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Abstract

This document serves a double purpose: (i) It explains the use of the Bioconductor
packages HilbertVis and HilbertVisGUI. This pair of packages offers a tool to visualise very
long one-dimensional data vectors (with up to billions of entries) in an efficient fashion that
allows to get a quick impression of the spatial distribution and rough shape of the features
present in the data. This is especially useful in the initial exploration of high-resolution
position-dependent genomic data, such as tiling array or ChIP-Seq data. (ii) It provides a
specific example by walking the reader through the task of processing ChIP-Seq data using
the stand-alone alignment tool Maq and the Bioconductor packages Biostrings, ShortRead
and HilbertVis/HilbertVisGUI.

Note: If you are only interested in the use of the HilbertVis/HilbertVisGUI packages, you can skip

the first section and start reading at Section 6.

Note: If you have trouble installing the package HilbertVisGUI, read the file INSTALL in the package.

1 Introduction

Bioconductor offers substantial support for genomic experiments, which, for the case of microar-
ray platforms, including tiling arrays, has reached maturity already a while ago. For data from
high-throughput sequencing experiments, development of new tools is currently (mid 2008) on-
going. In this document, I would like to show what can already been done by re-doing step for
step the analysis of an already published Solexa ChIP-Seq experiment.

I use this to demonstrate some aspects of the ShortRead package (by M. Morgan, [Mor]) and
the use of my packages “HilbertVis” and “HilbertVisGUI”. ShortRead introduces data structures
to represent aligned short sequence reads and offers functions to read in such data from files
output by the SolexaPipeline (the software that Illumina provides with its GenomeAnalyzer
machine) or by Maq (a stand-alone alignment program, [Li]). ShortRead’s data structures are
based on the infrastructure provided by Biostrings.
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As an example, we use data from a published study, Ref. [BCC+07], on histone methylations
in the human genome. Although this was not the main focus of that study, we re-analyse the data
for histone methylation patterns H3K4me1 and H3K4me3, as these are data sets of manageable
size. We first re-do the alignment with Maq, then use ShortRead to read the result into R and
then visualise the data with HilbertVis.

2 The example data

The authors of our example have deposited their raw data in the NCBI’s Provisional Short
Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under accession number
SRA000206. In the provisional archive, you can access an FTP server by clicking on “SRA
FTP” and will find there a directory named “SRA000206” that contains all the data as output
by Bustard, the base-calling program in the SolexaPipeline, as well as a number of fairly self-
explanatory XML files with meta data. There are 3 lanes for H3K4me1 and 7 lanes for H3K4me3.

I have used Maq to align the reads from these lanes against the human reference genome
as provided on Ensembl. Doing so requires converting the _seq.txt and _prb.txt files for the
lanes to the Sanger Institute’s FASTQ format and on to Maq’s BFQ (binary FASTQ format).
Likewise, the reference genome is converted to one large BFA (binary FASTA) file. Then, the
maq map command may be used to perform the alignment. As these steps are described in
the documentation on the Maq web site, I do not go into detail here.1 In the end, we have,
as output from Maq, a mapping file for each lane. I have put these files onto my web page.
So, if you want to try out the following steps for yourself, please download them from http:
//www.ebi.ac.uk/~anders/ShortReadExampleData/. Note, however, that you should use a
machine with at least 4 GB of RAM to perform the examples.

Of course, Maq is not the only choice to align the reads to the genome. You may as well
use Eland (the alignment program that comes with the SolexaPipeline), which can be read in as
well by ShortRead, so that the following steps apply to this case as well. Within certain limits,
the matching functionality of the Biostrings package allows you to even do everything within R.
Finally, there are other alignment tools specialised for high-throughput sequences (e.g., Soap,
rmap, shrimp) whose output cannot yet be read by ShortRead but who may be supported in the
future.

3 Reading in the alignment

Assume that the current working directory contains two sub-directories, names H3K4me1 and
H3K4me3. Then we can read in all the files of pattern runxx lanex.map with the following
commands:

> library("ShortRead")

> maps.me1 <- sapply( list.files( "H3K4me1", "run.*lane.\\.map" ),

+ function(filename) readAligned( "H3K4me1", filename, type="MAQMap" ) )

> maps.me3 <- sapply( list.files( "H3K4me3", "run.*lane.\\.map" ),

+ function(filename) readAligned( "H3K4me3", filename, type="MAQMap" ) )

Here, readAligned takes three arguments: the directory that contains the map file, the name
of the map file, and the type of data to be read, MAQMap. You may also use the type SolexaExport
to read in mappings produced by Eland (see help page for readAligned for details). In any case,
the function readAligned returns an S4 object of class AlignedRead.

1However, feel free to contact me if you want to know details.
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4 The class AlignedRead

An AlignedRead object is conceptionally quite similar to a data frame. It contains as many
“rows” as there are mapped reads:

> length( maps.me1$run4_lane8.map )

[1] 3465080

For each read, all the data parsed from the map file are stored. Think of these types of data
as of columns of a data frame, even though you do not access them with the $ operator but with
accessor functions. The “columns” chromosome, position and width show where in the genome
the reads were mapped:

> head( chromosome( maps.me1$run4_lane8.map ) )

[1] 10 10 10 10 10 10
113 Levels: 10 11 12 13 14 15 16 17 18 19 1 20 21 22 2 3 4 5 6 7 8 9 MT X ... NT_113898

> head( position( maps.me1$run4_lane8.map ) )

[1] 50547 53424 58681 61890 64043 66900

> head( width( maps.me1$run4_lane8.map ) )

[1] 25

As we see, the first 6 of the 3.4 mio reads in lane 8 of run 4 were all mapped to chromosome 10,
to the given positions, and extending from there all by 25 bp.2

The actual reads are stored as well,

> head( sread( maps.me1$run4_lane8.map ) )

A DNAStringSet instance of length 6
width seq

[1] 25 CCAGGAGAATATGCAATGATGACAA
[2] 25 TATAGAGCATTAAACCACCAAAGCT
[3] 25 TAACCAACTCAAGTGCCCATCAGTG
[4] 25 TGATTGTGCCACTGCACTCTAGCAA
[5] 25 TTGCTGGCACCAGGGACCAGGAGGA
[6] 25 TACCATCTCACACCACTTAGAATGG

as are the reads’ identifiers (which here encode their position on the lane):

> head( id( maps.me1$run4_lane8.map ) )

A BStringSet instance of length 6
width seq

[1] 14 R:8:34:810:204
[2] 14 R:8:82:891:530
[3] 15 R:8:136:501:225
[4] 13 R:8:68:11:564
[5] 15 R:8:101:523:977
[6] 14 R:8:15:487:873

2Note that Maq stores the aligned reads in order of their alignment. Hence, we start with very low base-pair
indices, which then increase. Maq has also started with chromosome 10, as that one happened to be the first one
in the BFA file.
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These last two objects are not ordinary R character vectors but DNAStringSet and BStringSet
objects. These are specialised data structures provided by the Biostrings package designed to
handle large amounts of character (or sequence) data. They are not elementary-type vectors but
S4 objects. (See the Biostrings vignette for details.) As they only mimic a vector they cannot
be columns of a data frame. This is the reason why AlignedRead is not a data frame although
its structure is reminiscent of one.

Other information stored in the AlignedRead object is the base-call quality as reported by
Bustard, here given in FASTQ quality string representation. (See the Maq web site for an
explanation of the format.)

> head( quality( maps.me1$run4_lane8.map ) )

class: FastqQuality
quality:
A BStringSet instance of length 6
width seq

[1] 25 +//59>@II1ACIIFIIII:IIIII
[2] 25 IIIIIIIIIIIIII7II5CI<.7+&
[3] 25 III1III4$@IIFI%3/DI$%A8*+
[4] 25 +&%,;+@;*7%6I+;*I>+%,@I@I
[5] 25 +IIIIII5HB3IHIE1&+++8,7+)
[6] 25 II%5I9.&II<I%8'%#7*,0%@9$

Maq calculates from this information and from the uniqueness and perfectness of the align-
ment an alignment score, which is stored in an alignQuality object:

> alignQuality( maps.me1$run4_lane8.map )

class: IntegerQuality
quality: 0 0 ... 9 9 (3465080 total)

The actual integer vector of qualities (one number per read) can be obtained with the accessor
function quality

> head( quality( alignQuality( maps.me1$run4_lane8.map ) ) )

[1] 0 0 0 0 0 0

The accessor function strand reports whether the read was mapped to the “+” or to the “–”
strand of the chromosome. It returns a factor with two levels:

> head( strand( maps.me1$run4_lane8.map ) )

[1] - + + - + +
Levels: - +

Remember that Solexa sequencing is not strand-specific. The information, from which strand
the sequence actually was precipitated, got lost during bridge PCR amplification. Hence, it is
better to think of this factor not as information on the strand but rather on the direction of the
fragment Have a look at Fig. 1 for an illustration.

The fields described so far are available for all AlignedRead objects. Depending on the
alignment software that was used additional information may be available. The slot alignData
is meant to hold such information
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Figure 1: The strand information shows how the read is aligned against the genome. If strand
is "+", the position indicates the start of the DNA read (dark green) as well as the start of the
whole fragment. The part of the fragment that was not read (light green) extends to the right
(i.e. towards larger chromosome coordinates). If strand is "-", then the fragment extends to
the left. As position always indicates the left edge of the read (but not necessarily an edge of
the whole fragment) it now points to a position within the whole fragment.

> alignData( maps.me1$run4_lane8.map )

An object of class "AlignedDataFrame"
readName: 1, 2, ..., 3465080 (3465080 total)
varLabels and varMetadata description:
nMismatchBestHit: Number of mismatches of the best hit
mismatchQuality: Sum of mismatched base qualities of the best hit
nExactMatch24: Number of 0-mismatch hits of the first 24 bases
nOneMismatch24: Number of 1-mismatch hits of the first 24 bases

AlignedDataFrame is a subclass of AnnotatedDataFrame. Hence, we can see the meaning of the
columns from the meta information displayed above and access the underlying data frame with
pData:

> head( pData( alignData( maps.me1$run4_lane8.map ) ) )

nMismatchBestHit mismatchQuality nExactMatch24 nOneMismatch24
1 0 0 3 0
2 0 0 2 85
3 2 17 0 1
4 1 4 1 34
5 1 30 0 4
6 1 4 85 85

5 Pile-up

In ChIP-Seq, one is usually interested in the number of precipitated DNA fragments in the
sample that were mapped to each genomic locus. This is best represented by what I call a “pile-
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up vector”3. A pile-up vector is a very long integer vector with as many elements as there are
base pairs in the chromosome under consideration. Each vector element counts the number of
fragments that were mapped such that they cover this base pair. The function pileup in the
ShortRead package calculates such a vector from alignment information.

In order to allocate a vector of the right size, pileup needs to know the length of the chro-
mosome. readBfaToc obtains the lengths of all sequences in a BFA file (binary FASTA, the
compressed FASTA format used by Maq). As a BFA file has a table of content at the beginning,
readBfaToc only has to read the header of the BFA file and is hence quite fast.

> seqlens <- readBfaToc( "Homo_sapiens.NCBI36.48.dna.all.bfa" )
> seqlens

10 11 12 13 14 15 16 17
135374737 134452384 132349534 114142980 106368585 100338915 88827254 78774742

18 19 1 20 21 22 2 3
76117153 63811651 247249719 62435964 46944323 49691432 242951149 199501827

4 5 6 7 8 9 MT X
191273063 180857866 170899992 158821424 146274826 140273252 16571 154913754

Y NT_113887 NT_113947 NT_113903 NT_113908 NT_113940 NT_113917 NT_113963
57772954 3994 4262 12854 13036 19187 19840 24360
NT_113876 NT_113950 NT_113946 NT_113920 NT_113911 NT_113907 NT_113937 NT_113941

25994 28709 31181 35155 36148 37175 37443 37498
NT_113909 NT_113921 NT_113919 NT_113960 NT_113945 NT_113879 NT_113938 NT_113928

38914 39615 40524 40752 41001 42503 44580 44888
NT_113906 NT_113904 NT_113873 NT_113966 NT_113943 NT_113914 NT_113948 NT_113886

46082 50950 51825 68003 81310 90085 92689 96249
NT_113932 NT_113929 NT_113878 NT_113927 NT_113900 NT_113918 NT_113875 NT_113942

104388 105485 106433 111864 112804 113275 114056 117663
NT_113926 NT_113934 NT_113954 NT_113953 NT_113874 NT_113883 NT_113924 NT_113933

119514 120350 129889 131056 136815 137703 139260 142595
NT_113884 NT_113890 NT_113870 NT_113881 NT_113939 NT_113956 NT_113951 NT_113902

143068 143687 145186 146010 147354 150002 152296 153959
NT_113913 NT_113958 NT_113949 NT_113889 NT_113936 NT_113957 NT_113961 NT_113925

154740 158069 159169 161147 163628 166452 166566 168820
NT_113882 NT_113916 NT_113930 NT_113955 NT_113944 NT_113901 NT_113905 NT_113872

172475 173443 174588 178865 182567 182896 183161 183763
NT_113952 NT_113912 NT_113935 NT_113880 NT_113931 NT_113923 NT_113915 NT_113885

184355 185143 185449 185571 186078 186858 187035 189789
NT_113888 NT_113871 NT_113964 NT_113877 NT_113910 NT_113962 NT_113899 NT_113965

191469 197748 204131 208942 211638 217385 520332 1005289
NT_113898
1305230

If you try to reproduce this example, you may not have the BFA file4. So, you can obtain
the object seqlens manually with the following command (which omits the NT_xxxxx contigs):

> seqlens <- c( `10`=135374737, `11`=134452384, `12`=132349534, `13`=114142980,
+ `14`=106368585, `15`=100338915, `16`=88827254, `17`=78774742, `18`=76117153,

3Maybe, there is another, more established term that I am not aware of. I borrow from the terminology used
with Maq, where a related function is called “pileup”.

4I have not put it on my web page as it is very big and easily created from the Ensembl files.
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Figure 2: Output of plotLongVector( me3.p10 ).

+ `19`=63811651, `1`=247249719, `20`=62435964, `21`=46944323, `22`=49691432,
+ `2`=242951149, `3`=199501827, `4`=191273063, `5`=180857866, `6`=170899992,
+ `7`=158821424, `8`=146274826, `9`=140273252, MT=16571, X=154913754, Y=57772954 )

In order to get a pileup for, say, chromosome 10, using only mappings in maps.me3$run13_lane4.map
with a mapping quality of at least 15, we first create a new AlignedRead object containing only
these reads

> foo <- maps.me3$run13_lane4.map[

+ chromosome( maps.me3$run13_lane4.map ) == "10" &

+ quality(alignQuality( maps.me3$run13_lane4.map )) >= 15 ]

and then run the pileup function on these:

> me3.p10 <- pileup( position(foo), width(foo), seqlens[["10"]] )

> str(me3.p10)

int [1:135374737] 0 0 0 0 0 0 0 0 0 0 ...

In principle, we could now plot this vector simply by typing

> plot( me3.p10, type='h' )

However, this command takes very long, as it plots one needle for each vector element, spending
most of its time plotting over and over at the same spot. The function plotLongVector (in
HilbertVis) produces the same plot with a decent speed:

> library("HilbertVis")

> plotLongVector( me3.p10 )

[Output: See Fig. 2.]
It does so by first partitioning the vector in 4,000 parts of equal length, getting the maximum

out of each part, and returning it as a vector, which has now only length 4,000. In case you want
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to write your own plotting function (because plotLongVector is rather rudimentary), you can
use the function shrinkVector (in HilbertVis) to accomplish this.

In the form used above, the function pileup counts only which base pairs the actual read
covers. Typically, the read length (here: 25 nt) is much shorter than the length of the DNA
fragments. In the present data, the length of the fragments after sonication, adaptor ligation
and gel-electrophoretic size selection was about 220 bp including adaptors, i. e., approx. 185 bp
without adaptors. Given that the immuno-precipitated histone can be anywhere on the fragment,
not necessarily within the part at the end that is actually sequenced (the “read”) we get a less
biased picture by incorporating this information into the calculation of the pile-up vector. As
illustrated in Fig. 1 we cannot simply replace the second argument with 185 because depending
on the strand value the position my need shifting. The pileup function does this calculation
correctly when called thus:

> me3.p10 <- pileup( position(foo), 185, seqlens[["10"]], strand(foo), width(foo) )

The vector me3.p10 incorporated only the information from one lane. We get better count
statistics by getting such a vector for each lane from the H3K4me3 sample and then simply
summing them up element-wise:

> chr <- "10"

> me3.p10 <- rep.int( 0, seqlens[[chr]] )

> for( mp in maps.me3) {

+ foo <- mp[ chromosome(mp) == chr & quality(alignQuality( mp )) >= 15 ]

+ me3.p10 <- me3.p10 +

+ pileup( position(foo), 185, seqlens[[chr]], strand(foo), width(foo) ) }

Note that a for loop is used here instead of the use of sapply together with rowSums. The latter
may look more natural in R but as it builds up a two-dimensional array of all the intermediate
pile-up vectors it requires too much memory. Even with the for loop we give the garbage collector
quite some work, and the operation takes a while. Let’s do the same for “me1”:

> me1.p10 <- rep.int( 0, seqlens[[chr]] )

> for( mp in maps.me1) {

+ foo <- mp[ chromosome(mp) == chr & quality(alignQuality( mp )) >= 15 ]

+ me1.p10 <- me1.p10 +

+ pileup( position(foo), 185, seqlens[[chr]], strand(foo), width(foo) ) }

As “me1” has only 3 lanes as opposed to “me3”’s 7 lanes, we multiply it with 7/3 to get both
pile-ups on the same scale:

> me1.p10 <- me1.p10 * 7/3

6 Visualisation with Hilbert curve plots

6.1 The Hilbert curve

Note: If you have skipped the previous sections as you only want to read about HilbertVis, here

is what you need to know in order to start reading here: We have re-analysed part of the ChIP-Seq

experiments done in Ref. [BCC+07], namely the data regarding histone methylation patterns H3K4me1

and H3K4me3. We have constructed two very long “pile-up” vectors, me1.p10 and me3.p10, which

represent human chromosome 10 and have a length of 135374737, corresponding to the number of base

pairs in chromosome 10. Each element corresponds to a base pair and counts how many precipitated and
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Figure 3: Pile-up representation of the ChIP-Seq data for H3K4me1 and H3K4me3, depicting
the whole of chromosome 10.

sequenced DNA fragments within the respective sample (H3K4me1 or H3K4me3) cover this position.

To do your own experiments with these vectors, you may download them as R data file from http:

//www.ebi.ac.uk/~anders/ShortReadExampleData/meX.p10.Rdata.

Note 2: Since I have written this vignette, I have restructured teh package and split it into two parts,

called“HilbertVis”and“HilbertVisGUI”. This text focuses on the functionality of“HilbertVisGUI”, which

provides an interactive tool to explore data using teh visualisation technique desribed in the following.

“HilbertVis” contains further functions to produce the same kind of images but without interactive tools,

i.e. solely from the R command line. If you want to know more about these functions, which are not

(yet) mentioned in the present text, see the vignette “Visualising very long data vectors with the Hilbert

curve”, which is included in the “HilbertVis” package.

A first approach to visualising the two vectors is plotting them with the plotLongVector function
described above:
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Figure 4: Zoom into a small portion of Fig. 3.

> library( HilbertVis )

> library( HilbertVisGUI )

> par( mfrow = c(2,1) )

> plotLongVector( me1.p10, main="Chr 10, H3K3me1" )

> plotLongVector( me3.p10, main="Chr 10, H3K3me3" )

[Output: Fig. 3.]
The two vectors do look different but it is hard to make out what gives rise to the difference.

Is the number of peaks different, or their distribution, or their typical width? Given that each
pixel on the x axis corresponds to more than 100 kp, each of the needle can as well be a small
peak, only a few fragment lengths wide, a wide peak with a base of tens of kb, or even a cluster
of several peaks. We might zoom in somewhere but this is not too illuminating:

> par( mfrow = c(2,1) )

> plotLongVector( me1.p10[100000000:101000000], main="Chr 10, H3K3me1", offset=100000000 )
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Figure 5: Hilbert curve plot of pile-ups for H3K4me1 (left) and H3K4me3 (right) on chromosome
10.

> plotLongVector( me3.p10[100000000:101000000], main="Chr 10, H3K3me3", offset=100000000 )

[Output: Fig. 4.]
The standard approach would be to export the pile-up vectors into a genome track format

such as BED5 and then use a genome browser such as those on the UCSC or Ensembl web sites,
or IGB, to zoom in at many places to get a feeling for the data.

The Hilbert curve plot is an approach to display an as detailed picture of the whole chro-
mosome as possible by letting each pixel of a large square represent a quite short part of the
chromosome, coding with its colour for the maximum count in this short stretch, where the pixels
are arranged such that neighbouring parts of the chromosome appear next to each other in the
square. Furthermore, parts which are not directly neighbouring but are ion close distance should
not be separated much in the square either. Fig. 5 shows the two pile-up vectors in this so-called
Hilbert curve plot.

In order to understand this plot you need to know how the pixels are arranged to fulfil the
requirements just outlined as well as possible. To my knowledge, the first to study this problem
in detail and to come up with the solution also used here was D. A. Keim in Ref. [Kei96] (where
he used the data to visualise long time-series data of stock-market prices). He went back to an old
idea of Peano [Pea90] and Hilbert [Hil91], space-filling curves. Peano astonished the mathematics
community at the end of the 19th century by presenting a continuous mapping of a line to a
square, i.e., showed that a line can be folded up such that it passes through every point within
a square, thus blurring the seemingly clear-cut distinction between one- and two-dimensional
objects. Such a space-filling curve is a fractal, i.e., it has infinitely many corners and repeats
its overall form in all levels of its details. Fig. 6 shows the first six level of the construction of
Hilbert’s variant of Peano’s curve. Observe how at level k a line of length 22k passes through
each “pixel” of a square of dimension 2k × 2k, and how this curve is produced connecting four
copies (in different orientations) of the curve at the previous level, k − 1.

Figure 6 has been produced with the function plotHilbertCurve which is provided just for
demonstration purposes.

> library( grid )

5A function to do that might be added soon to ShortRead.
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Figure 6: The first four levels of the Hilbert curve fractal.
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> pushViewport( viewport( layout=grid.layout( 2, 2 ) ) )

> for( i in 1:4 ) {

+ pushViewport( viewport(

+ layout.pos.row=1+(i-1)%/%2, layout.pos.col=1+(i-1)%%2 ) )

+ plotHilbertCurve( i, new.page=FALSE )

+ popViewport( )

+ }

Going back to Fig. 5, we can now see clear difference between the two samples. The following
observations my be made just from comparing these two plots: The peaks of H3K4me3 are tall,
narrow, and well defined, while those for H3K4me1 are rather washed out. In both cases the
peaks spread out over the whole chromosome, but some areas have nearly no signal. These empty
parts are the same in both cases. These points were not clear only from Fig. . Exploring the
plot interactively as described in the following allows to get considerable more insights.

6.2 The HilbertVis GUI

In order to study the pile-up vectors, you can now simply call

hilbertDisplay( me1.p10, me3.p10 )

A GUI, as depicted in Fig. 7 will pop up that allows you to interactively explore your data
in the Hilbert curve plot representation. First, move the mouse over the coloured square and
observe how the small red line in the right-hand gauge (labelled “Displayed part of sequence”)
indicates where within the chromosome you are pointing. Playing with this feature allows you
to quickly orient yourself on how the chromosome is folded into the square. You can also read
off the exact position from the field “Bin under mouse cursor”6

Use the left mouse button to zoom in by clicking on one of the four quarters of the image.
You can only zoom into a quarter, not into any part of the image, because this ensures that the
displayed part is always a single consecutive stretch of the chromosome. The left-hand gauge
(labelled “Full sequence”) indicates which part is displayed: the full width of the gauge represents
the whole chromosome, the portion highlighted in red the part that is currently displayed in the
square. The coordinates of the first and last displayed base are printed in the edges of the right-
hand gauge. With the radio buttons labelled “Effect of left mouse button” you my switch from
zooming into a quarter to zooming into a 1/64 part, i.e. into one of the small squares in a though
8× 8 grid. Use the buttons at the bottom to zoom out.

If you have passed several vectors when calling hilbertDisplay, you may switch back and
forth between them with the buttons “Next” and “Previous” in order to compare the displayed
parts.

The two buttons “Coarser” and “Finer” allow to adjust the pixel size. Initially, each bin is
represented by one pixel at your monitor’s resolution, and there are 512×512 pixels in the image.
Pressing “Coarser” once blows up each image pixel to a 2 × 2 square of monitor pixels, which
allows for easier viewing but reduces the number of displayed image pixels to 256×256, i.e., each
pixel now represents four times as many base pairs.

There are a number of optional parameters to hilbertDisplay that come in handy, e.g.,
if you have vectors of differing length, if you want to customise colours or change a few other
points. Refer to the help page (displayed with ?hilbertDisplay) for details.

6The display of the bin’s value is not yet functional.
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Figure 7: The graphical user interface (GUI) provided by HilbertVisGUI.
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6.3 The callback interface

If you select the mode “Linear plot” as “Effect of left mouse button” and click somewhere in the
plot, a windows pops up with a linear plot that displays the part of the chromosome represented
by 256 pixels around the pixel on which you have clicked. (256 pixels correspond quite roughly
to the size of the cross-hair mouse cursor). This is useful to get a detailed view of the shape of
peaks.

To do the linear plot, HilbertDisplay calls the R function simpleLinPlot defined in the
HilbertVisGUI package. This is a simple wrapper around the function plotLongVector dis-
cussed earlier. Here is the definition of simpleLinPlot:

> simpleLinPlot

function (data, info)
{

hw <- (info$dispHi - info$dispLo)/1024
left <- max(1, info$bin - hw)
right <- min(info$bin + hw, length(data))
plotLongVector(data[left:right], offset = left, main = info$seqName,

shrinkLength = min(2 * hw + 1, 4000))
}
<environment: namespace:HilbertVisGUI>

You can replace this function by supplying your own plotting function as the argument plotFun
to hilbertDisplay. Your function must take two arguments that should be called data and
info, as above, and will be filled in by hilbertDisplay with the displayed vector and information
about where the user clicked and which part of the vector is being displayed. Try the following
example to see the format of this data:

dumpDataInsteadOfPlotting <- function( data, info ) {
str( data )
print( info )

}
hilbertDisplay( me1.p10, me3.p10, plotFunc=dumpDataInsteadOfPlotting )

Zoom in a bit, then switch to ”linear plot”and click somewhere. dumpDataInsteadOfPlotting
will be called and output such as the following appears on your R console:

num [1:135374737] 0 0 0 0 0 0 0 0 0 0 ...
$binLo
[1] 22950198

$bin
[1] 22950262

$binHi
[1] 22950327

$dispLo
[1] 16921843

$dispHi
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[1] 25382764

$seqIdx
[1] 1

$seqName
[1] "me1.p10"

See ?hilbertDisplay for an explanation of those fields that are not self-explanatory.
This feature is meant to allow for customised linear plots (maybe using the GenomeGraph

package to add annotation) but can also be used for other things than plotting, e.g., calculating
some statistics about a peak clicked on.

6.4 Three-channel display

In order to look for spatial correlations in different data vectors, it may be useful to overlay the
corresponding Hilbert curve plots in different colours. The function hilbertDisplayThreeChannel
allows to display three data vectors simultaneously, using the red, green, and blue channel of the
displayed image for the first, second, and third, vector. We may want to see whether the areas
with strong H3K4me1 occurance are at the same chromosome regions as the majority of the
H3K4me3 peaks. Furthermore, we may use the third channel to indicate the presence of exons.

We first obtain a list of all exons on chromosome 10 from EnsEMBL via BioMart:

> library( biomaRt )

> ensembl <- useMart("ensembl", dataset = "hsapiens_gene_ensembl")

> exons <- getBM( attributes=c( "exon_chrom_start", "exon_chrom_end" ),

+ filters="chromosome_name", values="10", mart=ensembl )

Them, we construct a vector that indicates for each base pair on chromosome 10, whether it
is exonic or not (bty means of the values 1 and 0).

> ex.p10 <- rep( 0, seqlens["10"] )

> for( i in 1:nrow(exons) )

+ ex.p10[ exons$exon_chrom_start[i] : exons$exon_chrom_end[i] ] <- 1

With the following command, we get a 3-color representation of the three vectors in the
HilbertDisplay GUI:

> hilbertDisplayThreeChannel( me1.p10 / 100, me3.p10 / 200, ex.p10 / 3 )

See Fig. refthreeColor for the image that the GUI shows. While the function hilbertDisplay
adjusts to the value range of the data (or can be manually adjusted with optional the paletteSteps
argument), the function hilbertDisplayThreeChannel expects all three vectors to be in the
value range between 0 and 1. This range is transformed to colours from black to a saturated red,
green, and blue. Values below 0 or above 1 are cut and displayed as if they were 0 or 1. To get
the pile-up vectors down to this range, an obvious step would be to devide by their maximum
value. However, this gives a too dark value, and hence, I have chosen for Fig. 8 larger scaling
factors, allowing extremely high peaks to become saturated.
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Figure 8: A three-color overlay (obtained with the function hilbertDisplayThreeChannel) of
Hilbert curves for H3K4me1 (red), H3K4me3 (green) and an exon indication (blue). The image
shows a zoom into the first quarter of chromosome 10 (i.e., the top left quarter of the images in
Fig. 5).
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7 Correlation with transcription start

A common plot to do with histone modification ChIP-Seq data is to see how the pile-up correlates
with transcription start sites (TSS). This is done quite easily.

First, we get a list of known TSSs on chromosome 10 from EnsEMBL (again via BioMart).

> tss <- getBM( attributes=c( "transcript_start", "strand" ),

+ filters="chromosome_name", values="10", mart=ensembl )

Then, we go through all TSS, cutting out a window from 200 bp upstreams to 200 bp down-
streams of the TSS and sum these up these vectors of length 401.

> wnd <- -200:200

> tme1 <- rep( 0, length(wnd) )

> tme3 <- rep( 0, length(wnd) )

> for( i in 1:nrow(tss) ) {

+ tme1 <- tme1 + me1.p10[ tss$transcript_start[i] + wnd * tss$strand[i] ]

+ tme3 <- tme3 + me3.p10[ tss$transcript_start[i] + wnd * tss$strand[i] ] }

Note how the strand information (which is an integer, either 1 or −1) is used to reverse the
window for the ‘–’ strand.

Normally, one would add all the other chromosomes, as well. For this vignette, we simply
plot what we have so far:

> matplot( wnd, cbind( tme1, tme3 ),

+ type="l", col=c("red","green"), lty="solid", xlab="", ylab="" )

> abline( v=0, col="gray" )

[Output: Fig. 9.]

Session info

> sessionInfo()

R version 2.8.0 Under development (unstable) (2008-09-13 r46541)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_GB.UTF-8;LC_NUMERIC=C;LC_TIME=en_GB.UTF-8;LC_COLLATE=en_GB.UTF-8;LC_MONETARY=C;LC_MESSAGES=en_GB.UTF-8;LC_PAPER=en_GB.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_GB.UTF-8;LC_IDENTIFICATION=C

attached base packages:
[1] grid tools stats graphics grDevices utils datasets
[8] methods base

other attached packages:
[1] biomaRt_1.15.2 HilbertVisGUI_0.99.5 HilbertVis_0.99.5
[4] ShortRead_0.1.56 lattice_0.17-15 Biostrings_2.9.79
[7] Biobase_2.1.7 IRanges_0.99.16

loaded via a namespace (and not attached):
[1] RCurl_0.9-4 XML_1.96-0
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Figure 9: Correlation against transcription start sites for H3K4me1 (red) and H3K4me3 (green).
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