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1 Introduction

The package made4 facilitates multivariate analysis of microarray gene expression data.
The package provides a set of functions that utilise and extend multivariate statistical
and graphical functions available in ade4, (1). made4 accepts gene expression data is a
wide variety of input formats, including Bioconductor formats, AffyBatch, ExpressionSet,
marrayRaw, and data.frame or matrix.

2 New in Current Release (version 1.12)

In made4 release version 1.12, the functions plotarrays, plotgenes and heatplot have
been improved. Each will accept a classvector and will automatically color samples by
group.

There is a new function pretty.dend which is provides a nice visualization of results
from a hierarchical cluster analysis, with a color-bar beneath the dendrogram represent-
ing different sample covariates.

3 Installation

made4 requires the package ade4. made4 also calls scatterplot3d. These should be
installed automatically when you install made4. To install made4, start R, and source
biocLite from bioconductor

source("http://www.bioconductor.org/biocLite.R")

biocLite("made4")

3.1 Further help

This document provides an overview of made4 functions.Further examples are described
in detail in the RNews newletter, December 2006:

Culhane AC and Thioulouse J. (2006) A multivariate approach to integrating datasets
using made4 and ade4.R News, 6(5) 54-58. http://cran.r-project.org/doc/Rnews/
Rnews_2006-5.pdf

Extensive tutorials, examples and documentation on multivariate statistical methods
are available from the ade4 website http://pbil.univ-lyon1.fr/ADE-4 and ade4 user
support is available through the ADE4 mailing list. The ade4 homepage is http://

pbil.univ-lyon1.fr/ADE-4. (although it helps to speak French)
We also have a tutorial on ordination using made4 available online at http://

compbio.dfci.harvard.edu/courses/bioconductor/.
This tutorial assumes a basic knowledge of R, but we have found that Emmanuel

Paradis’s R for Beginners is a very good guide to those unfamiliar with R. This is
available at http://cran.r-project.org/doc/contrib/rdebuts_en.pdf.
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This documents assumes that data is normalised and preprocessed. Please refer to the
Bioconductor packages affy, arrayMagic and limma, for input and initial pre-processing
of microarray data. The Bioconductor project website is http://www.bioconductor.

org.

3.2 Citing

We are delighted if you use this package. Please do email us if you find a bug or have a
suggestion. We would be very grateful if you could cite:

Culhane AC, Thioulouse J, Perriere G, Higgins DG.(2005) MADE4: an R package
for multivariate analysis of gene expression data. Bioinformatics 21(11):2789-90.

4 Quickstart

In this vignette, we will demonstrate some of the functions in made4. To do this we
will use a small dataset that is available in made4. This dataset Khan contains gene
expression profiles of four types of small round blue cell tumours of childhood (SRBCT)
published by Khan et al. (2001).

Note the data in khan contains gene expression levels for ONLY 306 genes for 64
patient samples. This is a subset of the published dataset. Load the necessary R
packages and dataset.

> library(made4)

> library(ade4)

> data(khan)

This experiment studied gene expression in patient with four types of SRBCT. These
were neuroblastoma (NB), rhabdomyosarcoma (RMS), Burkitt lymphoma, a subset of
non-Hodgkin lymphoma (BL), and the Ewing family of tumours (EWS). Gene expression
profiles from both tumour biopsy and cell line samples were obtained and are contained
in this dataset. In this study data were divided into a training set of 64 samples, and a
blind test dataset. These 2 dataset are called khan$train and khan$test. Have a look at
the data. For this example we will just examine the training dataset.

> names(khan)

[1] "train" "test"

[3] "train.classes" "test.classes"

[5] "annotation" "gene.labels.imagesID"

> k.data <- khan$train

> k.class <- khan$train.classes
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5 Exploratory Data Analysis, Overview, Cluster Anal-

ysis

The made4 function overview() provides a quick way to get an overview or feel for
data. overview() will draw a boxplot, histogram and dendrogram of a hierarchical
analysis. Hierarchical clustering is produced using average linkage clustering of the
distance measures 1-Pearson correlation similarity (5) This gives a quick first glance at
the data.

> overview(k.data)

Often its useful to label the samples using a class vector or covariate of interest, in
this case, the tumour type (EWS, BL, NB or RMS).
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> overview(k.data, labels = k.class)
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Figure 1: Overview of Khan data. A) dendrogram showing results of average linkage
clustering, B) boxplot and C) histrogram.

Often one will known classes in the data (eg Normal v Treatment, or different tumor
types). We can insert a class colourbar under the dendrogram, and colour the boxplot.
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> overview(k.data, classvec = k.class, labels = k.class)
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Figure 2: Overview of Khan data. A) dendrogram showing results of average linkage
clustering, B) boxplot and C) histrogram. In this case we have added a vector of class
(classvec) to color the overview by class membership
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5.1 Pretty Dendrogram

A new function was introduced in made4 version 1.12 called pretty.dend. This places
color bars beneath a dendrogram from a hierarchical cluster analysis.

Create a data.frame containing factors or character vector which defines different
co-variates about the samples (or genes). For example create a factor of khan samples
type (cell lines,tissue).

> cellType = sapply((strsplit(colnames(khan$train),

+ "\\.")), function(x) substr(x[[2]], 1, 1))

> khanAnnot = cbind(class = as.character(khan$train.classes),

+ cellType = cellType)

> print(khanAnnot[1:2, ])

class cellType

[1,] "EWS" "T"

[2,] "EWS" "T"

Also see the section on heatplot. It can be used to visualize the results of a hierar-
chical cluster analysis.
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> pretty.dend(k.data, classvec = khanAnnot, covars = c(1,

+ 2), labels = khan$train.classes, title = "Dendrogram using pretty.dend")
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Figure 3: Dendrogram of hierarchical cluster analysis of Khan data plotted using func-
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6 Ordination and Correspondence Analysis

The function ord simplifies the running of ordination methods such as principal compo-
nent, correspondence or non-symmetric correspondence analysis. It provides a wrapper
which can call each of these methods in ade4. To run a correspondence analysis (6) on
this dataset.

> k.coa <- ord(k.data, type = "coa")

Output from ord is a list of length 2, containing the ordination results ($ord) and
a factor ($fac) if input. The ordination results (k.coa$ord) contain a list of results (of
length 12) which includes the eigenvalues ($eig) and the new column coordinates ($co)
and the row (line) coordinatein $li. Hence we can visualise the projected coordinations
of the genes ($li, 306 genes) and array samples ($co, 64 microarray samples).

> names(k.coa)

[1] "ord" "fac"

> k.coa$ord

Duality diagramm

class: coa dudi

$call: dudi.coa(df = data.tr, scannf = FALSE, nf = ord.nf)

$nf: 63 axis-components saved

$rank: 63

eigen values: 0.1713 0.1383 0.1032 0.05995 0.04965 ...

vector length mode content

1 $cw 64 numeric column weights

2 $lw 306 numeric row weights

3 $eig 63 numeric eigen values

data.frame nrow ncol content

1 $tab 306 64 modified array

2 $li 306 63 row coordinates

3 $l1 306 63 row normed scores

4 $co 64 63 column coordinates

5 $c1 64 63 column normed scores

other elements: N
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7 Visualising ordination results

There are many functions in ade4 and made4 for visualising results from ordination anal-
ysis. The simplest way to view the results produced by ord is to use plot. plot(k.ord)
will draw a plot of the eigenvalues, along with plots of the variables (genes) and a plot
of the cases (microarray samples). In this example microarray samples are colour-coded
using a factor or character vector, classvec khan$train.classes which is saved as
k.class.

> k.class[1:4]

[1] EWS EWS EWS EWS

Levels: EWS BL-NHL NB RMS

> table(k.class)

k.class

EWS BL-NHL NB RMS

23 8 12 21
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> plot(k.coa, classvec = k.class, arraycol = c("red",

+ "blue", "yellow", "green"), genecol = "grey3")
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Figure 4: Correspondence analysis of Khan dataset. A. plot of the eigenvalues, B. pro-
jection of microarray samples from patient with tumour types EWS (red), BL(blue), NB
(yellow)or RMS (green), C. projection of genes (gray filled circles) and D. biplot showing
both genes and samples. Samples and genes with a strong associated are projected in
the same direction from the origin. The greater the distance from the origin the stronger
the association
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7.1 Plots: plotarrays, plotgenes

Genes and array projections can also be plotted using plotgenes and plotarrays.

> plotgenes(k.coa)

> plotarrays(k.coa)

If you give the function plotarrays a class vector (classvec), it colors the arrays
groups, defaulting to a ”groups” plot. To plot microarray samples,and colour by group
(tumour type) as specified by khan$train.classes

> plotarrays(k.coa, classvec = k.class)

There are many graphs that (plotarrays) can plot, these include ”groups”, ”simple”,
”labels”.

The default plot is ”labels”if no classvec is given, but ”groups”if a classvec is provided.
”simple” plots a simple plot of the points without labels.
The different principal components of an ordination can be specified using axis1 and

axis2.
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> par(mfrow = c(3, 2))

> plotarrays(k.coa)

[1] "Need to specify groups"

> plotarrays(k.coa, graph = "labels")

> plotarrays(k.coa, classvec = k.class)

> plotarrays(k.coa, graph = "groups", classvec = k.class,

+ axis2 = 3)

> plotarrays(k.coa, graph = "simple", classvec = k.class,

+ axis2 = 3)

> plotarrays(k.coa, graph = "labels", classvec = k.class,

+ axis1 = 2, axis2 = 3)
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Figure 5: Visualization of arrays from a correspondence analysis of Khan dataset
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The gene projections can be also visualised with plotgenes. The number of genes
that are labelled at the end of the axis can be defined. The default is 10.

To plot gene projections without any labels set n=0.
Typically there are a large number of genes, thus it is not feasible to label all of these.

> plotgenes(k.coa, n = 5, col = "red")

By default the variables (genes) are labelled with the rownames of the matrix. Typ-
ically these are spot IDs or Affymetrix accession numbers which are not very easy to
interpret. But these can be easily labeled by your own labels. For example its often
useful to labels using HUGO gene symbols. We find the Bioconductor annotate and
annaffy annotation package s are very useful for this. Alternatively we also use biomaRt
or Resourcerer or the Stanford Source database.

In this example we provide annotation from the Source database in khan$annotation.
The gene symbol are in the column khan$annotation$Symbol

> gene.symbs <- khan$annotation$Symbol

> plotgenes(k.coa, n = 10, col = "red", genelabels = gene.symbs)

7.2 Creating a heatmap using the function heatplot

Sometime its useful to get a feel for the group separation on each of the principal com-
ponents. The function (heatplot) is useful for this. The sample weight are k.coa$ord$co
(co, columns) and the gene weight are k.coa$ord$li (li, lines or rows)

From this plot it can be seen, that the first component separates the RMS from
othe samples. The RMS samples (brown on color bar) have positive weight on the first
component whereas the remaining samples have negative loadings. On the second com-
ponent, the BL samples (blue color bar), the NB (green color bar) and some of the RMS
(brown on color bar) are distinguished from the EWS samples (red on color bar). The
3rd component separated the NB and other samples. The 2D and 3D plots to confirm
this. It is clear that all 4 cancer types are clearly distinguished using correspondence
analysis.
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> plotgenes(k.coa, n = 10, col = "red", genelabels = gene.symbs)

 d = 0.5 
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Figure 6: Projection of genes (filled circles) in Correspondence analysis of Khan dataset.
The genes at the ends of each of the axes are labelled with HUGO gene symbols.
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> heatplot(k.coa$ord$co[, 1:10], dend = "none",

+ classvec = k.class, scale = "none")
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Figure 7: Visualization of weights or loadings on each of the first 10 components in gene
space (projection of samples) of a correspondence analysis of Khan dataset
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7.3 Plots: further information. Extracting top genes

COA or ordination can also be run where a class vector is given to (ord). In this case
subsequent plots will be automatically colored using this class vector

> k.coa2 <- ord(k.data, classvec = k.class)

> plot(k.coa2)

To get a list of variables at the end of an axes, use topgenes. For example, to get a
list of the 5 genes at the negative and postive end of axes 1.

> topgenes(k.coa, axis = 1, n = 5)

To only the a list of the genes (default 10 genes) at the negative end of the first axes

> topgenes(k.coa, labels = gene.symbs, end = "neg")

[1] "PTPN13" "OLFM1" "TNFAIP6" "GYG2" "CAV1"

[6] "MYC" "FVT1" "FCGRT" "TUBB5" "MYC"

Two lists can be compares using comparelists.

7.4 Plots 3D visualisation and html output

To visualise the arrays (or genes) in 3D either use do3d or html3d. do3d is a wrapper
for scatterplot3d, but is modified so that groups can be coloured. html3d produces
a ”pdb” output which can be visualised using rasmol or chime. Rasmol provides a free
and very useful interface for colour, rotating, zooming 3D graphs.

> do3d(k.coa$ord$co, classvec = k.class, cex.symbols = 3)

> html3D(k.coa$ord$co, k.class, writehtml = TRUE)
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Figure 8: Output from html3D, which can be rotated and visualised on web browsers
that can support chime (IE or Netscape on MS Windows or Mac).
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8 Classification and Class Prediction using Between

Group Analysis

Between Group Analysis (BGA) is a supervised classification method (3). The basis
of BGA is to ordinate the groups rather than the individual samples. In tests on two
microarray gene expression datasets, BGA performed comparably to supervised classi-
fication methods, including support vector machines and artifical neural networks (2).
To train a dataset, use bga, the projection of test data can be assessed using suppl.
One leave out cross validation can be performed using bga.jackknife. See the BGA
vignette for more details on this method.

> k.bga <- bga(k.data, type = "coa", classvec = k.class)

Sometimes its useful to visualise 1 axes of an analysis. To do this use graph1D or
between.graph. The latter function is specifically for visualising results from a bga as
it shows the separation of classes achieved.

> between.graph(k.bga, ax = 1)
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> plot(k.bga, genelabels = gene.symbs)
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Figure 9: Between group analysis of Khan dataset. A. Between.graph of the microarray
samples, showing their separation on the discriminating BGA axes, B. Scatterplot of the
first 2 axes of microarray samples, coloured by their class, C. graph of positions of genes
on the same axis. Genes at the ends of the axis are most discriminating for that group
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9 Meta-analysis of microarray gene expression

Coinertia analysis cia (4) has been successfully applied to the cross-platform comparison
(meta-analysis) of microarray gene expression datasets (8). CIA is a multivariate method
that identifies trends or co-relationships in multiple datasets which contain the same
samples. That is either the rows or the columns of a matrix must be ”matchable”. CIA
can be applied to datasets where the number of variables (genes) far exceeds the number
of samples (arrays) such is the case with microarray analyses. cia calls coinertia in
the ade4 package. See the CIA vignette for more details on this method.

> data(NCI60)

> coin <- cia(NCI60$Ross, NCI60$Affy)

> names(coin)

[1] "call" "coinertia" "coa1" "coa2"

> coin$coinertia$RV

[1] 0.7859656

The RV coefficient $RV which is 0.786 in this instance, is a measure of global simi-
larity between the datasets. The greater (scale 0-1) the better.
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> plot(coin, classvec = NCI60$classes[, 2], clab = 0,

+ cpoint = 3)

 d = 1 

 CIA of df1 NCI60$Ross and df2 NCI60$Affy 

●
●

●
● ●

●●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●
●● ●

●

● ●

 d = 0.01 

 variables df1 NCI60$Ross 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●●
●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

 variables df1 NCI60$Ross 

 X510395 

 X365558 

 X470386 

 X487878 

 X510363  X487394 
 X429771 

 X211995  X302394 

 X486821  X471855 

 X487513 

 X470385 
 X486700 

 X487974 
 X510116 

 X377620 

 X21822 

 X241935 

 X488370 

 X429288  X486215 

 X510534 

 X375834  X108837 

 X162479 

 X365476 

 X47359 

 X428733 
 X209758 

 X366310 

 X248589 

 X136590 

 d = 0.005 

 variables df2 NCI60$Affy 

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 variables df2 NCI60$Affy 

 V00594_s_at 

 L19686_rna1_at 

 D49824_s_at  M55998_s_at 

 M11749_at 

 J03040_at 

 M35878_at  HG2788.HT2896_at 

 X68314_at  J03764_at 

 X67951_at 

 M31994_at 

 M94250_at 

 M80563_at  D17793_at 

 Z24727_at 

 M59807_at 

 M29277_at 

 M92934_at 

 U78095_at 

 U62015_at 

 HG1612.HT1612_at 

 Z18951_at 
 X65614_at 

 D49400_at 

 J04469_at 

 L33930_s_at 

 L06419_at  M23294_at  X92896_at  D14811_at  X04325_at 
 M15841_at 

 M93036_at 

Figure 10: Coinertia analysis of NCI 60 cell line Spotted and Affymetrix gene expression
dataset. The same 60 cell lines were analysed by two different labs on a spotted cDNA
array (Ross) and an affymetrix array (Affy). The Ross dataset contains 1375 genes,
and the affy dataset contains 1517. There is little overlap betwen the genes represented
on these platforms. CIA allows visualisation of genes with similar expression patterns
across platforms. A) shows a plot of the 60 microarray samples projected onto the one
space. The 60 circles represent dataset 1 (Ross) and the 60 arrows represent dataset 2
(affy). Each circle and arrow are joined by a line, the length of which is proportional
to the divergence between that samples in the two datasets. The samples are coloured
by cell type. B)The gene projections from datasets 1 (Ross), C) the gene projections
from dataset 2 (Affy). Genes and samples projected in the same direction from the
origin show genes that are expressed in those samples. See vingette for more help on
interpreting these plots.
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10 Functions in made4

Data Input

array2ade4 Converts matrix, data.frame, exprSet, marrayRaw microarray gene
expression data input data into a data frame suitable for analysis in
ADE4. The rows and columns are expected to contain the variables
(genes) and cases (array samples)

overview Draw boxplot, histogram and hierarchical tree of gene expression
data. This is useful only for a brief first glance at data.

Example datasets provides with made4

khan Microarray gene expression dataset from Khan et al., 2001
NCI60 Microarray gene expression profiles of the NCI 60 cell lines

Classification and class prediction using Between Group Analysis

bga Between group analysis
bga.jackknife Jackknife between group analysis
randomiser Randomly reassign training and test samples
bga.suppl Between group analysis with supplementary data projection
suppl Projection of supplementary data onto axes from a between group

analysis
plot.bga Plot results of between group analysis
between.graph Plot 1D graph of results from between group analysis

Meta analysis of two or more datasets using Coinertia Analysis

cia Coinertia analysis: Explore the covariance between two datasets
plot.cia Plot results of coinertia analysis

Graphical Visualisation of results: 1D Visualisation

graph1D Plot 1D graph of axis from multivariate analysis
between.graph Plot 1D graph of results from between group analysis
commonMap Highlight common points between two 1D plots
heatplot Draws heatmap with dendrograms (of eigenvalues)
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Graphical Visualisation of results: 2D Visualisation

plotgenes Graph xy plot of variable (gene or row) projections from PCA or
COA. Only label variables at ends of axes

plotarrays Graph xy plot of the arrays (column) projections from an ordina-
tion analysis. There are several graph types, these are ”groups”,
”simple”, ”labels”, ”groups2”, ”coinertia”,”coinertia2”.

Graphical Visualisation of results:Cluster Analysis

overview Graph of dendrogram from hierarchical cluster analysis (1-Pearson
correlation coefficient distance metric, average linkage joining), box-
plot and histrogram of data

pretty.dend Graph of dendrogram from hierarchical cluster analysis (1-Pearson
correlation coefficient distance metrix, average linkage joining). If
a class vector or many class vectors (covariates) are given in a
data.frame or factor,these are represented by a color bar is drawn
underneath the dendrogram.

Graphical Visualisation of results: 3D Visualisation

do3d Generate a 3D xyz graph using scatterplot3d
rotate3d Generate multiple 3D graphs using do3d in which each graph is

rotated
html3D Produce web page with a 3D graph that can be viewed using Chime

web browser plug-in, and/or a pdb file that can be viewed using
Rasmol

Interpretation of results

topgenes Returns a list of variables at the ends (positive, negative or both)
of an axis

sumstats Summary statistics on xy co-ordinates, returns the slopes and dis-
tance from origin of each co-ordinate

comparelists Return the intersect, difference and union between 2 vectors
print.comparelists Prints the results of comparelists
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