# ArrayTools: Array Quality Assessment and Analysis Tool 

Xiwei Wu and Xuejun Arthur Li

April 21, 2009

## 1 Introduction

The Affymetrix GeneChip is a commonly used tool to study gene expression profiles. The newly introduced Gene 1.0-ST arrays measure transcript expressions more accurately than the regular 3' -arrays. However, it lacks a tool to provide quality assessment and analysis for this type of array. This package is designed to provide solutions for quality assessment and to detect differentially expressed genes for the Affymetrix GeneChips, including both 3' -arrays and gene 1.0-ST arrays. The package provides functions that are easy to follow by biologists who have limited statistical backgrounds. The package generates comprehensive analysis reports in HTML format. Hyperlinks on the report page will lead to a series of QC plots, processed data, and differentially expressed gene lists. Differentially expressed genes are reported in tabular format with annotations hyperlinked to online biological databases. This guide will use an example dataset to demonstrate how to perform analysis of experiments with commonly used designs by using this package.

## 2 Data

We will use exprsExample, a simulated gene expression data, and its corresponding phenotype data file, pDataExample to illustrate some examples. Usually the expression data is generated from the Affymetrix Expression Console and pheno data file is created by the user.

```
> library(ArrayTools)
> data(exprsExample)
> head(exprsExample)
    probeset_id H1.CEL H2.CEL H3.CEL H4.CEL H5.CEL H6.CEL H7.CEL H8.CEL H9.CEL
1 7rrrra74617 20.94 37.84 21.05 19.02 17.88
2 8043502 334.29 3.39 14.28 256.20 94.44 
3 7922008 416.82 774.87 659.94 346.52 361.60 307.01 372.93 416.47 417.56
4 7rrrrlerl23 21.54 13.90
5 llllllllllllll
6 8059985 323.61 306.80 241.76 355.07 410.07 583.40 411.06 315.05 315.75
```

| H10.CEL |  |  |  |  |  |  | H11.CEL |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| H12.CEL | H13.CEL | H14.CEL | H15. CEL | H16.CEL |  |  |  |
| 1 | 2.72 | 34.72 | 43.47 | 18.94 | 72.74 | 38.31 | 9.38 |
| 2 | 67.32 | 44.75 | 170.68 | 25.78 | 63.70 | 71.56 | 27.01 |
| 3 | 222.75 | 363.14 | 336.07 | 403.53 | 218.79 | 367.89 | 193.06 |
| 4 | 39.06 | 43.96 | 48.48 | 12.68 | 13.66 | 15.16 | 53.27 |
| 5 | 6.44 | 13.41 | 14.66 | 3.10 | 2.37 | 18.83 | 11.09 |
| 6 | 463.78 | 470.00 | 312.35 | 583.83 | 484.79 | 394.48 | 530.53 |
| $>$ | dim(exprsExample) |  |  |  |  |  |  |

[1] 100017

```
> data(pDataExample)
> pDataExample
```

Treatment Group
H2.CEL Treated A
H3.CEL Treated A
H4.CEL Treated A
H5.CEL Treated B
H6.CEL Treated B
H7.CEL Treated B
H8.CEL Treated B
H9.CEL Control A
H10.CEL Control A
H11.CEL Control A
H12.CEL Control A
H13.CEL Control B
H14.CEL Control B
H15.CEL Control B
H16.CEL Control B

The expression data that created from Affymetrix Expression Console has an probeset_id column. To create an ExpressionSet, we need to use probeset_id as the rownames of expression data. Then we can create an ExpressionSet from the expression data and the phenotype data.

```
> rownames(exprsExample) <- exprsExample$probeset_id
> eSet <- createExpressionSet(pData = pDataExample, exprs = exprsExample,
+ annotation = "hugene10sttranscriptcluster")
> dim(eSet)
```

| Features | Samples |
| ---: | ---: |
| 1000 | 16 |

The annotation argument is important for the analysis for the Gene 1.0-ST arrays. Since we only support two types of Gene 1.0-ST arrays, please use either hugene10sttranscriptcluster or mogene10sttranscriptcluster as the value for the annotation argument.

## 3 Data Preprocessing

For Gene 1.0-ST arrays, data preprocessing include removing the control genes (default value is rmControl =TRUE) and takes the $\log 2$ of the expression value. Before taking $\log 2$, we added 1 to the expression value (the default value is offset $=1$ ) because the expression value may have 0 value. If you want to output the preprocessed data to your local directory, you can use the output = TRUE option. Also, notice that the first argument is an ExpressionSet.

```
> normal <- preProcessGeneST(eSet, output = TRUE)
> normal
ExpressionSet (storageMode: lockedEnvironment)
assayData: }876\mathrm{ features, 16 samples
    element names: exprs
phenoData
    sampleNames: H1.CEL, H2.CEL, ..., H16.CEL (16 total)
    varLabels and varMetadata description:
        Treatment: NA
        Group: NA
featureData
    featureNames: 7974617, 8043502, ..., 7895830 (1000 total)
    fvarLabels and fvarMetadata description: none
experimentData: use 'experimentData(object)'
Annotation: hugene10sttranscriptcluster
> dim(normal)
Features Samples
    876 16
```

For 3 ' -arrays, data processing is done by using the preProcess3prime function, which is a wrapper function to perform normalization for the array. Instead of using the ExpressionSet as its argument, the preProcess3prime function requires an AffyBatch object. We can either choose rma or gcrma as the method\verb argument.

## 4 Quality Assessment

To generate the Quality Assessment Report, we need to use the Affymetrix Expression Console to generate a quality metric file. The sample quality metric file is similar to the QC file that can be obtained by using the data function. For Gene 1.0-ST arrays, we can use the qaGeneST function to create an HTML report. This report contains a series of plots, including Intensity Distribution, Mean Signal, BAC Spike, polya Spike, Pos Vs Neg Auc, Mad Residual Signal, RLE MEAN, and Hierarchical Clustering of Samples plots.

```
> data(QC)
> qaGeneST(normal, c("Treatment", "Group"), QC)
```

```
*** Output redirected to directory: /tmp/Rtmp9AvroA
*** Use HTMLStop() to end redirection.
```

For 3' -arrays, the qa3prime function is used to create a QC report. Instead of using ExpressionSet as its argument, an AffyBatch object is required. Furthermore, the QC file is not required for the 3' -Array.

## 5 Filtering

Before running analysis on the arrays, filtering out the uninformative genes may be an important step for your analysis. Three types of filtering methods are used in the geneFilter function. Suppose that if we want to remove genes with their inter-quartile range across the arrays with less than 10would also like to keep genes with at least 2 arrays with backgrounds greater than 4 at the same time, we can do the following:

```
> filtered <- geneFilter(normal, numChip = 2, bg = 4, iqrPct = 0.1,
+ output = TRUE)
[1] "After Filtering, N = 763"
```


## 6 Analysis

The analysis takes a series of steps that includes creating a design and a contrast matrix, running regression, selecting significant genes, and creating an HTML report.

### 6.1 Design Matrix

A design matrix determines what type of model you are running. The design matrix is defined as a designMatrix class which can be created by the new function. To create a model with only one factor, which is equivalent to a one-way ANOVA model, we can do the following:

```
> design1 <- new("designMatrix", target = pData(filtered), covariates = "Treatment")
> design1
    (Intercept) Treatment/Treated
1
2
3
4
5
6
7
8
9
\begin{tabular}{ll}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 0
\end{tabular}
```

| 10 | 1 | 0 |
| :--- | :--- | :--- |
| 11 | 1 | 0 |
| 12 | 1 | 0 |
| 13 | 1 | 0 |
| 14 | 1 | 0 |
| 15 | 1 | 0 |
| 16 | 1 | 0 |
| attr (,"assign") |  |  |
| [1] 0 1 |  |  |
| attr (,"contrasts") |  |  |
| attr (,"contrasts")\$Treatment |  |  |
| [1] "contr.treatment" |  |  |

To create a model with two factors, we can do the following:

```
design2 <- new("designMatrix", target = pData(filtered), covariates = c("Treatment",
```

+ "Group"))
> design2
(Intercept) Treatment/Treated Group/B
$1 \begin{array}{llll}1 & 1 & 0\end{array}$
$\begin{array}{llll}2 & 1 & 1 & 0\end{array}$
$\begin{array}{llll}3 & 1 & 1 & 0\end{array}$
$\begin{array}{llll}4 & 1 & 1 & 0\end{array}$
$\begin{array}{llll}5 & 1 & 1 & 1\end{array}$
$\begin{array}{llll}6 & 1 & 1 & 1\end{array}$
$\begin{array}{llll}7 & 1 & 1 & 1\end{array}$
$8 \quad 1 \quad 1 \quad 1$
$\begin{array}{llll}9 & 1 & 0\end{array}$
101100
$121 \begin{array}{llll}12 & 0 & 0\end{array}$
$13 \quad 1 \quad 0 \quad 1$
$14 \quad 1 \quad 0 \quad 1$
$\begin{array}{llll}15 & 1 & 0 & 1 \\ 16 & 1 & 0 & 1\end{array}$
$16 \quad 1$
attr(,"assign")
[1] 012
attr(, "contrasts")
attr(, "contrasts")\$Treatment
[1] "contr.treatment"
attr(,"contrasts")\$Group
[1] "contr.treatment"


### 6.2 Contrast Matrix

For the one-way ANOVA model based on the design1, if we want to compare Treated vs. Control, we can do the following:

```
> contrast1 <- new("contrastMatrix", design.matrix = design1, compare1 = "Treated",
+ compare2 = "Control")
> contrast1
[,1]
[1,] 0
[2,] 1
```

To perform the same comparison and to controll the Group effect (Randomized Block Design), we can write:

```
> contrast2 <- new("contrastMatrix", design.matrix = design2, compare1 = "Treated",
+ compare2 = "Control")
> contrast2
    [,1]
[1,] 0
[2,] 1
[3,] 0
```


### 6.3 Regression

To run the gene-wise regression, we can use the regress function. This function will create a regressResult object.

```
> result1 <- regress(filtered, contrast1)
> result2 <- regress(filtered, contrast2)
```


### 6.4 Select Significant Genes

We can select differentially expressed genes by using the selectSigGene function. To select differentially expressed genes based on p-values less than 0.05 and fold change greater than log2 of 1.5 , we can write the following codes:

```
> sigResult1 <- selectSigGene(result1, p.value = 0.05, fc.value = log2(1.5))
> sigResult2 <- selectSigGene(result2, p.value = 0.05, fc.value = log2(1.5))
```

We can use the Sort function to sort the regressResult object by p-value in ascending order (sorted.by $=$ ' pValue ') or log2 Ratio in descending order (sorted.by $=$ 'log2Ratio') or F statistics in descending order (sorted.by $=' \mathrm{~F}^{\prime}$ ).

```
> Sort(sigResult1, sorted.by = "pValue")
```

There are 24 significant genes.

|  | ID | Log2Ratio.1 | F | pValue | adjPVal |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 180 | 8176933 | -1.4476794 | 11.794504 | 0.003114917 | 0.6755821 |
| 682 | 7899348 | 0.8942033 | 11.423345 | 0.003506911 | 0.6755821 |
| 185 | 7961187 | -1.6993006 | 10.579407 | 0.004622667 | 0.6755821 |


| 550 | 7967872 | -0.6418379 | 10.517888 | 0.004718485 | 0.6755821 |
| :--- | :--- | ---: | ---: | ---: | ---: |
| 27 | 8133314 | -1.1015420 | 10.079615 | 0.005469593 | 0.6755821 |
| 49 | 8176230 | -0.6401176 | 9.715964 | 0.006196001 | 0.6755821 |
| 79 | 8121138 | -0.6781879 | 9.715003 | 0.006198061 | 0.6755821 |
| 720 | 7986348 | -0.6792892 | 9.040814 | 0.007852412 | 0.6755821 |
| 323 | 7973743 | 0.6500787 | 7.348170 | 0.014716392 | 0.6755821 |
| 246 | 8008517 | 0.8480338 | 7.314129 | 0.014911694 | 0.6755821 |
| 360 | 8170971 | 0.6443034 | 6.841945 | 0.017947995 | 0.6755821 |
| 751 | 8154223 | -0.9634973 | 6.063748 | 0.024620521 | 0.6755821 |
| 364 | 8057004 | 1.1961724 | 5.930130 | 0.026030941 | 0.6755821 |
| 28 | 8139121 | -1.1025219 | 5.642331 | 0.029393947 | 0.6755821 |
| 184 | 7945169 | 1.5171376 | 5.363939 | 0.033127890 | 0.6755821 |
| 248 | 7969493 | 2.1830182 | 5.348171 | 0.033355126 | 0.6755821 |
| 705 | 8146790 | -0.7653335 | 5.206896 | 0.035472801 | 0.6755821 |
| 525 | 7968577 | -0.9597539 | 5.091253 | 0.037321581 | 0.6755821 |
| 279 | 8006877 | 1.4172392 | 4.900766 | 0.040613733 | 0.6755821 |
| 732 | 8104607 | -1.2819453 | 4.879652 | 0.040998796 | 0.6755821 |

```
> Sort(sigResult2, sorted.by = "F")
```

There are 25 significant genes.

|  | ID Log2Ratio. | F | pValue | adjPVal |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 180 | 8176933 | -1.4476794 | 11.214364 | 0.004000748 | 0.6502387 |
| 682 | 7899348 | 0.8942033 | 11.155598 | 0.004076069 | 0.6502387 |
| 185 | 7961187 | -1.6993006 | 10.545722 | 0.004960301 | 0.6502387 |
| 550 | 7967872 | -0.6418379 | 10.425267 | 0.005159577 | 0.6502387 |
| 27 | 8133314 | -1.1015420 | 9.563225 | 0.006882225 | 0.6502387 |
| 79 | 8121138 | -0.6781879 | 9.408187 | 0.007256921 | 0.6502387 |
| 49 | 8176230 | -0.6401176 | 9.152997 | 0.007925208 | 0.6502387 |
| 360 | 8170971 | 0.6443034 | 8.741519 | 0.009155414 | 0.6502387 |
| 720 | 7986348 | -0.6792892 | 8.530873 | 0.009868294 | 0.6502387 |
| 323 | 7973743 | 0.6500787 | 7.382043 | 0.015066772 | 0.6502387 |
| 248 | 7969493 | 2.1830182 | 7.276650 | 0.015683249 | 0.6502387 |
| 246 | 8008517 | 0.8480338 | 6.905919 | 0.018092358 | 0.6502387 |
| 732 | 8104607 | -1.2819453 | 6.372061 | 0.022343489 | 0.6502387 |
| 279 | 8006877 | 1.4172392 | 6.302352 | 0.022978852 | 0.6502387 |
| 364 | 8057004 | 1.1961724 | 5.848846 | 0.027656506 | 0.6502387 |
| 751 | 8154223 | -0.9634973 | 5.844127 | 0.027710623 | 0.6502387 |
| 28 | 8139121 | -1.1025219 | 5.386542 | 0.033587624 | 0.6502387 |
| 401 | 7927915 | -0.9593178 | 5.294730 | 0.034933073 | 0.6502387 |
| 184 | 7945169 | 1.5171376 | 5.166801 | 0.036912820 | 0.6502387 |
| 705 | 8146790 | -0.7653335 | 5.056408 | 0.038725850 | 0.6502387 |

### 6.5 Creating Reports

To output the differentially expressed genes along with annotations to an HTML file in your current working directory, we can use the Output2HTML function.
> Output2HTML(sigResult1)
> Output2HTML(sigResult2)

## 7 Detecting Interaction

Interaction is a statistical term referring to a situation when the relationship between the outcome and the variable of the main interest differs at different levels of the extraneous variable.

Just like before, we need to create the design and contrast matrices to detect the interaction effect.

```
> designInt <- new("designMatrix", target = pData(filtered), covariates = c("Treatment",
+ "Group"), intIndex = c(1, 2))
> designInt
    (Intercept) Treatment/Treated Group/B Treatment/Treated:Group/B
1 1 1 0
2 1 1 0
3 1 1 1 0
4 1 1 0
5 1 1 1 1 1
6 1 1 1 1 1
7 1 1 1 1 1 1
8 1 1 1 1 % 1 0
llll
10 1 1 0 0
12 1 0 0 0
13 1 0 1 0
14 1 0 0
15 1% 0
16 1 0 1 0
attr(,"assign")
[1] 0 1 2 3
attr(,"contrasts")
attr(,"contrasts")$Treatment
[1] "contr.treatment"
attr(,"contrasts")$Group
[1] "contr.treatment"
> contrastInt <- new("contrastMatrix", design.matrix = designInt,
+ interaction = TRUE)
> contrastInt
[1,] [,1]
```

```
[2,] 0
[3,] 0
[4,] 1
```

To identify genes with an interaction effect, we can use the same regress and selectSigGene functions:

```
> resultInt <- regress(filtered, contrastInt)
> sigResultInt <- selectSigGene(resultInt, p.value = 0.05, fc.value = log2(1.5))
```

For genes with the interaction effect, they should be analyzed separately within each group. For genes without any interaction gene, they should be analyzed together. This step can be achieved by using the postInteraction function. The postInteraction function returns an object of interactionResult class. The components of the interactionResult object consist of a list of regressResult objects. The first component is a regressResult object for all the genes. The second component contains the result for genes without interaction. The third and the fourth components (since Group only contains two factors, A and B) contain results for genes with interaction only among groups A and B, respectively. Then we can use the selectSigGeneInt function again to select differently expressed genes within each component of the interactionResult object.

```
> intResult <- postInteraction(filtered, sigResultInt, mainVar = "Treatment",
+ compare1 = "Treated", compare2 = "Control")
> sigResultInt <- selectSigGeneInt(intResult, pGroup = 0.05, pMain = 0.05)
```

We can use the Output2HTML function again to output the differentially expressed genes along with annotations to an HTML file in your current working directory.

```
> Output2HTML(sigResultInt)
```


## 8 Creating Index File

We have created multiple outputs, including normalized data, filtered data, and differently expressed genes for multiple models. We can create an index file that can link all of these results.

```
> createIndex(sigResult1, sigResult2, intResult)
*** Output redirected to directory: /tmp/Rtmp9AvroA
*** Use HTMLStop() to end redirection.
```

