
edgeR: Methods for differential expression

in digital gene expression datasets

Mark Robinson
mrobinson@wehi.edu.au

July 26, 2009

1 Introduction

This document gives a brief introduction and overview of the R Bioconductor package edgeR, which provides
statistical routines for determining differential expression in digital gene expression data. The routines can be
applied equally to SAGE, CAGE, Illumina/Solexa, 454 or ABI SOLiD experiments. In fact, the methods may be
useful in other experiments where counts are observed.

R packages for the processing of raw data files for digital gene expression (DGE) datasets are still in development
stages (e.g. ShortRead) at time of writing. The methods presented here require a simple DGEList object that
contains three pieces of information:

1. data: a table of counts where each row represents a gene/exon (or whatever genomic feature is being tracked)
and each column is a different sample.

2. group: a vector (with length equal to the number of columns of data) denoting the experimental group.

3. lib.size (same length as group): the total number of reads sequenced for each sample.

We now discuss a couple examples.

2 Moderated negative binomial dispersions

The basic model we use for DGE data is based on the negative binomial distribution. The model is very flexible.
For example, if Y is distributed as NB(µ, φ), then the expected value of Y is µ and the variance is µ+ µ2 · φ, thus
giving sufficient flexibility for many scenarios in observing count data.

The observed data can be denoted as Ygij where g is the gene (tag, exon, etc.), i is the experimental group and
j is the index of the replicate. We can model the counts as

Ygij ∼ NB(Mj · pgi, φg)

where pgi represents the proportion of the sequenced sample for group i that is tag g and Mj represents the library
size. It is of interest to find genes where, for example, pg1 is significantly different from pg2. The parameter φg

is the overdispersion (relative to the Poisson) and represents the biological, or sample-to-sample variability. The
methods we developed moderate the dispersion estimates towards a common dispersion, much like how the limma
package moderates the variances in the analysis of microarray data.

To illustrate the methods, we use the Zhang et al. (1997) SAGE dataset. First, we read in the raw data:

> library(edgeR)

> WD <- getwd()

1

> dataPath <- paste(.find.package("edgeR"), "data", sep = "/")

> fn <- dir(dataPath, "txt")

> fn

[1] "NC1.txt" "NC2.txt" "Tu102.txt" "Tu98.txt"

> setwd(dataPath)

> head(read.table(fn[1], header = TRUE))

Tag_Sequence Count
1 AAAAAAAAAA 17
2 AAAAAAAAGA 1
3 AAAAAAACCC 1
4 AAAAAAAGCA 1
5 AAAAAAATCA 4
6 AAAAAAATTT 1

> dataList <- readDGE(fn, header = TRUE)

> setwd(WD)

dataList is a list object with elements for the table of counts and the library sizes. We need to add to this a
‘group’ variable which specifies the experimental condition and then we create a DGEList object that is the container
for digital gene expression data. Note that your raw data may come from a different source (e.g. another R object),
but the DGEList needs the 3 pieces of information mentioned above.

> cls <- gsub("[0-9]", "", colnames(dataList$data))

> cls

[1] "NC" "NC" "Tu" "Tu"

> keep <- rowSums(dataList$data) > 8

> sum(keep)

[1] 2457

> d <- DGEList(data = dataList$data[keep,], group = cls, lib.size = dataList$lib.size)

> d

DGEList:
$data

NC1 NC2 Tu102 Tu98
AAAAAAAAAA 17 39 34 40
AAAAATAAAG 4 4 5 1
AAAACATTCT 161 134 177 62
AAAACTGAGA 3 4 1 3
AAAAGAAACT 1 3 16 7
2452 more rows ...

$lib.size
NC1 NC2 Tu102 Tu98

49610 48479 55700 41371

$group
[1] NC NC Tu Tu
Levels: NC Tu

2

To run the moderated analysis, we first need to determine how much moderation is necessary. For this, we use
an empirical Bayes rule and involves calculating a weight parameter α. Following this, the main function to do the
statistical testing is called deDGE.

> alpha <- alpha.approxeb(d)

[quantileAdjust] Iteration (dot=1000) 1 :..

> alpha

EBList:
$alpha
[1] 1.235705e-07

$common.dispersion
[1] 0.2070189

> ms <- deDGE(d, alpha = alpha$alpha)

Calculating shrinkage overdispersion parameters.
[quantileAdjust] Iteration (dot=1000) 1 :..
[quantileAdjust] Iteration (dot=1000) 2 :..
[quantileAdjust] Iteration (dot=1000) 3 :..
[quantileAdjust] Iteration (dot=1000) 4 :..
[quantileAdjust] Iteration (dot=1000) 5 :..

> ms

deDGEList:
psp.common
AAAAAAAAAA AAAAATAAAG AAAACATTCT AAAACTGAGA AAAAGAAACT

6.788158e-04 7.172804e-05 2.675299e-03 5.636977e-05 1.373587e-04
2452 more elements ...

psp.group
NC Tu

[1,] 5.731440e-04 7.853135e-04
[2,] 8.155863e-05 6.179625e-05
[3,] 3.004834e-03 2.346097e-03
[4,] 7.136421e-05 4.121482e-05
[5,] 4.079830e-05 2.341273e-04
2452 more rows ...

$r
[1] 5.391110 999.000000 7.594998 999.000000 23.318710
2452 more elements ...

$group
[1] NC NC Tu Tu
Levels: NC Tu

$M
[1] 48519.75

3

It may be informative to look at the data via logRatio vs. Abundance (or M vs. A) plots, as is commonly done
in the analysis of microarray experiments for 2-group comparisons. In addition, we can highlight those genes that
are determined to be differentially expressed (here, using a 5% FDR multiple testing correction). To do this, you
can call the commands:

> exactP <- exactTestNB(ms$pseudo, ms$group, pair = c("Tu", "NC"),

+ ms$M * ms$ps$p.common, ms$r, verbose = TRUE)

Calculating Fisher exact p-values (dot=1000):..

> exactPadj <- p.adjust(exactP, "fdr")

> k <- (exactPadj < 0.05)

> plotMA(ms, xlim = c(-16, -5), ylim = c(-6, 6), xlab = "Relative Abundance",

+ ylab = "log Ratio", col = c("black", "blue")[k + 1])

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●
●

●

● ●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
● ●

●●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●● ●

●

●
● ●●

● ●●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

−16 −14 −12 −10 −8 −6

−
6

−
4

−
2

0
2

4
6

Relative Abundance

lo
g

R
at

io

Or, you can have a look at the sorted list of differential expression calls, according to:

> topTags(ms)

No pair supplied, so comparing groups NC and Tu
Calculating Fisher exact p-values (dot=1000):..

A M P.Value adj.P.Val
CTAAGACTTC -7.164019 -1.415383 3.804167e-54 9.346838e-51
TGCTCCTACC -9.940205 -2.681416 9.237219e-29 1.134792e-25
GGGGTCAGGG -9.605289 1.952856 3.394922e-25 2.780441e-22
GTGCTGAATG -10.395262 -2.529110 8.530643e-25 5.239947e-22
GATGACCCCC -12.027821 -3.907751 3.194294e-20 1.569676e-17

4

CGCTGTGGGG -11.273192 -2.971550 2.041462e-19 8.359786e-17
TTATGGGATC -11.725738 3.068306 2.003781e-15 7.033271e-13
TCACCGGTCA -11.048334 -4.111983 3.934644e-15 1.208428e-12
TAATTTTTGC -13.662883 5.837570 6.840848e-14 1.867551e-11
AGCAGATCAG -9.640442 -1.433524 9.395166e-14 2.308392e-11

The above procedure will work for experiments with more than 2 groups as well. At present, the testing can
only be done in a pairwise fashion. Therefore, with multiple groups you will need to specify the pair of groups to
do the testing on.

3 Poisson example

It has been observed that in some deep sequencing approaches that not a great deal of overdispersion is observed.
Specifically, the means and variances appear to be very close to each other, suggesting the Poisson distribution is
a good fit. Methods within the edgeR package may still be useful, including the quantile adjustment (effectively a
normalization) and the exact testing routines.

To illustrate this, we sample Poisson data and run deDGE with the doPoisson argument set to TRUE. The data
is quantile-adjusted and when the exact test is invoked, the dispersion parameter to 0. For example:

> set.seed(101)

> n <- 1000

> lib.sizes <- c(40000, 50000, 38000, 40000)

> p <- runif(n, min = 1e-04, 0.001)

> mu <- outer(p, lib.sizes)

> mu[1:5, 3:4] <- mu[1:5, 3:4] * 8

> y <- matrix(rpois(4 * n, lambda = mu), nrow = n)

> dP <- DGEList(data = y, group = rep(1:2, each = 2), lib.size = lib.sizes)

> msP <- deDGE(dP, doPoisson = TRUE)

Quantile adjusting as Poisson.
[quantileAdjust] Iteration (dot=1000) 1 :.

> msP

deDGEList:
psp.common
[1] 0.0017765587 0.0006020589 0.0032218999 0.0028955935 0.0014281982
995 more elements ...

psp.group
1 2

[1,] 0.0002778049 0.003487375
[2,] 0.0001777560 0.001089893
[3,] 0.0006445295 0.006141742
[4,] 0.0006782086 0.005410418
[5,] 0.0002556055 0.002769088
995 more rows ...

$r
[1] 1000 1000 1000 1000 1000
995 more elements ...

5

$group
[1] 1 1 2 2
Levels: 1 2

$M
[1] 41755.95

And you can proceed as before:

> topTags(msP)

No pair supplied, so comparing groups 1 and 2
Calculating Fisher exact p-values (dot=1000):.

A M P.Value adj.P.Val
3 -8.973301 3.2523296 4.634075e-85 4.634075e-82
4 -9.028014 2.9959392 4.933764e-70 2.466882e-67
1 -9.988642 3.6499978 6.859802e-57 2.286601e-54
5 -10.215084 3.4374201 6.548504e-43 1.637126e-40
2 -11.149706 2.6162169 2.261667e-14 4.523333e-12
344 -12.900979 1.9436057 3.835980e-03 6.393299e-01
733 -9.935133 0.6263777 7.534488e-03 7.887331e-01
802 -11.500153 -1.0062310 7.595947e-03 7.887331e-01
564 -10.025033 -0.5905975 9.262914e-03 7.887331e-01
124 -10.782468 0.7790100 9.470422e-03 7.887331e-01

> plotMA(msP, col = c(rep("blue", 5), rep("black", n - 5)))

●

●

●

●

●

●
●●

●
●

●
●

●

●

● ●
●

●
●

●

●

●
●

●
●●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

● ●

●●

●

●●

●

●

●

●

● ● ●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●●
●

●●

●

●

●
●

●

●
●

●

● ●

●

● ●

●

●
● ● ●

●

●

●

●

●

●
●
●

●

●
● ●

●

●

●

●● ●
● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●● ●

●
●

●

● ●● ●
●

●

●
●●

●

●

●

● ●●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●● ● ●

●

●

●
●

●

● ●●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●●

●

●●
●

●

●

●

● ●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
● ●●

●

●

●

●●
●

●

●●

●

●
●

● ●

●

● ●
●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●● ● ●

●

●
●●

●
●●

●

●

● ●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
● ●

●
● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●

● ●

●●

●

●

●
●

●
●

●

●

● ●●

●
●

●

●
●

●

●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●●

●

●

●
●

●

●
●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

● ●
●

●

●

●●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●
●

●

● ●

●

●● ●

●

●● ●
●

●

●

●
●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

● ●● ●

●

●
●

●

●

●
●

●

●

●

●● ●

●
●

●
●

●

●●

●

●

●

●

●
● ●

●

●

●
● ●

●

●

●

●

●

●

●
●● ●●

●
●

● ●

●

●

●
●

●

●
●●

●

●

●

●

●

● ●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

● ●

●
●●

●
●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
● ●● ●

●

●

●

● ●
● ●

●●

●
●

●

●●

●

●

●
●

●

●
●

●
● ● ●●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●●
●

●

●● ●
●

●
●

●

●

●

●
●

●

●

●

●

● ●

● ●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

−13 −12 −11 −10 −9

−
2

0
2

A

M

6

4 Future improvements and extension

Here, we list some improvements/extensions that are planned for the edgeR package:

1. As the packages for the processing of raw high-throughput sequencing data become more mature, edgeR may
need to adapt and operate on different objects. As shown above, edgeR operates on a simple object containing
simple data summaries which will presumably be readily available from pre-processing steps.

2. Some speed improvements have been made but as the datasets become larger, some further optimizations may
be necessary. We are exploring various ways to do this.

3. The current quantile-based normalization assumes the library sizes as fixed. Depending on the circumstances
of the samples in question, it may be necessary to explore something like an effective library size.

4. We are exploring more general testing procedures.

5 Setup

This vignette was built on:

> sessionInfo()

R version 2.9.1 (2009-06-26)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

attached base packages:
[1] tools stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] edgeR_1.2.4 Biobase_2.4.1

6 References

See the following manuscripts for further details:

1. Robinson MD, Smyth GK. Moderated statistical tests for assessing differences in tag abundance.Bioinformatics.
2007 Nov 1;23(21):2881-7.

2. Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion, with applications to SAGE
data. Biostatistics. 2008 Apr;9(2):321-32.

7

