
ChemmineR: A Compound Mining Toolkit for

Chemical Genomics in R

Yiqun Cao
Anna Charisi
Thomas Girke

April 21, 2009

Introduction

The ChemmineR package includes functions for calculating atom pair de-
scriptors of chemical compounds (Carhart et al., 1985; Chen and Reynolds,
2002; Guha, 2007), structural similarity searching, clustering of compound
libraries, and visualization of cluster results and chemical structures. These
utilities are often important for the assembly of compound libraries and typ-
ical analysis routines of chemical genomics screening projects. An overview
of all functions is illustrated in Fig. 1. The cmp.parse function accepts
an SD file (SDF) of a whole library, parses it, and generates a descriptor
database for all the compounds in the library. Similarly, the cmp.parse1
function accepts an SDF for a single compound, parses it, and generates a
descriptor vector for that compound. The cmp.similarity function com-
putes atom pair-based similarities between two compounds using by default
the Tanimoto coefficient as similarity measure. Searching for compounds in
a library that are similar to a query structure can be accomplished with the
cmp.search function. The cmp.cluster , cluster.sizestat, and clus-
ter.visualize functions together allow binning clustering of compounds
in a parsed library. The sdf.subset function provides utiliies for manag-
ing and subsetting libraries in SDF format, while the sdf.visualize func-
tion converts their compounds into images of chemical structures on HTML
pages. ChemmineR integrates well with the online ChemMine (Girke et al.,
2005) portal which provides access to extensive compound annotations and
web-based chemoinformatic tools.

1

comparing
searching

parsing

clustering

compounds selection

SDF of a
library

descriptor
database

SDF of a
compound

compound
descriptors

cmp.parse cmp.parse1

db$descdb[[i]]

clusters

cmp.cluster

cluster size
statistics

cluster.sizestat

cluster
visualization

cluster.visualize

duplication array

cmp.duplicated

descriptor description

db.explain

similarity
value

cmp.similarity

similar
compounds

cmp.search

SDF of a
sublibrary

sdf.subset

visualization
of selected
structures

sdf.visualize

Figure 1: Overview of functions provided in the ChemmineR package.

Installing the Package

Users can download the package from the download page (http://bioweb.
ucr.edu/ChemMineV2/chemminer/download) for the OS of their choice, and
then use the install.packages("...", repos=NULL) command to install
the package. More detailed instructions for Mac, Linux and Windows can be
found in the online manual (http://bioweb.ucr.edu/ChemMineV2/chemminer/
tutorial).

Loading the Package and Its Documentation

The package can be loaded with the standard library function:

> library(ChemmineR)

The following command lists all functions available in the package:

> library(help = ChemmineR)

> options(chemminer.max.upload = 100)

The package contains a PDF manual, which can be loaded in the standard
way:

> vignette("ChemmineR")

2

http://bioweb.ucr.edu/ChemMineV2/chemminer/download
http://bioweb.ucr.edu/ChemMineV2/chemminer/download
http://bioweb.ucr.edu/ChemMineV2/chemminer/tutorial
http://bioweb.ucr.edu/ChemMineV2/chemminer/tutorial

Compound Database Import from SDF

The cmp.parse function imports SDFs containing the data for one or many
compounds. It returns a searchable atom pair database, which can be used
for structural similarity searching, clustering, and SDF manipulation. The
only argument of this function is the path (or URL) to the file containing
the SDF information.

> library(ChemmineR)

> db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf",

+ quiet = TRUE)

counting number of compounds in sdf...
129 compounds found

you can use save(..., file='...', compress=TRUE) to save the database

The database can be saved as an R-specific binary file for faster loading in
the future.

> save(db, file = "compounddb.rda", compress = TRUE)

The load function loads the database back into R without repeating the
time-consuming descriptor generation step.

> load("compounddb.rda")

Single Compound Import from SDF

The cmp.parse1 function will parse an SDF for a single compound. Sim-
ilarly as before, the only argument required is the path (or URL) to the
SDF.

> query.url <- "http://bioweb.ucr.edu/ChemMineV2/compound/Aurora/b32:NNQS2MBRHAZTI===/sdf"

> query <- cmp.parse1(query.url)

Descriptor Database Content

The descriptors of compounds are stored as numeric vectors in a list object
along with available annotation information about the database. You may
skip this section if you are not interested in internals of descriptor database.

3

The cmp.parse1 function parses the SDF of a single compound, gener-
ates the descriptors and stores them in a numeric vector. Each entry of the
vector is a descriptor for this compound.

> class(query)

[1] "numeric"

In contrast to this, the cmp.parse function generates a list object with
four components.

> names(db)

[1] "descdb" "cids" "sdfsegs" "source"

The descdb component is a list. Each entry of the list is a vector of
descriptors of one compound.

> class(db$descdb)

[1] "list"

> class(db$descdb[[1]])

[1] "numeric"

The db.explain function returns the descriptors in a human readable
format. A single descriptor can be returned like this:

> db.explain(query[1])

[1] "C [2 neighbor(s),1 pi electrons]<---1--->C [2 neighbor(s),1 pi electrons]"

> db.explain(db$descdb[[1]][1])

[1] "C [2 neighbor(s),1 pi electrons]<---1--->C [2 neighbor(s),1 pi electrons]"

The same is possible for multiple descriptors at once.

> db.explain(db$descdb[[1]][1:5])

[1] "C [2 neighbor(s),1 pi electrons]<---1--->C [2 neighbor(s),1 pi electrons]"
[2] "C [2 neighbor(s),1 pi electrons]<---1--->C [2 neighbor(s),1 pi electrons]"
[3] "C [2 neighbor(s),1 pi electrons]<---1--->C [2 neighbor(s),1 pi electrons]"
[4] "C [2 neighbor(s),1 pi electrons]<---1--->C [2 neighbor(s),1 pi electrons]"
[5] "C [2 neighbor(s),1 pi electrons]<---1--->C [2 neighbor(s),1 pi electrons]"

4

Removing Duplicated Compounds

The cmp.duplicated function can be used to quickly identify and remove
duplicated compounds in imported compound databases. In most cases
the method will identify the duplicates correctly. However, users have to
be aware that the atom pair algorithm will treat isomers, conformers and
other smaller structural variants as identical compounds. If it is important
to retain those variants in the data set then the function cmp.duplicated
should not be used. The support of InChI stings will overcome this limitation
in the future.

The function takes a descriptor database as the only required argument
and returns the duplication information as a logical vector.

To demo this feature on the imported sample data set, one can create a
duplication with the following command.

> db$descdb <- c(db$descdb, list(db$descdb[[1]]))

In the next step the duplication is identified with the cmp.duplicated func-
tion.

> dup <- cmp.duplicated(db)

> dup

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[10] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[19] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[28] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[46] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[55] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[64] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[82] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[91] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[100] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[118] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[127] FALSE FALSE FALSE TRUE

The TRUE entry in the returned logical vector indicates the duplication. It
can be easily removed with the standard R subsetting syntax.

5

> db$descdb <- db$descdb[!dup]

In a real example one also needs to remove the duplications from the other
database components.

> db$cids <- db$cids[!dup]

> db$sdfsegs <- db$sdfsegs[!dup]

Pairwise Compound Comparisons

The cmp.similarity function computes the atom pair similarity between
two compounds using the Tanimoto coefficient as similarity measure. The
Tanimoto coefficient between the atom pair descriptors of two compounds
(CMP A and CMP B) is calculated here according to the following formula:

Tanimoto coefficient = c/(a + b + c)
a = count of atom pair descriptors in CMP A but not in CMP B
b = count of atom pair descriptors in CMP B but not in CMP A
c = count of atom pair descriptors shared by CMP A and CMP B

> similarity <- cmp.similarity(db$descdb[[1]], db$descdb[[2]])

> cat(paste("The similarity between compound 1 and 2 is ",

+ similarity, "\n", sep = ""))

The similarity between compound 1 and 2 is 0.70945945945946

> similarity <- cmp.similarity(db$descdb[[1]], query)

> cat(paste("The similarity between compound 1 and the query is ",

+ similarity, "\n", sep = ""))

The similarity between compound 1 and the query is 0.484662576687117

With the cmp.similarity function one can easily design custom search
subroutines similar to the one introduced in the next section.

Similarity Searching

The cmp.search function searches an atom pair database for compounds
that are similar to a query compound.

> cmp.search(db, query, cutoff = 0.4, return.score = TRUE,

+ quiet = TRUE)

6

ids scores
1 3 0.5503356
2 43 0.4846626
3 42 0.4846626
4 1 0.4846626
5 4 0.4801223
6 2 0.4801223

The function returns a data frame where the rows are sorted by similarity
score (best to worst). The first column contains the indices of the matching
compounds in the database. The argument cutoff can be a similarity cutoff,
meaning only compounds with a similarity value larger than this cutoff will
be returned; or it can be an integer value restricting how many compounds
will be returned. If the argument return.score is set to FALSE, then the
function will return a vector of indices rather than a data frame. When
supplying a cutoff of 0, the function will return the similarity values for
every compound in the database.

> similarities <- cmp.search(db, db[[1]][[1]], cutoff = 0,

+ return.score = TRUE, quiet = TRUE)

The cmp.search function allows to visualize the chemical structure im-
ages for the search results. A similar but more flexible chemical structure
rendering function (sdf.visualize) is described later in this manual. By
setting the visualize argument in cmp.search to TRUE, the matching com-
pounds and their scores can be visualized with a standard web browser on
the online ChemMine interface. Depending on the visualize.browse ar-
gument, an URL will be printed or a webpage will be opened showing the
structures of the matching compounds along with their scores.

> similarities <- cmp.search(db, query, cutoff = 10,

+ quiet = TRUE, visualize = TRUE, visualize.browse = FALSE)

Setting the visualize.browse argument to TRUE will automatically open
the webpage in the default browser.

The query structure can also be displayed on the visualization webpage
by supplying the SDF of the query in a character string or providing its file
name or URL. For example,

> similarities <- cmp.search(db, query, cutoff = 10,

+ quiet = TRUE, visualize = TRUE, visualize.browse = TRUE,

+ visualize.query = query.url)

7

This will read the SDF provided by query.url, and display it as a“reference
compound” at the top of the page. Part of the screenshot of the resulting
output is shown in Fig. 2. A live demo is also available and linked from
the online version of this manual (http://bioweb.ucr.edu/ChemMineV2/
chemminer/tutorial).

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

Width of information table: 40 characters

Reference Compound (ka-01834)

(ChemmineR_Unnamed_Compound_3)

similarity

(ChemmineR_Unnamed_Compound_1)

similarity

(ChemmineR_Unnamed_Compound_42)

similarity

(ChemmineR_Unnamed_Compound_43)

similarity

(ChemmineR_Unnamed_Compound_2)

similarity

(ChemmineR_Unnamed_Compound_4)

similarity

(ChemmineR_Unnamed_Compound_44)

similarity

(ChemmineR_Unnamed_Compound_46)

similarity

(ChemmineR_Unnamed_Compound_11)

similarity

(ChemmineR_Unnamed_Compound_35)

similarity

0.550335570469799

0.484662576687117

0.484662576687117

0.484662576687117

0.480122324159021

0.480122324159021

0.35609756097561

0.3125

0.311653116531165

0.287719298245614

UCR :: IIGB :: CEPCEB

LinksChemMineBAP DBCWNPONDExpressionGCDSystomics Network

Home

Readme

2010 Project

Protocols

CMP Sources

Search Database

Annotation

Structure

Screen Data

Workbench

Manage CMPs

Descriptors

Clustering

Clusters

Software

ChemmineR

Links

Login

View Previously Accessed Compounds >>>

Figure 2: cmp.search can automatically upload the structures and scores
of matching compounds to ChemMine for visualization.

Any information uploaded to ChemMine by ChemmineR is kept private
and secure using a highly randomized URL. The visualization pages can be
shared with colleagues by providing the corresponding URLs.

8

http://bioweb.ucr.edu/ChemMineV2/chemminer/tutorial
http://bioweb.ucr.edu/ChemMineV2/chemminer/tutorial

Rendering Chemical Structure Images

Internally, the similarity search function uses the sdf.visualize function
to send compounds to ChemMine for structure visualization. The same
function can be used to send any custom combination of compounds for vi-
sualization on ChemMine along with complex annotation and activity infor-
mation. The function accepts a database and a vector of compound indices.
The following example performs first a similarity search to obtain a vector
of indices.

> indices <- cmp.search(db, query, cutoff = 10,

+ quiet = TRUE)

> url <- sdf.visualize(db, indices, browse = TRUE,

+ quiet = TRUE)

> url

[1] "http://bioweb.ucr.edu/ChemMineV2/chemminer/viewsdfs?ref=62fe12ec639a3128531f77c0fd3f73bd"

The URL stored in the url object points to a webpage that shows the
structures of the compounds. If the browse argument is set to TRUE, then
the default browser will open automatically.

In addition, one can display other information next to the structures
using the extra argument. In the following example, a vector of character
strings is assigned to extra, and its entries are displayed next to correspond-
ing chemical structures.

> extra.info <- paste("Matching compound #", 1:length(indices),

+ sep = "")

> names(extra.info) <- rep("Note", length(indices))

> url <- sdf.visualize(db, indices, browse = TRUE,

+ quiet = TRUE, extra = extra.info)

> url

[1] "http://bioweb.ucr.edu/ChemMineV2/chemminer/viewsdfs?ref=f65dcab3ec4c87a0edc1d689923c58e1"

The function also allows to list a reference compound at the top of the
page. The user supplies the SDF of this reference compound in form of a
character string or a file. Annotation information can also be displayed next
to the reference structure.

9

> url <- sdf.visualize(db, indices, browse = TRUE,

+ quiet = TRUE, reference.sdf = query.url, reference.note = "Reference Compound from Aurora Library")

> url

[1] "http://bioweb.ucr.edu/ChemMineV2/chemminer/viewsdfs?ref=3a9d71c6b27a42114018f374debc42b5"

It is also possible to display more complex tabular data next to each
compound by providing a list of data frames. To demonstrate this utility, the
following example creates such a list of data frames via a similarity search.
Each data frame is then displayed next to the corresponding compound.
The screenshot of the resulting output is shown in Fig. 3.

To generate this output, first a similarity is performed using a cutoff of
0 to obtain the similarity values between the query compound and each of
the compounds in the database.

> search.results <- cmp.search(db, query, cutoff = 0,

+ return.score = T, quiet = T)

The resulting data frame will be used as annotation table for the query
compound. To provide a table name, one has to embed it into a list. If a
table name is not required, then there is no need to generate the list object

> note.q <- list(search.results)

> names(note.q) <- "Similarities With All"

For each of the top 10 hits in the search result, we perform the same
search to obtain the similarity values between the hit and all compounds in
the database. This information will then be displayed next to the structures
on the visualization page.

> indices <- search.results[1:10, 1]

> notes <- list()

> for (i in indices) {

+ search.results <- cmp.search(db, db$descdb[[i]],

+ 0, return.score = T, quiet = T)

+ notes <- c(notes, list(search.results))

+ }

> names(notes) <- rep("Similarities With All", 10)

The following step displays the complex sample data set on ChemMine.

> url <- sdf.visualize(db, indices, extra = notes,

+ browse = T, reference.sdf = query.url, reference.note = note.q)

10

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

View SDF Structure Search Add to Selection

Width of information table: 40 characters

Reference Compound (ka-01834)

Similarities With All

(ChemmineR_Unnamed_Compound_3)

Similarities With All

(ChemmineR_Unnamed_Compound_43)

Similarities With All

(ChemmineR_Unnamed_Compound_42)

Similarities With All

(ChemmineR_Unnamed_Compound_1)

Similarities With All

(ChemmineR_Unnamed_Compound_4)

Similarities With All

(ChemmineR_Unnamed_Compound_2)

Similarities With All

(ChemmineR_Unnamed_Compound_44)

Similarities With All

(ChemmineR_Unnamed_Compound_46)

Similarities With All

(ChemmineR_Unnamed_Compound_11)

Similarities With All

(ChemmineR_Unnamed_Compound_35)

Similarities With All

ids scores

 3 0.550335570

 43 0.484662577

 42 0.484662577

 1 0.484662577

 4 0.480122324

 2 0.480122324

 44 0.356097561

 46 0.312500000

 11 0.311653117

 35 0.287719298

103 0.284345048

ids scores

 3 1.000000000

 43 0.785977860

 42 0.785977860

 1 0.785977860

 2 0.766423358

 4 0.646258503

 44 0.561797753

 11 0.415204678

 35 0.390151515

 46 0.368539326

 45 0.311526480

ids scores

 43 1.000000000

 42 0.840000000

 1 0.840000000

 3 0.785977860

 2 0.709459459

 4 0.611464968

 44 0.601108033

 11 0.390109890

 46 0.339702760

 35 0.323129252

 48 0.297244094

ids scores

 42 1.000000000

 43 0.840000000

 2 0.840000000

 1 0.840000000

 3 0.785977860

 4 0.721088435

 44 0.601108033

 11 0.417366947

 46 0.339702760

 20 0.335526316

 48 0.328629032

ids scores

 1 1.000000000

 43 0.840000000

 42 0.840000000

 3 0.785977860

 4 0.721088435

 2 0.709459459

 44 0.705014749

 11 0.390109890

 46 0.339702760

 35 0.323129252

 5 0.305454545

ids scores

 4 1.000000000

 42 0.721088435

 1 0.721088435

 2 0.709459459

 3 0.646258503

 43 0.611464968

 44 0.529100529

 11 0.338624339

 45 0.306784661

 46 0.303719008

 35 0.288079470

ids scores

 2 1.000000000

 42 0.840000000

 3 0.766423358

 43 0.709459459

 4 0.709459459

 1 0.709459459

 44 0.513089005

 20 0.395189003

 11 0.375000000

129 0.329153605

116 0.315904139

ids scores

 44 1.00000000

 1 0.70501475

 43 0.60110803

 42 0.60110803

 3 0.56179775

 4 0.52910053

 2 0.51308901

 11 0.34106729

 5 0.32773109

 47 0.31289911

 46 0.30426716

ids scores

 46 1.000000000

 47 0.418635171

 48 0.415162455

120 0.405017921

 3 0.368539326

 43 0.339702760

 42 0.339702760

 1 0.339702760

 79 0.326271186

126 0.318949343

123 0.318949343

ids scores

 11 1.000000000

 42 0.417366947

 3 0.415204678

 39 0.414634146

 35 0.414545455

 43 0.390109890

 1 0.390109890

 7 0.382857143

 2 0.375000000

116 0.369614512

 5 0.362428843

ids scores

 35 1.000000000

 39 0.545454545

 32 0.467005076

 27 0.448113208

 7 0.439215686

 41 0.417391304

 11 0.414545455

 28 0.411255411

 38 0.409937888

 37 0.409356725

 89 0.395454545

UCR :: IIGB :: CEPCEB

LinksChemMineBAP DBCWNPONDExpressionGCDSystomics Network

Home

Readme

2010 Project

Protocols

CMP Sources

Search Database

Annotation

Structure

Screen Data

Workbench

Manage CMPs

Descriptors

Clustering

Clusters

Software

ChemmineR

Links

Login

View Previously Accessed Compounds >>>

Figure 3: Visualization webpage created by calling sdf.visualize. This
page shows the table information properly rendered and displayed next to
the compound structures.

11

Note: the sdf.visualize function depends on the original SDF file from
which the descriptor database has been generated. If the SDF file has been
moved or altered then this step cannot be used.

Any information uploaded to ChemMine by ChemmineR is kept private
and secure using a highly randomized URL. The visualization pages can be
shared with colleagues by providing the corresponding URLs.

Subsetting SDF Batch Files

After identifying a subset of interesting compounds, one can generate an
SDF for this subset of compounds using the sdf.subset function.

For example, one can perform a similarity search, and use the top 10
results for subsetting.

> indices <- cmp.search(db, query, cutoff = 10,

+ quiet = TRUE)

With the corresponding indices one can generate a custom SDF batch data
set and store it in an external file.

> sdf <- sdf.subset(db, indices)

> cat(sdf, file = "matching.sdf")

One may also create a sub-database from a descriptor database using
the related db.subset function.

> db_sub <- db.subset(db, indices)

Note: the sdf.visualize function depends on the original SDF file from
which the descriptor database has been generated.

Binning Clustering

Compound libraries can be clustered into discrete similarity groups with the
binning clustering function cmp.cluster. This binning clustering method
is optimized for the typical compound library analysis routines for high-
throughput screening projects. The algorithm uses single-linkage cluster-
ing to join compounds into similarity groups, where every member in a
cluster shares with at least one other member a similarity value above a
user-specified threshold. The algorithm is optimized for speed and memory
efficiency by avoiding the calculation of an all-against-all distance matrix.

12

This is achieved by calculating on-the-fly only the distance values that are
required in each clustering step. Because an optimum similarity threshold
is often unknown, a series of binning clustering results can be calculated
simultaneously for several user-specified thresholds. Cluster results for sev-
eral thresholds can be calculated almost with the same speed as for a single
threshold by issuing multiple clustering processes simultaneously, but calcu-
lating the required distances only once.

The function requires as input a descriptor database as well as a simi-
larity threshold. The binning clustering result is returned in form of a data
frame. Single linkage is used for cluster joining. The function calculates the
required compound-to-compound distance information on the fly, while a
memory-intensive distance matrix is only created upon user request via the
save.distances argument (see below).

> clusters <- cmp.cluster(db, cutoff = 0.65, quiet = TRUE)

sorting result...

The previous step clusters the compounds stored in db with a similarity
cutoff of 0.65. In other words, if two compounds share a similarity of 0.65
or above, then they will be joined into the same cluster. The first 10 rows
of the result data frame are shown here:

> clusters[1:10,]

ids CLSZ_0.65 CLID_0.65
1 1 7 1
2 2 7 1
3 3 7 1
4 4 7 1
42 42 7 1
43 43 7 1
44 44 7 1
14 14 3 14
17 17 3 14
18 18 3 14

The first column contains the compound IDs, the second the cluster size and
third the cluster ID. The compound in cluster ID 1 can be returned with
the following command:

> clusters[clusters[, 3] == 1,]

13

ids CLSZ_0.65 CLID_0.65
1 1 7 1
2 2 7 1
3 3 7 1
4 4 7 1
42 42 7 1
43 43 7 1
44 44 7 1

Similarly as above, one can visualize the chemical structures for a compound
cluster of interest with the sdf.visualize function.

> ids <- clusters[clusters[, 3] == 23, 1]

> sdf.visualize(db, ids, browse = TRUE, quiet = TRUE)

Binning Clustering with Multiple Cutoffs

Because an optimum similarity threshold is often not known, the cmp.cluster
function can calculate cluster results for multiple cutoffs in one step with
almost the same speed as for a single cutoff. The clustering results for the
different cutoffs will be stored in one data frame.

> clusters <- cmp.cluster(db, cutoff = c(0.65, 0.5),

+ quiet = TRUE)

sorting result...

The first 10 rows of the generated cluster result data frame are:

> clusters[1:10,]

ids CLSZ_0.65 CLID_0.65 CLSZ_0.5 CLID_0.5
1 1 7 1 7 1
2 2 7 1 7 1
3 3 7 1 7 1
4 4 7 1 7 1
42 42 7 1 7 1
43 43 7 1 7 1
44 44 7 1 7 1
14 14 3 14 4 14
17 17 3 14 4 14
18 18 3 14 4 14

14

Cluster 14 obtained by the cutoff 0.65 contains the following compounds:

> clusters[clusters[, "CLID_0.65"] == 14,]

ids CLSZ_0.65 CLID_0.65 CLSZ_0.5 CLID_0.5
14 14 3 14 4 14
17 17 3 14 4 14
18 18 3 14 4 14

and cluster 14 from cutoff 0.5 contains:

> clusters[clusters[, "CLID_0.5"] == 14,]

ids CLSZ_0.65 CLID_0.65 CLSZ_0.5 CLID_0.5
14 14 3 14 4 14
17 17 3 14 4 14
18 18 3 14 4 14
16 16 1 16 4 14

One may force the cmp.cluster function to calculate and store the dis-
tance matrix by supplying a file name to the save.distances argument.
The generated distance matrix can be loaded and passed on to many other
clustering methods available in R, such as the hierarchical clustering func-
tion hclust (see below).

If a distance matrix is available, it may also be supplied to cmp.cluster
via the use.distances argument. This is useful when one has a pre-
computed distance matrix either from a previous call to cmp.cluster or
from other distance calculation subroutines.

Multi-Dimensional Scaling (MDS)

To visualize and compare clustering results, the cluster.visualize func-
tion can be used. The function performs Multi-Dimensional Scaling (MDS)
and visualizes the results in form of a scatter plot. It requires as input a
descriptor database, a clustering result from cmp.cluster, and a cutoff for
the minimum cluster size to consider in the plot. To help determining a
proper cutoff size, the cluster.sizestat function is provided to generate
cluster size statistics.

The following example uses the clustering result obtained above using
cutoff values 0.65 and 0.5. By default, the cluster.sizestat uses the first
cutoff value:

15

> cluster.sizestat(clusters)

cluster size count
1 1 90
2 2 4
3 3 8
4 7 1

Based on this size statistics, clusters of size 3 or larger will be included
in the following MDS visualization step.

> coord <- cluster.visualize(db, clusters, 3, quiet = TRUE)

===
| Click points in a plot to get information on compounds |
| they represent. |
| |
| press ESC key in the plot window to stop. |
===

−0.4 −0.2 0.0 0.2

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Clustering Result

●

●
●

●●●

●

●● ●

●
●

●

●

●

●

● ●
●

●
●

●

●
●

●

●
●

●

●●

●

16

By default cluster.visualize will draw the scatter plot in the R plot-
ting device, and the user can interactively click a point to retrieve more
information on the corresponding compounds. In the non-interactive mode
(non.interactive), it will save the plot to a specified file in EPS or PDF
format.

A 3D MDS plot can be created with the following sequence of commands.

> coord <- cluster.visualize(db, clusters, 3, dimensions = 3,

+ quiet = TRUE)

> library(scatterplot3d)

> scatterplot3d(coord)

−0.4 −0.2 0.0 0.2 0.4−
0.

8
−

0.
6

−
0.

4
−

0.
2

 0
.0

 0
.2

 0
.4

−0.3
−0.2

−0.1
 0.0

 0.1
 0.2

 0.3
 0.4

V1

V
2

V
3

●
●

●
●
●

●

●
●

●

●●●

●

●●

●
●
●

●

●

●

●

●
● ●

●●●
●

●●

Figure 4: 3D MDS plot generated using coordinate information returned by
cluster.visualize and the scatterplot3d package.

The data returned by the cluster.visualize can also be inspected
with the fully interactive rggobi data visulalization system. The GGobi
software and its dependencies can be obtained from the GGobi project site
(http://www.ggobi.org/rggobi). The following commands demonstrate
the import of the generated MDS data set into rggobi .

> library(rggobi)

> ggobi(coord)

17

http://www.ggobi.org/rggobi

Clustering with Other Packages

ChemmineR allows the user to take advantage of the wide spectrum of clus-
tering utilities available in R. An example on how to perform hierarchical
clustering with the hclust function is given below.

> dummy <- cmp.cluster(db, 0, save.distances = "distmat.rda",

+ quiet = T)

sorting result...

The cmp.cluster function is used with the save.distances="distmat.rda"
argument to generate a distance matrix. The matrix is saved to a file named
’distmat.rda’ and it needs to be loaded into R with the load function.
This matrix can be directly passed on to hclust.

> load("distmat.rda")

> hc <- hclust(as.dist(distmat), "single")

> plot(as.dendrogram(hc), horiz = T)

0.8 0.6 0.4 0.2 0.0

956967108551358591041091151131121101117912812963451059895777810765664940683336501002094738284877576727411812212511412611612112412011912348464763738221144434321421274111792198896715311617141834909193128370711061081011022927232830252621243257566160525354518997809985818662353964103

18

Format Interconversions between SMILES and SDF

This option will be provided in the future. At this point, SMILES strings can
be imported into ChemmineR only indirectly by converting them into SDFs
via ChemMine’s online WorkBench (http://bioweb.ucr.edu/ChemMineV2/
work/smiles/).

Calculation of Physicochemical Descriptors

Several functions will be available in the near future for calculating physico-
chemical descriptors directly in ChemmineR. Currently, users can calculate
40 common physicochemical descriptors with the online descriptor predic-
tion tool available on ChemMine’s WorkBench (http://bioweb.ucr.edu/
ChemMineV2/work/sdf/).

References

R.E. Carhart, D.H. Smith, and R. Venkataraghavan. Atom pairs as molecu-
lar features in structure-activity studies: definition and applications. Jour-
nal of Chemical Information and Computer Sciences, 25(2):64–73, 1985.

X. Chen and C.H. Reynolds. Performance of Similarity Measures in 2D
Fragment-Based Similarity Searching: Comparison of Structural Descrip-
tors and Similarity Coefficients. Journal of Chemical Information and
Computer Sciences, 42(6):1407–1414, 2002.

T Girke, L C Cheng, and N Raikhel. ChemMine. A compound mining
database for chemical genomics. Plant Physiol, 138(2):573–577, 2005. doi:
10.1104/pp.105.062687.

Rajarshi Guha. Chemical informatics functionality in R. Journal of Statis-
tical Software, 18(5), 2007.

19

http://bioweb.ucr.edu/ChemMineV2/work/smiles/
http://bioweb.ucr.edu/ChemMineV2/work/smiles/
http://bioweb.ucr.edu/ChemMineV2/work/sdf/
http://bioweb.ucr.edu/ChemMineV2/work/sdf/

