS (needwunsQS), 61
PWMscore (matchPWM), 55

quality
(QualityScaledXStringSet-class),

16
quality,QualityScaledXStringSet-method

(QualityScaledXStringSet-class),
16

QualityAlignedXStringSet
(AlignedXStringSet-class),
2

QualityAlignedXStringSet-class
(AlignedXStringSet-class),
2

QualityScaledAAStringSet
(QualityScaledXStringSet-class),
16

QualityScaledAAStringSet-class
(QualityScaledXStringSet-class),
16

QualityScaledBStringSet
(QualityScaledXStringSet-class),
16

QualityScaledBStringSet-class
(QualityScaledXStringSet-class),
16

QualityScaledDNAStringSet
(QualityScaledXStringSet-class),
16

QualityScaledDNAStringSet-class
(QualityScaledXStringSet-class),
16

QualityScaledRNAStringSet
(QualityScaledXStringSet-class),
16

QualityScaledRNAStringSet-class
(QualityScaledXStringSet-class),
16

QualityScaledXStringSet, 62
QualityScaledXStringSet

(QualityScaledXStringSet-class),
16

QualityScaledXStringSet-class, 16
qualitySubstitutionMatrices

(substitution.matrices), 74
quPhiX174 (phiX174Phage), 64

read.AAStringSet, 68
read.AAStringSet (XStringSet-io),

25
read.BStringSet, 68
read.BStringSet (XStringSet-io),

25
read.BStringViews

(XStringSet-io), 25
read.DNAStringSet, 68

92 INDEX

read.DNAStringSet
(XStringSet-io), 25

read.Mask, 42
read.RNAStringSet, 68
read.RNAStringSet

(XStringSet-io), 25
read.table, 68
read.XStringViews

(XStringSet-io), 25
readFASTA, 25, 26, 67
reduce,MaskedXString-method

(MaskedXString-class), 9
rep,AlignedXStringSet-method

(AlignedXStringSet-class),
2

rep,PairwiseAlignedFixedSubject-method
(PairwiseAlignedFixedSubject-class),
14

rep,XStringSet-method
(XStringSet-class), 23

replaceLetterAt, 35, 40, 68
replaceLetterAt,DNAString-method

(replaceLetterAt), 68
replaceLetterAtLoc

(replaceLetterAt), 68
rev, 34
reverse,MaskedXString-method, 10
reverse,MaskedXString-method

(reverseComplement), 70
reverse,XString-method, 20, 34
reverse,XString-method

(reverseComplement), 70
reverse,XStringSet-method

(reverseComplement), 70
reverse,XStringViews-method

(reverseComplement), 70
reverseComplement, 5, 18, 35, 48, 56, 60,

70, 78
reverseComplement,DNAString-method

(reverseComplement), 70
reverseComplement,DNAStringSet-method

(reverseComplement), 70
reverseComplement,MaskedDNAString-method

(reverseComplement), 70
reverseComplement,MaskedRNAString-method

(reverseComplement), 70
reverseComplement,matrix-method

(matchPWM), 55
reverseComplement,RNAString-method

(reverseComplement), 70
reverseComplement,RNAStringSet-method

(reverseComplement), 70

reverseComplement,XStringViews-method
(reverseComplement), 70

rna2dna (translate), 77
RNA_ALPHABET (RNAString-class), 18
RNA_BASES (RNAString-class), 18
RNA_GENETIC_CODE (GENETIC_CODE), 5
RNAString, 1, 5–7, 19, 20, 23, 27, 32, 33,

44, 47, 70, 78
RNAString (RNAString-class), 18
RNAString-class, 5, 18, 20, 24, 26, 70, 78
RNAStringSet, 16, 32, 70, 78
RNAStringSet (XStringSet-class),

23
RNAStringSet-class, 17, 70
RNAStringSet-class

(XStringSet-class), 23

scan, 68
score

(PairwiseAlignedFixedSubject-class),
14

score,PairwiseAlignedFixedSubject-method
(PairwiseAlignedFixedSubject-class),
14

score,PairwiseAlignedFixedSubjectSummary-method
(PairwiseAlignedFixedSubject-class),
14

show,ACtree-method (PDict-class),
11

show,ACtree2-method
(PDict-class), 11

show,AlignedXStringSet-method
(AlignedXStringSet-class),
2

show,ByPos_MIndex-method
(MIndex-class), 8

show,MaskedXString-method
(MaskedXString-class), 9

show,MTB_PDict-method
(PDict-class), 11

show,PairwiseAlignedFixedSubject-method
(PairwiseAlignedFixedSubject-class),
14

show,PairwiseAlignedFixedSubjectSummary-method
(PairwiseAlignedFixedSubject-class),
14

show,QualityScaledXStringSet-method
(QualityScaledXStringSet-class),
16

show,TB_PDict-method
(PDict-class), 11

show,Twobit-method (PDict-class),
11

INDEX 93

show,XString-method
(XString-class), 19

show,XStringPartialMatches-method
(XStringPartialMatches-class),
21

show,XStringSet-method
(XStringSet-class), 23

show,XStringViews-method
(XStringViews-class), 26

SolexaQuality
(XStringQuality-class), 22

SolexaQuality-class, 75
SolexaQuality-class

(XStringQuality-class), 22
sort,XStringSet-method

(XStringSet-class), 23
srPhiX174 (phiX174Phage), 64
start,AlignedXStringSet-method

(AlignedXStringSet-class),
2

startIndex (MIndex-class), 8
startIndex,ByPos_MIndex-method

(MIndex-class), 8
stringDist, 63, 72
stringDist,character-method

(stringDist), 72
stringDist,QualityScaledXStringSet-method

(stringDist), 72
stringDist,XStringSet-method

(stringDist), 72
strrev, 70
strrev (alphabetFrequency), 32
strsplit, 34
subBString (subXString), 73
subject,PairwiseAlignedFixedSubject-method

(PairwiseAlignedFixedSubject-class),
14

subpatterns
(XStringPartialMatches-class),
21

subpatterns,XStringPartialMatches-method
(XStringPartialMatches-class),
21

subseq, 20, 41, 74
subseq,MaskedXString-method

(MaskedXString-class), 9
substitution.matrices, 61, 63, 73, 74
substr, 41
substr (subXString), 73
substr,MaskedXString-method

(subXString), 73
substr,XString-method

(subXString), 73
substring, 41
substring (subXString), 73
substring,MaskedXString-method

(subXString), 73
substring,XString-method

(subXString), 73
subXString, 73
summary,PairwiseAlignedFixedSubject-method

(PairwiseAlignedFixedSubject-class),
14

tail,PDict3Parts-method
(PDict-class), 11

tail,TB_PDict-method
(PDict-class), 11

tb (PDict-class), 11
tb,PDict3Parts-method

(PDict-class), 11
tb,PreprocessedTB-method

(PDict-class), 11
tb,TB_PDict-method (PDict-class),

11
tb.width (PDict-class), 11
tb.width,PDict3Parts-method

(PDict-class), 11
tb.width,PreprocessedTB-method

(PDict-class), 11
tb.width,TB_PDict-method

(PDict-class), 11
TB_PDict (PDict-class), 11
TB_PDict-class (PDict-class), 11
toComplex, 76
toComplex,DNAString-method

(toComplex), 76
toString,AlignedXStringSet-method

(AlignedXStringSet-class),
2

toString,MaskedXString-method
(MaskedXString-class), 9

toString,PairwiseAlignedFixedSubject-method
(PairwiseAlignedFixedSubject-class),
14

toString,XString-method
(XString-class), 19

toString,XStringSet-method
(XStringSet-class), 23

toString,XStringViews-method
(XStringViews-class), 26

transcribe (translate), 77
translate, 77
translate,DNAString-method

(translate), 77

94 INDEX

translate,DNAStringSet-method
(translate), 77

translate,MaskedDNAString-method
(translate), 77

translate,MaskedRNAString-method
(translate), 77

translate,RNAString-method
(translate), 77

translate,RNAStringSet-method
(translate), 77

trinucleotideFrequency, 6
trinucleotideFrequency

(alphabetFrequency), 32
Twobit (PDict-class), 11
Twobit-class (PDict-class), 11
type

(PairwiseAlignedFixedSubject-class),
14

type,PairwiseAlignedFixedSubject-method
(PairwiseAlignedFixedSubject-class),
14

type,PairwiseAlignedFixedSubjectSummary-method
(PairwiseAlignedFixedSubject-class),
14

unaligned
(AlignedXStringSet-class),
2

unaligned,AlignedXStringSet-method
(AlignedXStringSet-class),
2

uniqueLetters
(alphabetFrequency), 32

uniqueLetters,MaskedXString-method
(alphabetFrequency), 32

uniqueLetters,XString-method
(alphabetFrequency), 32

uniqueLetters,XStringSet-method
(alphabetFrequency), 32

uniqueLetters,XStringViews-method
(alphabetFrequency), 32

unlist,MIndex-method
(MIndex-class), 8

unmasked (MaskedXString-class), 9
unmasked,MaskedXString-method

(MaskedXString-class), 9

vcountPattern (matchPattern), 56
vcountPattern,character-method

(matchPattern), 56
vcountPattern,MaskedXString-method

(matchPattern), 56

vcountPattern,XString-method
(matchPattern), 56

vcountPattern,XStringSet-method
(matchPattern), 56

vcountPattern,XStringViews-method
(matchPattern), 56

vcountPDict (matchPDict), 48
vcountPDict,MaskedXString-method

(matchPDict), 48
vcountPDict,XString-method

(matchPDict), 48
vcountPDict,XStringSet-method

(matchPDict), 48
vcountPDict,XStringViews-method

(matchPDict), 48
Views, 27
Views,character-method

(XStringViews-class), 26
Views,MaskedXString-method

(MaskedXString-class), 9
Views,PairwiseAlignedFixedSubject-method

(PairwiseAlignedFixedSubject-class),
14

Views,XString-method
(XStringViews-class), 26

Views-class, 28
vmatchPattern, 63
vmatchPattern (matchPattern), 56
vmatchPattern,character-method

(matchPattern), 56
vmatchPattern,MaskedXString-method

(matchPattern), 56
vmatchPattern,XString-method

(matchPattern), 56
vmatchPattern,XStringSet-method

(matchPattern), 56
vmatchPattern,XStringViews-method

(matchPattern), 56
vmatchPDict (matchPDict), 48
vmatchPDict,ANY-method

(matchPDict), 48
vmatchPDict,MaskedXString-method

(matchPDict), 48
vmatchPDict,XString-method

(matchPDict), 48

whichPDict (matchPDict), 48
whichPDict,XString-method

(matchPDict), 48
width,AlignedXStringSet-method

(AlignedXStringSet-class),
2

INDEX 95

width,PDict-method (PDict-class),
11

width,PDict3Parts-method
(PDict-class), 11

width,PreprocessedTB-method
(PDict-class), 11

width,XStringSet-method
(XStringSet-class), 23

write.BStringViews
(XStringSet-io), 25

write.table, 68
write.XStringSet, 68
write.XStringSet (XStringSet-io),

25
write.XStringViews

(XStringSet-io), 25
writeFASTA, 26
writeFASTA (readFASTA), 67
wtPhiX174 (phiX174Phage), 64

XRleInteger, 45, 46
XString, 1, 4, 8, 9, 17, 18, 23, 24, 26, 27, 29,

30, 33–37, 40, 41, 44, 47, 49, 56, 61,
62, 67, 69, 70, 73, 74

XString (XString-class), 19
XString,AsIs-method

(XString-class), 19
XString,character-method

(XString-class), 19
XString,MaskedXString-method

(MaskedXString-class), 9
XString,XString-method

(XString-class), 19
XString-class, 16
XString-class, 2, 5, 10, 18, 19, 21, 28,

30, 31, 34, 35, 41, 42, 46, 48, 67, 74
XStringPartialMatches-class, 21
XStringQuality, 16, 17, 62, 72
XStringQuality

(XStringQuality-class), 22
XStringQuality-class, 17, 22, 63
XStringSet, 17, 19, 23, 25, 26, 33, 35, 56,

62, 70, 72
XStringSet (XStringSet-class), 23
XStringSet,AsIs-method

(XStringSet-class), 23
XStringSet,character-method

(XStringSet-class), 23
XStringSet,XString-method

(XStringSet-class), 23
XStringSet,XStringSet-method

(XStringSet-class), 23

XStringSet,XStringViews-method
(XStringSet-class), 23

XStringSet-class, 4
XStringSet-class, 20, 23, 26, 28, 31, 34,

35, 78
XStringSet-io, 25
XStringSetToFASTArecords

(XStringSet-io), 25
XStringViews, 8, 10–12, 17, 23, 25, 26, 29,

31–33, 35–37, 39–42, 45–47, 55–57,
60, 70, 73, 78

XStringViews
(XStringViews-constructors),
29

XStringViews,ANY-method
(XStringViews-constructors),
29

XStringViews,XString-method
(XStringViews-constructors),
29

XStringViews,XStringViews-method
(XStringViews-constructors),
29

XStringViews-class, 16
XStringViews-class, 9, 10, 14, 20, 21,

24, 26, 26, 30, 31, 34, 35, 38, 40–42,
46, 48, 49, 56, 58, 67, 70, 74, 78

XStringViews-constructors, 28, 29

yeastSEQCHR1, 79

	AAString-class
	AMINO_ACID_CODE
	AlignedXStringSet-class
	BOC_SubjectString-class
	DNAString-class
	GENETIC_CODE
	IUPAC_CODE_MAP
	InDel-class
	MIndex-class
	MaskedXString-class
	PDict-class
	PairwiseAlignedFixedSubject-class
	QualityScaledXStringSet-class
	RNAString-class
	XString-class
	XStringPartialMatches-class
	XStringQuality-class
	XStringSet-class
	XStringSet-io
	XStringViews-class
	XStringViews-constructors
	align-utils
	alphabetFrequency
	chartr
	findPalindromes
	gregexpr2
	injectHardMask
	letter
	maskMotif
	match-utils
	matchLRPatterns
	matchPDict
	matchPDict-inexact
	matchPWM
	matchPattern
	matchProbePair
	needwunsQS
	pairwiseAlignment
	phiX174Phage
	pid
	pmatchPattern
	readFASTA
	replaceLetterAt
	reverseComplement
	stringDist
	subXString
	substitution.matrices
	toComplex
	translate
	yeastSEQCHR1
	Index

