macat

November 11, 2009

R topics documented:

	buildMACAT	1
	compute.sliding	2
	discreteKernelize	3
	discretizeAll	4
	discretize	
	discretize.tscores	
	evalScoring	
	evaluateParameters	
	getResults	
	html	
	kernelizeAll	
	kernelize	
	kernelizeToPython	
	Kernels	
	loaddatapkg	
	Auxiliary Computation Functions	
	plot.MACATevalScoring	
	preprocessedLoader	
	Python data format	
	scoring	
	stjd	
	sigu	
Index		24
buil 1	LdMACAT Create MACAT list from objects in workspace	
DULL	Grada Creme MACAI usi from objects in workspace	

Description

This is a wrapper around the preprocessedLoader function. Use it, when you want to build a MACAT-list structure from objects already in your workspace.

Usage

```
buildMACAT(matrix, chip, labels = NULL, chromLocObj = NULL)
```

2 compute.sliding

Arguments

matrix	expression matrix with rows=genes and columns=samples; Rownames have to match chip; Columnnames are not mandatory.	
chip	Identifier for used microarray	
labels	Classlabels for samples, has to have length=number of columns in matrix	
chromLocObj	Object of class chromLocation specifying the genomic position, each probe on the array is mapped to. If not provided, it is build in the function using annotate's function buildChromLocation.	

Details

This is only a convenience wrapper around the function preprocessedLoader for the case, that you want to build a MACAT-list from objects in your workspace.

Value

A MACAT-list structure. For an example and a description of the format see data stjude in package 'stjudem'.

Author(s)

MACAT development team

See Also

preprocessedLoader, st jude in package 'stjudem'

Examples

compute.sliding

Compute and plot smoothing of expression values or scores along the chromosome

Description

'compute.sliding' computes a smoothing of the expression data or scores along the chromosome using the specified kernel function. This function is also used within the 'evalScoring' function. 'plotSliding' creates a plot of the smoothed expression values / scores.

discreteKernelize 3

Usage

```
compute.sliding(data, chromosome, sample, kernel, kernelparams=NULL, step.width plotSliding(data, chromosome, sample, kernel, kernelparams=NULL, step.width=1000000, ...)
```

Arguments

A MACATData list holding the Expression values and gene locations
the chromosome to be smoothed
sample the sample (patient) whose expression values are smoothed
kernel a kernel function (one of rbf, kNN, basePairDistance or your own)
kernelparams a list of named parameters for the kernel (by default estimated from the data)
step.width the smoothing is computed stepwise every step.width basepairs (default is 100000)

... further graphical parameters passed on to plot.default

Value

for compute.sliding: a matrix of dimension (steps x 2) with in the first column the locations in basepairs where an interpolation is computed, and in the second column the smoothed values. plotSliding does not return anything and is merely called for its side-effect producing the plot.

Author(s)

MACAT development team

See Also

```
kernelize, evalScoring
```

Examples

discreteKernelize Discretize and smooth expression values

Description

returns discretized kernelized expression values and saves them to a file if argument 'saveToFile' is TRUE. For details on discretization see discretize.

4 discretizeAll

Usage

Arguments

data MACATData Object
chrom chromosome to kernelize
margin symmetric qunatile in percent
step.width size of the interpolation steps
kernel kernel function one of rbf, kNN, basePairDistance or your own
kernelparams list of named kernel parameters

saveToFile logicval indicating whether to write a flatfile or not; default is FALSE

Details

Filename of the flatfile is: discrete_kernelized_seq_margin_<margin>_chrom_<chrom>.py where <margin> is the discretization parameter and <chrom> the name of the chromosome.

Value

discretized and kernelized expression matrix

Author(s)

The MACAT Development team

See Also

```
pydata, kernelizeAll
```

Examples

```
#loaddatapkg("stjudem")
data(stjd)
discretizedKernelized = discreteKernelize(stjd, 13)
```

discretizeAll Da

Discretize complete expression matrix

Description

perform discretization on all chromosomes and write python flat files

Usage

```
discretizeAll(data, margin = 10)
```

discretize 5

Arguments

data	MACATData Object
margin	symmetric quantile in percent

Details

The filename for the python flat files are discrete_seqs_margin_<margin>_chrom_<chrom>.py where <chrom> and <margin> are the names of the chromosome and the margin used for discretization. For details on the discretization see discretize.

Value

produces python flat file

Author(s)

The MACAT Development team

See Also

```
discretize
```

Examples

```
# !!! takes some time !!!
## Not run:
  #loaddatapkg("stjudem")
  data(stjd)
  discretizeAll(stjd, margin=10)
## End(Not run)
```

discretize

Discretize expression values

Description

'discretize' returns the discretized expression data for all chromosomes in chrom and all samples that have a label listed in label. Discretization is performed by comparing the value gene-wise (location-wise) with the symmetric upper and lower quantile given by margin (in percent margin/2 lower and upper quantile).

Usage

```
discretize(data, chrom, label, margin = 10)
discretizeChromosome(data, chrom, margin=10)
discretizeOne(data, chrom, sample, margin=10)
```

6 discretize.tscores

Arguments

data	MACATData object
chrom	list of chromosomes

label list of labels

margin symmetric quantile in percent

sample the sample for which you want discretized expression data

Value

returns a discretized expression matrix for all genes on the chromosomes in 'chrom' and all samples that have a label in 'label'.

Author(s)

MACAT development team

See Also

```
discretizeAll
```

discretize.tscores Discretize regularized t-scores

Description

discretize.tscores returns a discretized version of the scores in the MACATevalScoring object. Discretization is performed by comparing the value gene-wise (location-wise) with the symmetric upper and lower quantile given by margin (in percent margin/2 lower and upper quantile). discretizeAllClasses produces a flatfile readable by PYTHON.

Usage

```
discretize.tscores(scores)
discretizeAllClasses.tscores(data, chrom, nperms=10, kernel=rbf, kernelparams=NU
```

Arguments

scores	a MACATevalScoring object obtained from evalScoring
data	a MACATData Object containing all expression values, gene Locations and labels (obtained from preprocessed Loader) $$
chrom	chromosome that is discretized
nperms	number of permutations for the computation of empirical p values (evalScoring)
kernel	$kernel\ function\ used\ for\ smoothing\ one\ of\ rbf,\ kNN,\ basePairDistance\ or\ your\ own$
kernelparams	list of parameters for the kernels
step.width	size of a interpolation step in basepairs

evalScoring 7

Details

The filename for the python flat files are discrete_chrom_<chrom>_class_<label>.py where <chrom> and <label> are the names of the chromosome and class label.

Value

```
discretize.tscores

a vector of discretized tscores

discretizeAllClasses.tscores

creates python flatfiles (see details)
```

Author(s)

The MACAT development team

See Also

```
evalScoring, kernels, pythondata
```

Examples

```
#loaddatapkg("stjudem")
data(stjd)
# simple scoring with short running time
scores = evalScoring(stjd, "T", 1, nperms=100, cross.validate=FALSE)
discrete = discretize.tscores(scores)
```

evalScoring

Score differential expression, assess significance, and smooth scores along the chromosome

Description

This function computes for all genes on one chromosome the regularized t-statistic to score differential gene expression for two given groups of samples. Additionally these scores are computed for a number of permutations to assess significance. Afterwards these scores are smoothed with a given kernel along the chromosome to give scores for chromosomal regions.

Usage

```
evalScoring(data, class, chromosome, nperms=1000, permute="labels",
    pcompute="empirical", subset=NULL,
    newlabels=NULL,kernel=rbf,kernelparams=NULL,cross.validate=TRUE,
    paramMultipliers=2^(-4:4),ncross=10,step.width=100000,
    memory.limit=TRUE, verbose=TRUE)
```

8 evalScoring

Arguments

data Gene expression data in the MACAT list format. See data(stjude) for an exam-

ple.

class Which of the given class labels is to be analyzed

chromosome Chromosome to be analyzed nperms

Number of permutations

permute Method to do permutations. Default 'labels' does permutations of the class la-

bels, which is the common and faster way to assess significance of differential expression. The altenative 'locations' does permutations of gene locations, is

much slower and right now should be considered preliminary at best.

pcompute Method to determine the p-value for differential expression of each gene. Is only

evaluated if the argument permute='labels' and in that case passed on to

the function scoring

subset If a subset of samples is to be used, give vector of column- indices of these

samples in the original matrix here.

newlabels If other labels than the ones in the MACAT-list-structure are to be used, give

them as character vector/factor here. Make sure argument 'class' is one of them.

kernel Choose kernel to smooth scores along the chromose. Available are 'kNN' for

k-Nearest-Neighbors, 'rbf' for radial-basis-function (Gaussian), 'basePairDistance' for a kernel, which averages over all genes within a given range of base

pairs around a position.

kernelparams Additional parameters for the kernel as list, e.g., kernelparams=list(k=5) for tak-

ing the 5 nearest neighbours in the kNN-kernel. If NULL some defaults are set

within the function.

cross.validate

Logical. Should the paramter settings for the kernel function be optimized by a

cross-validation?

paramMultipliers

Numeric vector. If you do cross-validation of the kernel parameters, specify the

multipliers of the given (standard) parameters to search over for the optimal one.

ncross Integer. If you do cross-validation, specify how many folds.

step.width Defines the resolution of smoothed scores on the chromosome, is in fact the

distance in base pairs between 2 positions, for which smoothed scores are to be

calculated.

memory.limit If you have a computer with lots of RAM, setting this to FALSE will increase

speed of computations.

verbose logical; should function's progress be reported to STDOUT?; default: TRUE.

Details

Please see the package vignette for more details on this function.

Value

List of class 'MACATevalScoring' with 11 components:

original.geneid

Gene IDs of the genes on the chosen chromosome, sorted according to their position on the chromosome

evalScoring 9

```
original.loc Location of genes on chromosome in base pairs from 5'end original.score \,
```

Regularized t-score of genes on chromosome

original.pvalue

Empirical p-value of genes on chromosome. How often was a higher score observed than this one with random permutations? In other words, how significant seems this score to be?

steps Positions on the chromosome in bp from 5', for which smoothed scores have

sliding.value

Smoothed regularized t-scores at step-positions.

lower.permuted.border

Smoothed scores from permutations, lower significance border, currently 2.5%-quantile of permutation scores.

upper.permuted.border

Smoothed scores from permutations, upper significance border, currently 97.5%-quantile of permutation scores.

chromosome Chromosome, which has been analyzed

been computed.

class Class, which has been analyzed chip Identifier for used microarray

Author(s)

MACAT development team

See Also

```
scoring,plot.MACATevalScoring,getResults
```

Examples

```
data(stjd) # load example data
# if you have the data package 'stjudem' installed,
# you should work on the full data therein, of which
  the provided example data, is just a piece
#loaddatapkg("stjudem")
# T-lymphocyte versus B-lymphocyte on chromosome 1,
  smoothed with k-Nearest-Neighbours kernel(k=15),
  few permutations for higher speed
chrom1Tknn <- evalScoring(stjd, "T", chromosome="1", permute="labels",</pre>
nperms=100, kernel=kNN, kernelparams=list(k=15), step.width=100000)
# plotting on x11:
if (interactive())
   plot(chrom1Tknn)
# plotting on HTML:
if (interactive())
   plot(chrom1Tknn,"html")
```

10 evaluateParameters

evaluateParameters Evaluate Performance of Kernel Parameters by Cross-validation

Description

For a given data set, chromosome, class, and kernel function, this function helps in determining optimal settings for the kernel parameter(s). The performance of individual parameter setting is assessed by cross-validation.

Usage

```
evaluateParameters(data, class, chromosome, kernel, kernelparams = NULL, paramMultipliers = 2^(-4:4), subset = NULL, newlabels = NULL, ncross = 10, verbose = TRUE)
```

Arguments

data Gene expression data in the MACAT list format. See data(stjude) for an example of the data of the	am-
--	-----

ple.

class Sample class to be analyzed chromosome Chromosome to be analyzed

kernel Choose kernel to smooth scores along the chromosome. Available are 'kNN' for

k-Nearest-Neighbors, 'rbf' for radial-basis-function (Gaussian), 'basePairDistance' for a kernel, which averages over all genes within a given range of base

pairs around a position.

kernelparams Additional parameters for the kernel as list, e.g., kernelparams=list(k=5) for tak-

ing the 5 nearest neighbours in the kNN-kernel. If NULL some defaults are set

within the function.

paramMultipliers

Numeric vector. If you do cross-validation of the kernel parameters, specify these as multipliers of the given (standard) kernel parameter, depending on your kernel choice (see page 5 of the vignette). The multiplication results are the kernel argument settings, among which you want to search for the optimal one

using cross-validation.

subset If a subset of samples is to be used, give vector of column- indices of these

samples in the original matrix here.

newlabels If other labels than the ones in the MACAT-list-structure are to be used, give

them as character vector/factor here. Make sure argument 'class' is one of them.

ncross Integer. Specify how many folds in cross-validation.
verbose Logical. Should progress be reported to STDOUT?

Value

A list of class 'MACATevP' with 4 components:

[parameterName]

List of assessed settings for the parameter [parameterName].

avgResid Average Residual Sum of Squares for the parameter settings in the same order

as the first component.

getResults 11

multiplier Multiplier of the original parameters in the same order as the first components.

best List of parameter settings considered optimal by cross- validation. Can be di-

rectly inserted under the argument 'kernelparams' of the 'evalScoring' function.

Author(s)

MACAT development team

See Also

```
evalScoring
```

Examples

getResults

Access results of 'evalScoring'

Description

This function processes the result of the evalScoring function and returns a list of probe sets within chromosome regions deemed significant by MACAT. Additional annotation for these probe sets is provided along with their identifiers.

Usage

```
getResults(MACATevalScoringOBJ)
```

Arguments

```
MACATevalScoringOBJ
```

Object of class MACATevalScoring, usually the result from evalScoring

Details

The p-values have been computed individually for probe sets (genes), not for whole chromosome regions. Thus, regions deemed significant by sliding window approach do not have to consist only of probe sets with low p-values. These probe-set p-values are not used to determine whether a region is considered significant or not. Instead the comparison between actual and interpolated scores to actual and interpolated boundaries determines whether a region is considered significant.

This function is called within the plot function for the results of evalScoring, when HTML output is desired.

12 html

Value

A list with the following components, describing probe sets within chromosome regions deemed significant:

probeID IDs of probe sets within these chromosome regions

cytoband chromosomal bands these probe sets have been annotated to

gene symbols these probe sets have been annotated to

 ${\tt p-values} \ \ \text{p-values for probe sets; see details}$

locusid EntrezGene-(formerly LocusLink) IDs of these probe sets

genedescription

Description of genes the probe sets have been annotated to

probeScore the differential expression scores for the probe sets

chromosome chromosome, the analysis has been done for sample class, the analysis has been done for

Author(s)

MACAT development team

See Also

```
evalScoring
```

Examples

html

HTML functions for MACAT.

Description

HTML functions for internal usage by other MACAT functions. Normally not called by user.

Details

Internal HTML functions. Not called by user.

Author(s)

MACAT development team

```
plot.MACATevalScoring
```

kernelizeAll 13

kernelizeAll Smoo	th expression dat	ita for all chromosome	es
-------------------	-------------------	------------------------	----

Description

'kernelizeAll' smoothes complete expression matrix and writes the result into one text file for each chromosome. These text files can be read into Python.

Usage

Arguments

data MACATData Object

step.width size of steps for kernelization

kernel kernel function one of rbf, kNN, basePairDistance or your owm

kernelparams list of named kernel parameters

Details

filename of the python flatfiles: kernelized_seq_chrom_<chrom>.py where <chrom> is the name of the chromosome.

Value

does not return anything; called for its side-effect that is to produce Python-readable text files

Author(s)

The MACAT Development Team

See Also

```
pydata, kernelizeToPython
```

Examples

```
## Not run:
    #!!! takes quite some time !!!
    loaddatapkg("stjudem")
    kernelizeAll(stjude)

## End(Not run)
```

14 kernelize

kernelize Smoo	oth expression values or scores
----------------	---------------------------------

Description

'kernelize' uses a kernel to smooth the data given in geneLocations by computing a weighted sum of the values vector. The weights for each position are given in the kernelweights matrix. A kernelweights matrix can be obtained by using the kernelmatrix function.

Usage

```
getsteps(geneLocations, step.width)
kernelmatrix(steps, geneLocations, kernel, kernelparams)
kernelize(values, kernelweights)
```

Arguments

geneLocations

a list of gene locations (length n)

step.width the width of steps in basepairs

steps a list of locations where the kernelization shall be computed

kernel function one of rbf, kNN or basePairDistance (or your own)

kernelparams a list of named parameters for the kernel (default is fitted to the data)

values vector of length n or matrix (m x n) of values that are to be smoothed

kernelweights

a matrix of (n x steps) where n is the length of the values vector and steps is the

number of points where you wish to interpolate

Value

getsteps a list of locations starting at min(genLocations) going to max(geneLocations)

with steps of size step.width

kernelmatrix a matrix of (n x steps) containing the kernel weights for each location in steps

kernelize a vector of length steps or a matrix (m x steps) containing the smoothed values

Author(s)

MACAT Development team

```
compute.sliding, evalScoring
```

kernelizeToPython 15

Examples

```
data(stjd)
genes = seq(100)
geneLocations = abs(stjd$geneLocation[genes])
geneExpression = stjd$expr[genes,]
step.width = 100000
steps = getsteps(geneLocations, step.width)
weights = kernelmatrix(steps, geneLocations, rbf, list(gamma=1/10^13))
kernelized = kernelize(geneExpression, weights)
plot(steps, kernelized[1,])
```

kernelizeToPython Smooth expression values and write to file

Description

Smoothes expression data for one chromosome and writes the result into a text file, which can be read into PYTHON, or returns it without writing. 'kernelizeToPython' is the one-chromosome version of kernelizeAll.

Usage

```
kernelizeToPython(data, chrom, step.width = 1e+05, kernel = rbf, kernelparams = list(gamma = 1/10^13), saveToFile = TRUE)
```

Arguments

data MACATData Object

chrom kernelize all genes that are on this chromosome

step.width widtrh of interploation steps

kernel kernel function one of rbf, kNN, basePairDistance or your own

kernelparams list of named kernel parameters

saveToFile logical indicating wether to save as flat file or not

Details

filename of the flatfile: kernelized_seq_chrom_<chrom>.py where <chrom> is the name of the chromosome.

Value

returns kernelized expression matrix

Author(s)

The MACAT Development team

```
pydata, kernelizeAll
```

16 Kernels

Examples

```
## Not run:
   data(stjd)
   kernelized = kernelizeToPython(stjd, 3)
## End(Not run)
```

Kernels

various kernel functions for computations in MACAT

Description

Various Kernel functions for computations in MACAT. Normally not called by user. All kernel functions have the same arguments in the same order!!!

Usage

```
kNN(geneLocations, position, params)
rbf(geneLocations, position, params = list(gamma=1/10^13))
basePairDistance(geneLocations, position, params = list(distance = 1e+06))
```

Arguments

geneLocations

Location of genes

position Position on chromosome params special kernel parameters

kNN: k = number of nearest genes

rbf: gamma = kernel width

basePairDistance: distance = distance within which all genes are averaged

Details

For internal use by other MACAT-functions. Not called by user.

Value

returns kernel weight for position, computed from the geneLocations

Author(s)

MACAT development team

```
evalScoring, evalScoring
```

loaddatapkg 17

Examples

loaddatapkg

Load data package

Description

This function loads the data package, you need for seeing the demo and the examples. If you have already installed the data package, it will simply attach it via library. Otherwise it will try to download and install the package using functions from the package

Usage

```
loaddatapkg(mydatapkg,installDir=.libPaths()[1])
```

Arguments

mydatapkg Name of the data package to load as String

installDir Directory, into which the new package will be installed, if is not already in-

stalled. Defaults to the first entry of the standard installation paths.

Note

The package stjudem by now is a Bioconductor example data package, too. Thus, you can also install it using the biocLite function. Try the following: source ("http://www.bioconductor.org/biocLi

Author(s)

Joern Toedling

See Also

```
install.packages
```

Examples

```
## Not run: loaddatapkg("stjudem") # to load the data package "stjudem"
```

```
Auxiliary Computation Functions
```

Auxiliary Functions for Computations in MACAT

Description

Auxiliary functions for internal usage by other MACAT functions. Normally not called by user.

Details

Internal auxiliary functions. Not called by user.

Author(s)

MACAT development team

See Also

```
evalScoring
```

```
plot.MACATevalScoring
```

 ${\it Plot function for MACATeval Scoring objects.}$

Description

Function plots scores, 0.025 and 0.975 quantiles of the permuted scores (grey lines), and sliding average score (red line) along the chromosome. Yellow dots highlight regions, in which the smoothed absolute scores exceed the permutation-derived quantile boundaries.

Usage

Arguments

X	MACATevalScoring object.
output	plot "x11" or create a "html" -file with further information. HTML-page will open automatically.
HTMLfilename	HTML-filename, default:Results <chomosome>_<class>.html</class></chomosome>
mytitle	Title of HTML-page, default: "Results of class <class> on chromosome <chromosome>"</chromosome></class>
new.device	if FALSE: Possibility to plot several plots in one device
	further arguments passed on to generic function plot

preprocessedLoader 19

Details

One can create a HTML-page on-the-fly if argument output='html'. The HTML-page provides informations about highlighted regions in the plot. Furthermore there are click-able Entrezgene-IDs for further analysis.

Author(s)

MACAT development team

See Also

```
evalScoring, getResults
```

Examples

```
# see function 'evalScoring' for an example
```

preprocessedLoader Read in data and produce MACAT list

Description

This function reads expression data either from a saved R-file (.RData,.rda), or from a tab-separated text-file (.xls). For building a MACAT-list structure from objects in your workspace, you can either use this function or the convenience wrapper 'buildMACAT'.

Usage

```
preprocessedLoader(rdatafile, chip, labels = NULL, chromLocObj = NULL,
rdafile = TRUE, tabfile = FALSE, labelfile = FALSE)
```

Arguments

rdatafile	Complete name of the expression data file, or the expression matrix
chip	Identifier of the used microarray. To date only commercial Affymetrix microarrays are supported by MACAT
labels	Classlabels of the samples, vector of same length as number of columns in expression matrix; alternatively complete name of textfile with one label per line
chromLocObj	Object of class chromLocation specifying the genomic position, each probe on the array is mapped to. If not provided, it is build in the function using annotate's function buildChromLocation.
rdafile	Logical; is first argument a saved R-file?
tabfile	Logical; is first argument a tab-separated text file?
labelfile	Logical; is third argument a file with one label per line?

20 Python data format

Value

List of class 'MACATData' with 6 components:

geneName Identifiers of genes/probe sets in expression data

geneLocation Location of genes on their chromosome as distance from 5'end in base pairs Negative numbers denote genes on the antisense strand.

chromosome Chromosome of the respective gene. Components 'geneName', 'geneLocation', and 'chromosome' are in the same order.

expr expression matrix with rows = genes and columns = samples/patients

(disease) subtype of each sample, has length = number of columns of expression matrix

chip Identifier for Microarray used for the experiments

Note

At present, macat can only work with Affymetrix microarrays, for which an annotation package is installed on your system. Such annotation packages can either be obtained from the Bioconductor annotation packages repository or be constructed using the Bioconductor package AnnBuilder. For an example, see the common annotation package hgu95av2.

Author(s)

MACAT development team

See Also

```
buildMACAT, read. table, stjd, stjude in package 'stjudem'
```

Examples

```
## Not run:
    # assume you have your HG-U95Av2 expression values in a
    # tab-separated text file, called 'foo.txt'
    mydata <- preprocessedLoader("foo.txt", "hgu95av2", rdafile=FALSE, tabfile=TRUE)
## End(Not run)</pre>
```

Python data format $\mathit{Flatfile}\ \mathit{format}$

Description

This is a description of the text files, usually written by MACAT functions such as kernelizeToPython. These text files can be read into PYTHON. Each flat files contains a list of matrices. The outer list has one entry for each class in the data set, the inner matrices consist of all the sequences from the specified chromosome belonging to that class. Each row represents one sample, each column a gene from the respective chromosome.

The lists are delimited by '[' and ']' brackets. The matrices are written as lists of lists (e.g. [[],[],...,[]]).

scoring 21

Examples

```
# The files look like this:
# [ [[1.11, 1.32, 0.92, ...], [...], [...]],
# [[0.45, 0.91, 1.84, ...], [...], [...]],
# [[1.06, 1.59, 0.73, ...], [...], [...]],
# ]
```

scoring

Compute (regularized) t-scores for gene expression data

Description

This function computes for all genes in an expression matrix the (regularized) t-scores (statistics) with the given class labels and a number of permutations of these labels. Each gene is also assigned a p-value either empirically from the permutation scores or from a t-distribution.

Usage

Arguments

data	Expression matrix with rows = genes and columns = samples
labels	Vector or factor of class labels; Scoring works only with two classes!
method	Either "SAM" to compute regularized t-scores, or "t.test" to compute Student's t-statistic
pcompute	Method to compute p-values for each genes, either "empirical" to do permutations and compute p-values from them, or "tdist" to compute p-values based on respective t-distribution
nperms	Number of permutations of the labels to be investigated, if argument 'pcompute="empirical"'
memory.limit	Logical, if you have a really good computer (>2GB RAM), setting this FALSE will increase speed of computations
verbose	Logical, if progress should be reported to STDOUT

Details

If 'pcompute="empirical"', the statistic is computed based on the given class labels, afterwards for 'nperms' permutations of the labels. The p-value for each gene is then the proportion of permutation statistics that are higher or equal than the statistic from the real labels. For each gene the 2.5%- and the 97.5%-quantile of the permutation statistics are also returned as lower and upper 'significance threshold'.

If 'pcompute="tdist", the statistic is computed only based on the given class labels, and the p-value is computed from the t-distribution with (Number of samples - 2) degrees of freedom.

22 stjd

Value

A list, with four components:

```
observed (Regularized) t-scores for all genes based on the given labels

pvalues P-values for all genes, either from permutations or t-distribution

expected.lower

2.5%-quantile of permutation test-statistics, supposed to be a lower 'significance border' for the gene; or NULL if p-values were computed from t-distribution

expected.upper

97.5%-quantile of permutation test-statistics, supposed to be an upper 'signifi-
```

cance border' for the gene; or NULL if p-values were computed from t-distribution

Note

In package macat, this function is only called internally by the function evalScoring

Author(s)

MACAT development team

References

Regarding the regularized t-score please see the macat vignette.

See Also

```
evalScoring
```

Examples

```
data(stjd)
# compute gene-wise regularized t-statistics for
# T- vs. B-lymphocyte ALL:
isT <- as.numeric(stjd$labels=="T")
TvsB <- scoring(stjd$expr,isT,method="SAM",pcompute="none")
summary(TvsB$observed)</pre>
```

stjd

Subset Microarray Data from St.Jude Children Research Hospital (USA)

Description

Example for list-structure used by many functions in MACAT. It's based on the gene expression data published by Yeoh et al. (2002) The data has been preprocessed using 'vsn' on probe level and the probe values have been summed up to probe set values using the 'median polish' procedure. This is a subset of the data, containing only the data for the 5000 probe sets with the highest variance across the samples and for 10 exemplary samples, 5 from T-lymphocytic Acute Lymphocytic Leukemia (ALL) and 5 from B-lymphocytic ALL.

stjd 23

Usage

```
data(stjd)
```

Format

List of class 'MACATData' with 6 components:

geneName: Identifiers of genes/probe sets in expression data

geneLocation: Location of genes on their chromosome as distance from 5'end in base pairs Negative numbers denote genes on the antisense strand.

chromosome: Chromosome of the respective gene. Components 'geneName', 'geneLocation', and 'chromosome' are in the same order.

expr: expression matrix with rows = genes and columns = samples/patients

labels: (disease) subtype of each sample, has length = number of columns of expression matrix

chip: Identifier for Microarray used for the experiments (here for the Affymetrix HG-U95av2 Oligonucleotide GeneChip)

Note

For the full data package see the Bioconductor data package stjudem. If it is not already installed on your system, try source ("http:\www.bioconductor.org\biocLite.R"); biocLite("stjudem")

References

Yeoh et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. March 2002. 1: 133-143.

See Also

buildMACAT, st jude in package 'stjudem' for the complete expression data

Examples

```
data(stjd)
summary(stjd)
```

Index

*Topic datasets	discretize.tscores,5
stjd, 21	discretizeAll,4,5
*Topic file	discretizeAllClasses.tscores
preprocessedLoader, 18	(discretize.tscores), 5
*Topic hplot	discretizeChromosome
plot.MACATevalScoring, 17	(discretize), 5
*Topic internal	discretizeOne (discretize), 5
Auxiliary Computation	
Functions, 17	evalParams(Auxiliary
discretizeAll,4	Computation Functions), 17
html, 12	evalScoring, 3, 6, 7, 10, 11, 14, 16–18, 21
kernelizeAll, 12	evaluateParameters, 9
·	5 varaa 5 5 r aram 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7
kernelizeToPython, 14 Kernels, 15	fitkernelparams (Kernels), 15
loaddatapkg, 16	getExpression.MACATData
Python data format, 19	(Auxiliary Computation
*Topic manip	Functions), 17
buildMACAT, 1	getExpressionByChromosome.MACATData
compute.sliding,2	(Auxiliary Computation
discreteKernelize, 3	
discretize,5	Functions), 17
discretize.tscores,5	getExpressionByClass.MACATData
evalScoring, 7	(Auxiliary Computation
evaluateParameters,9	Functions), 17
getResults, 10	<pre>getExpressionByProbeset.MACATData</pre>
kernelize, 13	(Auxiliary Computation
	Functions), 17
scoring, 20	getFromDb(Auxiliary Computation
Ailiana Camantatian Functions	Functions), 17
Auxiliary Computation Functions,	getHtml(html), 12
17	getResults, 8, 10, 18
1 D'D' (77 7 1 15	getsteps(kernelize),13
basePairDistance (Kernels), 15	
buildMACAT, 1, 19, 22	html, 12
compare.gammas(Auxiliary	install.packages, 16
Computation Functions), 17	1 3 ,
compute.sliding, 2, 14	kernelize, 3, 13
crossvalParam(Auxiliary	kernelizeAll, 4, 12, 14, 15
Computation Functions), 17	kernelizeToPython, 13, 14, 19
1	kernelmatrix (kernelize), 13
demo.part(Auxiliary Computation	Kernels, 15
Functions), 17	kernels, 6
discreteKernelize, 3	kernels (Kernels), 15
discretize, 3, 4, 5	kNN (Kernels), 15
	(

INDEX 25

```
loaddatapkg, 16
Loader (preprocessedLoader), 18
MACATData (preprocessedLoader), 18
MACATinput (preprocessedLoader),
       18
maxDistances (Auxiliary
       Computation Functions), 17
\texttt{myhtml} \; \textit{(html)}, \, \textcolor{red}{12}
pair.distances(Auxiliary
       Computation Functions), 17
plot.default, 2
plot.MACATevalScoring, 8, 12, 17
plot.MACATevP
       (evaluateParameters), 9
plotSliding(compute.sliding), 2
preprocessedLoader, 1, 2, 18
pydata, 4, 13, 15
pydata (Python data format), 19
Python data format, 19
pythondata, 6
pythondata (Python data format),
       19
rawDataToPython(Auxiliary
       Computation Functions), 17
rbf (Kernels), 15
read.table, 19
saveForPython(Auxiliary
       Computation Functions), 17
scoring, 8, 20
slidingAverageAt (Auxiliary
       Computation Functions), 17
squaredDist(Auxiliary
       Computation Functions), 17
stjd, 19, <mark>21</mark>
toPython (Auxiliary Computation
       Functions), 17
```