
pcaMethods
April 19, 2009

Q2 Perform internal cross-validation for PCA

Description

Internal cross-validation can be used for estimating the level of structure in a data set and to optimise
the choice of number of principal components.

Usage

Q2(object, originalData, nPcs=object@nPcs, fold=5, nruncv=10,
segments=NULL, verbose=interactive(), ...)

Arguments

object A pcaRes object (result from previous PCA analysis.)

originalData The matrix used to obtain the pcaRes object

nPcs The amount of principal components to estimate Q2 for.

fold The amount of groups to divide the data in.

nruncv The amount of times to repeat the whole cross-validation

segments list A predefined list where each element is the set of indices to leave out.
Note that if this is provided, Q2 becomes deterministic (if the PCA is determin-
istic of course).

verbose boolean If TRUE Q2 outputs a primitive progress bar.

... Further arguments passed to the pca() function called within Q2

Details

This method calculates Q2 for a PCA model. This is the predictory version of R2 and can be
interpreted as the ratio of variance in a left out data chunk that can be estimated by the PCA model.
Poor (low) Q2 means that the PCA model only describes noise and that the model is unrelated to
the true data structure. The definition of Q2 is:

Q2 = 1−
∑k

i

∑n
j (x− x̂)2∑k

i

∑n
j x

2

1

2 asExprSet

for the matrix x which has n rows and k columns. For a given amount of PC’s x is estimated as
x̂ = TP ′ (T are scores and P are loadings). Though this defines the leave-one-out cross-validation
this is not what is performed if fold is less than the amount of rows and/or columns.

Diagonal rows of elements in the matrix are deleted and the re-estimated. You can choose your own
segmentation as well make sure no complete row or column is lost.

Value

A matrix with Q2 estimates.

Author(s)

Wolfram Stacklies, Henning Redestig

References

Wold, H. (1966) Estimation of principal components and related models by iterative least squares.
In Multivariate Analysis (Ed., P.R. Krishnaiah), Academic Press, NY, 391-420.

See Also

pca

Examples

data(iris)
pcIr <- pca(iris[,1:4], nPcs=2, method="ppca")
#can only get Q2 estimats for the two first PC's
q2 <- Q2(pcIr, iris[,1:4], nruncv=2)
#Typically Q2 increases only very slowly after the optimal amount of PC's
boxplot(q2~row(q2), xlab="Amount of PC's", ylab=expression(Q^2))

asExprSet Convert pcaRes object to an expression set

Description

This function can be used to conveniently replace the expression matrix in an ExpressionSet
with the completed data from a pcaRes object.

Usage

asExprSet(object, exprSet)

Arguments

object pcaRes – The object containing the completed data.

exprSet ExpressionSet – The object passed on to pca for missing value estimation.

Details

This is not a standard as function as pcaRes object alone not can be converted to an ExpressionSet
(the pcaRes object does not hold any phenoData for example).

bpca 3

Value

An object without missing values of class ExpressionSet.

Author(s)

Wolfram Stacklies
CAS-MPG Partner Institute for Computational Biology, Shanghai, China
〈wolfram.stacklies@gmail.com〉

bpca Bayesian PCA Missing Value Estimator

Description

Implements a Bayesian PCA missing value estimator. The script is a port of the Matlab version pro-
vided by Shigeyuki OBA. See also http://hawaii.aist-nara.ac.jp/%7Eshige-o/
tools/.
BPCA combines an EM approach for PCA with a Bayesian model. In standard PCA data far from
the training set but close to the principal subspace may have the same reconstruction error. BPCA
defines a likelihood function such that the likelihood for data far from the training set is much lower,
even if they are close to the principal subspace.

Scores and loadings obtained with Bayesian PCA slightly differ from those obtained with conven-
tional PCA. This is because BPCA was developed especially for missing value estimation. The
algorithm does not force orthogonality between factor loadings, as a result factor loadings are not
necessarily orthogonal. However, the BPCA authors found that including an orthogonality criterion
made the predictions worse.
The authors also state that the difference between real and predicted Eigenvalues becomes larger
when the number of observation is smaller, because it reflects the lack of information to accurately
determine true factor loadings from the limited and noisy data. As a result, weights of factors to
predict missing values are not the same as with conventional PCA, buth the missing value estima-
tion is improved.

BPCA works iteratively, the complexity is growing with O(n3) because several matrix inversions
are required. The size of the matrices to invert depends on the number of components used for
re-estimation.
Finding the optimal number of components for estimation is not a trivial task; the best choice de-
pends on the internal structure of the data. A method called kEstimate is provided to estimate the
optimal number of components via cross validation. In general few components are sufficient for
reasonable estimation accuracy. See also the package documentation for further discussion about
on what data PCA-based missing value estimation makes sense.

Requires MASS.

It is not recommended to use this function directely but rather to use the pca() wrapper function.

Usage

bpca(Matrix, nPcs = 2, completeObs = TRUE, maxSteps = 100,
verbose = interactive(), ...)

http://hawaii.aist-nara.ac.jp/%7Eshige-o/tools/
http://hawaii.aist-nara.ac.jp/%7Eshige-o/tools/

4 bpca

Arguments

Matrix matrix – Data containing the variables in columns and observations in rows.
The data may contain missing values, denoted as NA.

nPcs numeric – Number of components used for re-estimation. Choosing few com-
ponents may decrease the estimation precision.

completeObs boolean Return the complete observations if TRUE. This is the input data
with NA values replaced by the estimated values.

maxSteps numeric – Maximum number of estimation steps. Default is 100.

verbose boolean – BPCA prints the number of steps and the increase in precision if
set to TRUE. Default is interactive().

... Reserved for future use. Currently no further parameters are used

Details

Details about the probabilistic model underlying BPCA are found in Oba et. al 2003. The algo-
rithm uses an expectation maximation approach together with a Bayesian model to approximate the
principal axes (eigenvectors of the covariance matrix in PCA). The estimation is done iteratively,
the algorithm terminates if either the maximum number of iterations was reached or if the estimated
increase in precision falls below 1e−4.

Complexity: The relatively high complexity of the method is a result of several matrix inversions
required in each step. Considering the case that the maximum number of iteration steps is needed,
the approximate complexity is given by the term

maxSteps · rowmiss ·O(n3)

Where rowmiss is the number of rows containing missing values and O(n3) is the complexity
for inverting a matrix of size components. Components is the number of components used for
re-estimation.

Value

pcaRes Standard PCA result object used by all PCA-based methods of this package.
Contains scores, loadings, data mean and more. See pcaRes for details.

Author(s)

Wolfram Stacklies
Max Planck Institut fuer Molekulare Pflanzenphysiologie, Potsdam, Germany
〈wolfram.stacklies@gmail.com〉

References

Shigeyuki Oba, Masa-aki Sato, Ichiro Takemasa, Morito Monden, Ken-ichi Matsubara and Shin
Ishii. A Bayesian missing value estimation method for gene expression profile data. Bioinformatics,
19(16):2088-2096, Nov 2003.

See Also

ppca, ppca, ppca, ppca, ppca, ppca. ppca.

checkData 5

Examples

Load a sample metabolite dataset with 5% missig values (metaboliteData)
data(metaboliteData)

Perform Bayesian PCA with 2 components
result <- pca(metaboliteData, method="bpca", nPcs=2, center=FALSE)

Get the estimated principal axes (loadings)
loadings <- result@loadings

Get the estimated scores
scores <- result@scores

Get the estimated complete observations
cObs <- result@completeObs

Now make a scores and loadings plot
slplot(result)

checkData Do some basic checks on a given data matrix

Description

Check a given data matrix for consistency with the format required for further analysis. The data
must be a numeric matrix and not contain:

• Inf values
• NaN values
• Rows or columns that consist of NA only

Usage

checkData(data, verbose = FALSE)

Arguments

data matrix – Data to check.
verbose boolean – If TRUE, the function prints messages whenever an error in the

data set is found.

Value

isValid boolean – TRUE if no errors were found, FALSE otherwise. isValid contains
a set of attributes, these are:

• isNumeric - TRUE if data is numeric, false otherwise
• isInfinite - TRUE if data contains ’Inf’ values, false otherwise
• isNaN - TRUE if data contains ’NaN’ values, false otherwise
• isMatrix - TRUE if the data is in matrix format, FALSE otherwise
• naRows - TRUE if data contains rows in which all elements are ’NA’,

FALSE otherwise
• naCols - TRUE if data contains columns in which all elements are ’NA’,

FALSE otherwise

6 pcaRes

Author(s)

Wolfram Stacklies
Max Planck Institut fuer Molekulare Pflanzenphysiologie, Potsdam, Germany
〈wolfram.stacklies@gmail.com〉

pcaRes Class for representing a neural network for computing Non-linear
PCA

Description

This is a class representation of a non-linear PCA neural network. The nlpcaNet class is not
meant for user-level usage.

Creating Objects

new("nlpcaNet", net=[the network structure], hierarchic=[hierarchic
design], fct=[the functions at each layer], fkt=[the functions used
for forward propagation], weightDecay=[incremental decrease of weight
changes over iterations (between 0 and 1)], featureSorting=[sort features
or not], dataDist=[represents the present values], inverse=[net is
inverse mode or not], fCount=[amount of times features were sorted],
componentLayer=[which layer is the ’bottleneck’ (principal components)],
erro=[the used error function], gradient=[the used gradient method],
weights=[the present weights], maxIter=[the amount of iterations that
was done], scalingFactor=[the scale of the original matrix])

Slots

net "matrix", matrix showing the representation of the neural network, e.g. (2,4,6) for a network
with two features, a hidden layer and six output neurons (original variables).

hierarchic "list", the hierarchic design of the network, holds ’idx’ (), ’var’ () and layer (which layer
is the principal component layer).

fct "character", a vector naming the functions that will be applied on each layer. "linr" is linear
(i.e.) standard matrix products and "tanh" means that the arcus tangens is applied on the result
of the matrix product (for non-linearity).

fkt "character", same as fct but the functions used during back propagation.

weightDecay "numeric", the value that is used to incrementally decrease the weight changes to
ensure convergence.

featureSorting "logical", indicates if features will be sorted or not. This is used to make the
NLPCA assume properties closer to those of standard PCA were the first component is more
important for reconstructing the data than the second component.

dataDist "matrix", a matrix of ones and zeroes indicating which values will add to the errror.

inverse "logical", network is inverse mode (currently only inverse is supported) or not. Eg. the
case when we have truly missing values and wish to impute them.

fCount "integer", Counter for the amount of times features were really sorted.

componentLayer "numeric", the index of ’net’ that is the component layer.

nniRes 7

error "function", the used error function. Currently only one is provided errorHierarchic.

gradient "function", the used gradient function. Currently only one is provided derrorHierarchic

weights "list", A list holding managements of the weights. The list has two functions, weightscurrent()andweightsset()
which access a matrix in the local environment of this object.

maxIter "integer", the amount of iterations used to train this network.

scalingFactor "numeric", training the network is best made with ’small’ values so the original data
is scaled down to a suitable range by division with this number.

Methods

vector2matrices Returns the weights in a matrix representation.

See Also

nlpca

nniRes Class for representing a nearest neighbour imputation result

Description

This is a class representation of nearest neighbour imputation (nni) result

Creating Objects

new("nniRes", completeObs=[the estimated complete observations], k=[cluster
size], nObs=[amount of observations], nVar=[amount of variables], centered=[was
the data centered befor running LLSimpute], center=[original means],
method=[method used to perform clustering], missing=[amount of NAs])

Slots

completeObs "matrix", the estimated complete observations

nObs "numeric", amount of observations

nVar "numeric", amount of variables

centered "logical", data was centered or not

center "numeric", the original variable centers

k "numeric", cluster size

method "character", the method used to perform the clustering

missing "numeric", the total amount of missing values in original data

Methods

print Print function

8 pcaRes

pcaRes Class for representing a PCA result

Description

This is a class representation of a PCA result

Creating Objects

new("pcaRes", scores=[the scores], loadings=[the loadings], nPcs=[amount
of PCs], R2cum=[cumulative R2], nObs=[amount of observations], nVar=[amount
of variables], R2=[R2 for each individual PC], sDev=[stdev for each
individual PC], centered=[was data centered], center=[original means],
varLimit=[what variance limit was exceeded], method=[method used to
calculate PCA], missing=[amount of NAs], completeObs=[estimated complete
observations])

Slots

scores "matrix", the calculated scores

loadings "matrix", the calculated loadings

R2cum "numeric", the cumulative R2 values

sDev "numeric", the individual standard deviations

R2 "numeric", the individual R2 values

nObs "numeric", amount of observations

nVar "numeric", amount of variables

centered "logical", data was centered or not

center "numeric", the original variable centers

varLimit "numeric", the exceeded variance limit

nPcs "numeric", the amount of calculated PCs

method "character", the method used to perform PCA

missing "numeric", the total amount of missing values in original data

completeObs "matrix", the estimated complete observations

Methods

print Print function

summary Extract information about PC relevance

screeplot Plot a barplot of standard deviations for PCs

slplot Make a side by side score and loadings plot

biplot Make a scores / loadings biplot

fitted.pcaRes 9

fitted.pcaRes Extract fitted values from PCA.

Description

This function extracts the fitted values from a pcaRes object. For PCA methods like SVD, Nipals,
PPCA etc this is basically just the scores multipled by the loadings, for non-linear PCA the original
data is propagated through the network to obtain the approximated data.

Usage

fitted.pcaRes(object, data=NULL, nPcs=object@nPcs,...)

Arguments

object pcaRes the pcaRes object of interest.

data matrix For standard PCA methods this can safely be left null to get scores x
loadings but if set then the scores are obtained by projecting provided data onto
the loadings. Non-linear PCA is an exception, here if data is NULL then data is
set to the completeObs and propagated through the network.

nPcs numeric The amount of PC’s to consider

... Not passed on anywhere, included for S3 consistency.

Value

A matrix with the fitted values.

Author(s)

Henning Redestig <redestig[at]mpimp-golm.mpg.de>

helix A helix structured toy data set

Description

simulated as data set looking like a helix

Usage

helix

Format

A matrix containing 1000 observations (rows) and three variables (columns).

Source

Max Planck Institut fuer Molekulare Pflanzenphysiologie, 2005

10 KEstimate

References

Matthias Scholz, Fatma Kaplan, Charles L. Guy, Joachim Kopka and Joachim Selbig. - Non-linear
PCA: a missing data approach. Bioinformatics 2005 21(20):3887-3895

KEstimate Estimate best number of Components for missing value estimation

Description

Perform cross validation to estimate the optimal number of components for missing value estima-
tion. Cross validation is done for the complete subset of a variable. The assumption hereby is that
variables that are highly correlated in a distinct region (here the non-missing observations) are also
correlated in another (here the missing observations). This also implies that the complete subset
must be large enough to be representative. For each incomplete variable, the available values are
divided into a user defined number of cv-segments. The segments have equal size, but are chosen
from a random equal distribution. The non-missing values of the variable are covered completely.
PPCA, BPCA, SVDimpute, Nipals PCA, llsImpute an NLPCA may be used for imputation.
The whole cross validation is repeated several times so, depending on the parameters, the calcula-
tions can take very long time. As error measure the NRMSEP (see Feten et. al, 2005) or the Q2
distance is used. The NRMSEP basically normalises the RMSD between original data and estimate
by the variable-wise variance. The reason for this is that a higher variance will generally lead to a
higher estimation error. If the number of samples is small, the variable - wise variance may become
an unstable criterion and the Q2 distance should be used instead. Also if variance normalisation
was applied previously.
The method proceeds variable - wise, the NRMSEP / Q2 distance is calculated for each incomplete
variable and averaged afterwards. This allows to easily see for wich set of variables missing value
imputation makes senes and for wich set no imputation or something like mean-imputation should
be used.
Use kEstimateFast or Q2 if you are not interested in variable wise values.

Usage

kEstimate(Matrix, method = "ppca", evalPcs = 1:3, segs = 3, nruncv = 5,
em = "q2", allVariables = FALSE, verbose = interactive(),...)

Arguments

Matrix matrix – numeric matrix containing observations in rows and variables in
columns

method character – One of ppca | bpca | svdImpute | nipals | nlpca | llsImpute |
llsImputeAll. The option llsImputeAll calls llsImpute with the allVariables =
TRUE parameter.

evalPcs numeric – The principal components to use for cross validation or the number
of neighbour variables if used with llsImpute. Should be an array containing
integer values, eg. evalPcs = 1:10 or evalPcs = C(2,5,8). The NRMSEP or Q2 is
calculated for each component.

segs numeric – number of segments for cross validation

nruncv numeric – Times the whole cross validation is repeated

em character – The error measure. This can be nrmsep or q2

KEstimate 11

allVariables boolean – If TRUE, the NRMSEP is calculated for all variables, If FALSE,
only the incomplete ones are included. You maybe want to do this to compare
several methods on a complete data set.

verbose boolean – If TRUE, some output like the variable indexes are printed to the
console each iteration.

... Further arguments to pca() or nni()

Details

Run time may be very high on large data sets. Especially when used with complex methods like
BPCA or Nipals PCA. For PPCA, BPCA, Nipals PCA and NLPCA the estimation method is called
(vmiss ·segs ·nruncv·) times as the error for all numbers of principal components can be calculated
at once. For LLSimpute and SVDimpute this is not possible, and the method is called (vmiss ·segs ·
nruncv · length(evalPcs)) times. This should still be fast for LLSimpute because the method
allows to choose to only do the estimation for one particular variable. This saves a lot of iterations.
Here, vmiss is the number of variables showing missing values.
As cross validation is done variable-wise, in this function Q2 is defined on single variables, not on

the entire data set. This is Q2 is calculated as as
∑

(x−xe)2∑
(x2)

, where x is the currently used variable

and xe it’s estimate. The values are then averaged over all variables. The NRMSEP is already

defined variable-wise. For a single variable it is then
√

(
∑

(x−xe)2

(n·var(x))), where x is the variable and
xe it’s estimate, n is the length of x. The variable wise estimation errors are returned in parameter
variableWiseError.

Value

list Returns a list with the elements:

• bestNPcs - number of PCs or k for which the minimal average NRMSEP or
the maximal Q2 was obtained.

• eError - an array of of size length(evalPcs). Contains the average error of
the cross validation runs for each number of components.

• variableWiseError - Matrix of size incomplete_variables x length(evalPcs).
Contains the NRMSEP or Q2 distance for each variable and each number
of PCs. This allows to easily see for wich variables imputation makes sense
and for which one it should not be done or mean imputation should be used.

• evalPcs - The evaluated numbers of components or number of neighbours
(the same as the evalPcs input parameter).

• variableIx - Index of the incomplete variables. This can be used to map the
variable wise error to the original data.

Author(s)

Wolfram Stacklies
CAS-MPG Partner Institute for Computational Biology, Shanghai, China
〈wolfram.stacklies@gmail.com〉

See Also

kEstimateFast, kEstimateFast, kEstimateFast, kEstimateFast.

12 KEstimateFast

Examples

Load a sample metabolite dataset with 5% missing values (metaboliteData)
data(metaboliteData)

Do cross validation with ppca for component 2:4
esti <- kEstimate(metaboliteData, method = "ppca", evalPcs = 2:4, nruncv=1, em="nrmsep")

Plot the average NRMSEP
barplot(drop(esti$eError), xlab = "Components",ylab = "NRMSEP (1 iterations)")

The best result was obtained for this number of PCs:
print(esti$bestNPcs)

Now have a look at the variable wise estimation error
barplot(drop(esti$variableWiseError[, which(esti$evalPcs == esti$bestNPcs)]),

xlab = "Incomplete variable Index", ylab = "NRMSEP")

KEstimateFast Estimate best number of Components for missing value estimation

Description

This is a simple estimator for the optimal number of componets when applying PCA or LLSimpute
for missing value estimation. No cross validation is performed, instead the estimation quality is
defined as Matrix[!missing] - Estimate[!missing]. This will give a relatively rough estimate, but the
number of iterations equals the length of the parameter evalPcs.
Does not work with LLSimpute!!

As error measure the NRMSEP (see Feten et. al, 2005) or the Q2 distance is used. The NRMSEP
basically normalises the RMSD between original data and estimate by the variable-wise variance.
The reason for this is that a higher variance will generally lead to a higher estimation error. If the
number of samples is small, the gene - wise variance may become an unstable criterion and the Q2
distance should be used instead. Also if variance normalisation was applied previously.

Usage

kEstimateFast(Matrix, method = "ppca", evalPcs = 1:3,
em = "nrmsep", verbose = interactive(),...)

Arguments

Matrix matrix – numeric matrix containing observations in rows and variables in
columns

method character – One of ppca | bpca | svdImpute | nipals

evalPcs numeric – The principal components to use for cross validation or cluster sizes
if used with llsImpute. Should be an array containing integer values, eg. evalPcs
= 1:10 or evalPcs = C(2,5,8).The NRMSEP is calculated for each component.

em character – The error measure. This can be nrmsep or q2

verbose boolean – If TRUE, the NRMSEP and the variance are printed to the console
each iteration.

... Further arguments to pca

llsImpute 13

Value

list Returns a list with the elements:

• minNPcs - number of PCs for which the minimal average NRMSEP was
obtained

• eError - an array of of size length(evalPcs). Contains the estimation error
for each number of components.

• evalPcs - The evaluated numbers of components or cluster sizes (the same
as the evalPcs input parameter).

Author(s)

Wolfram Stacklies
CAS-MPG Partner Institute for Computational Biology, Shanghai, China
〈wolfram.stacklies@gmail.com〉

See Also

kEstimate.

Examples

Load a sample metabolite dataset with 5% missing values (metaboliteData)
data(metaboliteData)

Estimate best number of PCs with ppca for component 2:4
esti <- kEstimateFast(t(metaboliteData), method = "ppca", evalPcs = 2:4, em="nrmsep")

Plot the result
barplot(drop(esti$eError), xlab = "Components",ylab = "NRMSEP (1 iterations)")

The best k value is:
print(esti$minNPcs)

llsImpute LLSimpute algorithm

Description

Missing value estimation using local least squares (LLS). First, k variables (for Microarrya data usu-
ally the genes) are selected by pearson, spearman or kendall correlation coefficients. Then missing
values are imputed by a linear combination of the k selected variables. The optimal combination is
found by LLS regression. The method was first described by Kim et al, Bioinformatics, 21(2),2005.

Missing values are denoted as NA

It is not recommended to use this function directely but rather to use the nni() wrapper function.

Usage

llsImpute(Matrix, k = 10, center = FALSE, completeObs = TRUE, correlation = "pearson",
allVariables = FALSE, maxSteps = 100, xval = NULL, verbose = interactive(), ...)

14 llsImpute

Arguments

Matrix matrix – Data containing the variables (genes) in columns and observations
(samples) in rows. The data may contain missing values, denoted as NA.

k numeric – Cluster size, this is the number of similar genes used for regression.
center boolean – Mean center the data if TRUE
completeObs boolean – Return the estimated complete observations if TRUE. This is the

input data with NA values replaced by the estimated values.
correlation character – How to calculate the distance between genes. One out of pearson

| kendall | spearman , see also help("cor").
allVariables boolean – Use only complete genes to do the regression if TRUE, all genes if

FALSE.
maxSteps numeric – Maximum number of iteration steps if allGenes = TRUE.
xval numeric Use LLSimpute for cross validation. xval is the index of the gene to

estimate, all other incomplete genes will be ignored if this parameter is set. We
do not consider them in the cross-validation anyway...

verbose boolean – Print step number and relative change if TRUE and allVariables =
TRUE

... Reserved for parameters used in future version of the algorithm

Details

The methods provides two ways for missing value estimation, selected by the allVariables
option. The first one is to use only complete variables for the regression. This is preferable when
the number of incomplete variables is relatively small.
The second way is to consider all variables as candidates for the regression. Hereby missing values
are initially replaced by the columns wise mean. The method then iterates, using the current estimate
as input for the regression until the change between new and old estimate falls below a threshold
(0.001).
Complexity: Each step the generalized inverse of a miss x k matrix is calculated. Where miss is
the number of missing values in variable j and k the number of neighbours. This may be slow for
large values of k and / or many missing values. See also help("ginv").

Value

nniRes Standard nni (nearest neighbour imputation) result object of this package. See
nniRes for details.

Author(s)

Wolfram Stacklies
MPG/CAS Partner Institute for Computational Biology, Shanghai, P.R. China
〈wolfram.stacklies@gmail.com〉

References

Kim, H. and Golub, G.H. and Park, H. - Missing value estimation for DNA microarray gene ex-
pression data: local least squares imputation. Bioinformatics, 2005; 21(2):187-198.

Troyanskaya O. and Cantor M. and Sherlock G. and Brown P. and Hastie T. and Tibshirani R. and
Botstein D. and Altman RB. - Missing value estimation methods for DNA microarrays. Bioinfor-
matics. 2001 Jun;17(6):520-525.

metaboliteData 15

See Also

pca, pca, pca.

Examples

Load a sample metabolite dataset (metaboliteData) with already 5% of
data missing
data(metaboliteData)

Perform llsImpute using k = 10
Set allVariables TRUE because there are very few complete variables
result <- llsImpute(metaboliteData, k = 10, correlation = "pearson", allVariables = TRUE)

Get the estimated complete observations
cObs <- result@completeObs

metaboliteData An incomplete metabolite data set from an Arabidopsis coldstress ex-
periment

Description

A subset of size 154 x 52 from a larger metabolite data set. The data contains 5% of artificially
created uniformly distributed misssing values. The data was created during an in house Arabidopsis
coldstress experiment.

Usage

metaboliteData

Format

A matrix containing 154 observations (rows) and 52 metabolites (columns).

Source

Max Planck Institut fuer Molekulare Pflanzenphysiologie, 2005

References

Matthias Scholz, Fatma Kaplan, Charles L. Guy, Joachim Kopka and Joachim Selbig. - Non-linear
PCA: a missing data approach. Bioinformatics 2005 21(20):3887-3895

16 nipalsPca

metaboliteDataComplete
A complete metabolite data set from an Arabidopsis coldstress exper-
iment

Description

A complete subset from a larger metabolite data set. This is the original, complete data set and
can be used to compare estimation results created with the also provided incomplete data (called
metaboliteData). The data was created during an in house Arabidopsis coldstress experiment.

Usage

metaboliteData

Format

A matrix containing 154 observations (rows) and 52 metabolites (columns).

Source

Max Planck Institut fuer Molekulare Pflanzenphysiologie, 2005

References

Matthias Scholz, Fatma Kaplan, Charles L. Guy, Joachim Kopka and Joachim Selbig. - Non-linear
PCA: a missing data approach. Bioinformatics 2005 21(20):3887-3895

See Also

metaboliteData

nipalsPca Perform principal component analysis using the Non-linear iterative
partial least squares (NIPALS) algorithm.

Description

Can be used for computing PCA on a numeric matrix using either the NIPALS algorithm which is an
iterative approach for estimating the principal components extracting them one at a time. NIPALS
can handle a small amount of missing values.

It is not recommended to use this function directely but rather to use the pca() wrapper function.

Usage

nipalsPca(Matrix, nPcs=2, center=TRUE, completeObs=TRUE, varLimit=1, maxSteps=5000,
threshold=1e-6, verbose=interactive(),...)

nipalsPca 17

Arguments

Matrix Numerical matrix samples in rows and variables as columns.

nPcs Number of components that should be extracted.

center Mean center the data column wise if set TRUE

completeObs Return the estimated complete observations. This is the input Matrix with NA
values replaced by the estimated values.

varLimit Optionally the ratio of variance that should be explained. nPcs is ignored if
varLimit < 1

maxSteps Defines how many iterations can be done before the algorithm should abort (hap-
pens almost exclusively when there were some wrong in the input data).

threshold The limit condition for judging if the algorithm has converged or not, specifi-
cally if a new iteration is done if (Told − T)T (Told − T) > limit.

verbose Show simple progress information.

... Only used for passing through arguments.

Details

This method is quite slow what may lead to very long computation times when used on larger
matrices. The power in missing value imputation is also quite disputable.

Value

A pcaRes object.

Author(s)

Henning Redestig

References

Wold, H. (1966) Estimation of principal components and related models by iterative least squares.
In Multivariate Analysis (Ed., P.R. Krishnaiah), Academic Press, NY, 391-420.

See Also

prcomp, princomp, pca

Examples

data(iris)
pcIr <- nipalsPca(iris[,1:4], nPcs=2)

18 nlpca

nlpca Non-linear PCA

Description

Neural network based non-linear PCA

Usage

nlpca(Matrix, nPcs=2, center=TRUE, completeObs=TRUE, maxSteps=2*prod(dim(Matrix)), unitsPerLayer=NULL, functionsPerLayer=NULL, weightDecay=0.001, weights=NULL, verbose=interactive(), ...)

Arguments

Matrix matrix — Data containing the variables in columns and observations in rows.
The data may contain missing values, denoted as NA

nPcs numeric – Number of components to estimate. The preciseness of the missing
value estimation depends on thenumber of components, which should resemble
the internal structure of the data.

center boolean Mean center the data if TRUE

completeObs boolean Return the complete observations if TRUE. This is the original data
with NA values filled with the estimated values.

maxSteps numeric – Number of estimation steps. Default is based on a generous rule of
thumb.

unitsPerLayer
The network units, example: c(2,4,6) for two input units 2feature units (principal
components), one hidden layer fornon-linearity and three output units (original
amount ofvariables).

functionsPerLayer
The function to apply at each layer eg. c("linr", "tanh", "linr")

weightDecay Value between 0 and 1.

weights Starting weights for the network. Defaults to uniform random values but can be
set specifically to make algorithm deterministic.

verbose boolean – nlpca prints the number of steps and warning messages if set to
TRUE. Default is interactive().

... Reserved for future use. Not passed on anywhere.

Details

Artificial Neural Network (MLP) for performing non-linear PCA. Non-linear PCA is conceptually
similar to classical PCA but theoretically quite different. Instead of simply decomposing our matrix
(X) to scores (T) loadings (P) and an error (E) we train a neural network (our loadings) to find a
curve through the multidimensional space of X that describes a much variance as possible. Classical
ways of interpreting PCA results are thus not applicable to NLPCA since the loadings are hidden
in the network. However, the scores of components that lead to low cross-validation errors can still
be interpreted via the score plot.

Unfortunately this method depend on slow iterations which currently are implemented in R only
making this method extremely slow. Furthermore, the algorithm does not by itself decide when it
has converged but simply does ’maxSteps’ iterations.

nni 19

Value

pcaRes Standard PCA result object used by all PCA-basedmethods of this package.
Contains scores, loadings, data meanand more. See pcaRes for details.

Author(s)

Based on a matlab script by Matthias Scholz <matthias.scholz[at]uni-greifswald.de> and ported to
R by HenningRedestig <redestig[at]mpimp-golm.mpg.de>

References

Matthias Scholz, Fatma Kaplan, Charles L Guy, Joachim Kopkaand Joachim Selbig. Non-linear
PCA: a missing dataapproach. Bioinformatics, 21(20):3887-3895, Oct 2005

Examples

Data set with three variables where data points constitute a helix
data(helix)
helixNA <- helix
helixNA <- t(apply(helix, 1, function(x) { x[sample(1:3, 1)] <- NA; x})) # not a single complete observation
helixNlPca <- pca(helixNA, nPcs=1, method="nlpca", maxSteps=1000)
fittedData <- fitted(helixNlPca, helixNA)
plot(fittedData[which(is.na(helixNA))], helix[which(is.na(helixNA))])
compared to solution by Nipals PCA that cannot extract non-linear patterns
helixNipPca <- pca(helixNA, nPcs=2, method="nipals")
fittedData <- fitted(helixNipPca)
plot(fittedData[which(is.na(helixNA))], helix[which(is.na(helixNA))])

nni Nearest neighbour imputation

Description

Wrapper function for imputation methods based on nearest neighbour clustering. Currently llsIm-
pute only.

Usage

nni(object, method=c("llsImpute"), subset=numeric(),...)

Arguments

object Numerical matrix with (or an object coercible to such) with samples in rows and
variables as columns. Also takes ExpressionSet in which case the trans-
posed expression matrix is used.

subset For convenience one can pass a large matrix but only use the variable specified
as subset. Can be colnames or indices.

method Currently "llsImpute" only.

... Further arguments to the chosen method.

20 pca

Details

This method is wrapper function to llsImpute, See documentation for link{llsImpute} Extra
arguments usually given to this function include:

Value

A clusterRes object. Or a list containing a clusterRes object as first and an ExpressionSet object
as second entry if the input was of type ExpressionSet.

Author(s)

Wolfram Stacklies

See Also

llsImpute, pca

Examples

data(metaboliteData)
llsRes <- nni(metaboliteData, k=6, method="llsImpute", allGenes=TRUE)

pca Perform principal component analysis

Description

Can be used for computing PCA on a numeric matrix for visualisation, information extraction and
missing value imputation.

Usage

pca(object, method=c("svd", "nipals", "bpca", "ppca",
"svdImpute", "nlpca", "robustPca"), subset=numeric(),...)

Arguments

object Numerical matrix with (or an object coercible to such) with samples in rows and
variables as columns. Also takes ExpressionSet in which case the trans-
posed expression matrix is used.

subset For convenience one can pass a large matrix but only use the variable specified
as subset. Can be colnames or indices.

method One of "svd", "nipals", "bpca", "nlpca" or "ppca".

... Further arguments to the chosen pca method.

pca 21

Details

This method is wrapper function for the following set of pca methods:

svd: Uses classical prcomp. See documentation for svdPca.

nipals: An iterative method capable of handling small amounts of missing values. See documen-
tation for nipalsPca.

bpca: An iterative method using a Bayesian model to handle missing values. See documentation
for bpca.

ppca: An iterative method using a probabilistic model to handle missing values. See documenta-
tion for ppca.

svdImpute: Uses expectation maximation to perform SVD PCA on incomplete data. See docu-
mentation for svdImpute.

Extra arguments usually given to this function include:

nPcs: The amount of principal components to extract

Value

A pcaRes object. Or a list containing a pcaRes object as first and an ExpressionSet object as
second entry if the input was of type ExpressionSet.

Author(s)

Wolfram Stacklies, Henning Redestig

References

Wold, H. (1966) Estimation of principal components and related models by iterative least squares.
In Multivariate Analysis (Ed., P.R. Krishnaiah), Academic Press, NY, 391-420.

Shigeyuki Oba, Masa-aki Sato, Ichiro Takemasa, Morito Monden, Ken-ichi Matsubara and Shin
Ishii. A Bayesian missing value estimation method for gene expression profile data. Bioinformatics,
19(16):2088-2096, Nov 2003.

Troyanskaya O. and Cantor M. and Sherlock G. and Brown P. and Hastie T. and Tibshirani R. and
Botstein D. and Altman RB. - Missing value estimation methods for DNA microarrays. Bioinfor-
matics. 2001 Jun;17(6):520-5.

See Also

prcomp, princomp, nipalsPca, svdPca

Examples

data(iris)
Usually some kind of scaling is appropriate
pcIr <- pca(iris[,1:4], nPcs = 2, method="nipals")
pcIr <- pca(iris[,1:4], nPcs = 2, method="svd")
Get a short summary on the calculated model
summary(pcIr)
Scores and loadings plot
slplot(pcIr, sl=as.character(iris[,5]))

22 plotPcs

plotPcs Plot many side by side scores XOR loadings plots

Description

A function that can be used to visualise many PCs plotted against each other

Usage

plotPcs(object, pcs=1:object@nPcs, type=c("scores",
"loadings"), sl=NULL, hotelling=0.95,...)

Arguments

object pcaRes a pcaRes object

pcs numeric which pcs to plot

type character Either "scores" or "loadings" for scores or loadings plot respec-
tively

sl character Text labels to plot instead of a point, if NULL points are plotted
instead of text

hotelling numeric Significance level for the confidence ellipse. NULL means that no
ellipse is drawn.

... Further arguments to pairs on which this function is based.

Details

Uses pairs to provide side-by-side plots. Note that this function only plots scores or loadings but
not both in the same plot.

Value

None, used for side effect.

Author(s)

Henning Redestig

See Also

prcomp, pca, princomp, slplot

Examples

data(iris)
pcIr <- pca(iris[,1:4], nPcs=3, method="svd")
plotPcs(pcIr, col=as.integer(iris[,4]) + 1)

plotR2 23

plotR2 R2 plot (screeplot) for PCA

Description

Plot the R2 of the principal components to get an idea of their importance. Note though that the
standard screeplot shows the standard deviations for the PC’s this method shows the R2 values
which empirically shows the importance of the PC’s and is thus applicable for any PCA method
rather than just SVD based PCA.

Usage

plotR2(object, nPcs=object@nPcs, type = c("barplot", "lines"), main = deparse(substitute(x)), ...)

Arguments

object pcaRes The pcaRes object.

nPcs numeric The amount of PC’s to consider.

type character Barplot or line plot

main character The main label of the plot

... Passed on to screeplot

Value

None, used for side effect.

Author(s)

Henning Redestig <redestig[at]mpimp-golm.mpg.de

See Also

screeplot

ppca Probabilistic PCA Missing Value Estimator

Description

Implementation of probabilistic PCA (PPCA). PPCA allows to perform PCA on incomplete data
and may be used for missing value estimation. This script was implemented after the Matlab ver-
sion provided by Jakob Verbeek (see http://lear.inrialpes.fr/~verbeek/) and the
draft “EM Algorithms for PCA and Sensible PCA” written by Sam Roweis. Thanks a lot!

Probabilistic PCA combines an EM approach for PCA with a probabilistic model. The EM approach
is based on the assumption that the latent variables as well as the noise are normal distributed.

In standard PCA data which is far from the training set but close to the principal subspace may have
the same reconstruction error. PPCA defines a likelihood function such that the likelihood for data

http://lear.inrialpes.fr/~verbeek/

24 ppca

far from the training set is much lower, even if they are close to the principal subspace. This allows
to improve the estimation accuracy.

A method called kEstimate is provided to estimate the optimal number of components via cross
validation. In general few components are sufficient for reasonable estimation accuracy. See also
the package documentation for further discussion on what kind of data PCA-based missing value
estimation is advisable.

Requires MASS

It is not recommended to use this function directely but rather to use the pca() wrapper function.

Usage

ppca(Matrix, nPcs = 2, center = TRUE, completeObs = TRUE, seed = NA, ...)

Arguments

Matrix matrix – Data containing the variables in columns and observations in rows.
The data may contain missing values, denoted as NA.

nPcs numeric – Number of components to estimate. The preciseness of the missing
value estimation depends on the number of components, which should resemble
the internal structure of the data.

center boolean Mean center the data if TRUE

completeObs boolean Return the complete observations if TRUE. This is the original data
with NA values filled with the estimated values.

seed numeric Set the seed for the random number generator. PPCA creates fills
the initial loading matrix with random numbers chosen from a normal distribu-
tion. Thus results may vary slightly. Set the seed for exact reproduction of your
results.

... Reserved for future use. Currently no further parameters are used.

Details

Complexity: Runtime is linear in the number of data, number of data dimensions and number of
principal components.

Convergence: The threshold indicating convergence was changed from 1e-3 in 1.2.x to 1e-5 in the
current version what leads to much more stable results. For reproducability you can set the seed
(parameter seed) of the random number generator.
If used for missing value estimation, results may be checked by simply running the algorithm several
times with changing seed, if the estimated values show little variance the algorithm converged well.
This should, however not be necessary with the lowered threshold.

Value

pcaRes Standart PCA result object used by all PCA-based methods of this package.
Contains scores, loadings, data mean and more. See pcaRes for details.

prep 25

Author(s)

Wolfram Stacklies
Max Planck Institut fuer Molekulare Pflanzenphysiologie, Potsdam, Germany
〈wolfram.stacklies@gmail.com〉

See Also

bpca, bpca, bpca, bpca, bpca, bpca.

Examples

Load a sample metabolite dataset with 5% missing values (metaboliteData)
data(metaboliteData)

Perform probabilistic PCA using the 3 largest components
result <- pca(metaboliteData, method="ppca", nPcs=3, center=TRUE)

Get the estimated principal axes (loadings)
loadings <- result@loadings

Get the estimated scores
scores <- result@scores

Get the estimated complete observations
cObs <- result@completeObs

Now plot the scores
plotPcs(result, type = "scores")

prep Preprocess a matrix for PCA

Description

Implements simple preprocessing alternatives for scaling a matrix.

Usage

prep(object, scale=c("none", "pareto", "vector", "UV"), center=TRUE, ...)

Arguments

object Numerical matrix with (or an object coercible to such) with samples in rows and
variables as columns. Also takes ExpressionSet in which case the trans-
posed expression matrix is used.

center Indicates if the matrix should be mean centred or not.

scale One of "UV" (unit variance a = a/σa) "vector" (vector normalisation b =
b/||b||), "pareto" or "none" to indicate which scaling should be used to scale the
matrix with a variables and b samples.

... Only used for passing through arguments.

26 robustPca

Details

Does basically the same as scale but adds some alternative scaling options.

Value

A matrix with attribute "scaled:center" if centring was done.

Author(s)

Wolfram Stacklies, Henning Redestig

See Also

scale

Examples

object <- matrix(rnorm(50), nrow=10)
object <- prep(object, scale="vector", center=TRUE)

robustPca PCA implementation based on robustSvd

Description

This is a PCA implementation robust to outliers in a data set. It can also handle missing values, it is
however NOT intended to be used for missing value estimation. As it is based on robustSVD we will
get an accurate estimation for the loadings also for incomplete data or for data with outliers. The
returned scores are, however, affected by the outliers as they are calculated inputData X loadings.
This also implies that you should look at the returned R2/R2cum values with caution. If the data
show missing values, scores are caluclated by just setting all NA - values to zero. This is not
expected to produce accurate results. Please have also a look at the manual page for robustSvd.

Thus this method should mainly be seen as an attempt to integrate robustSvd() into the frame-
work of this package. Use one of the other methods coming with this package (like PPCA or BPCA)
if you want to do missing value estimation.

It is not recommended to use this function directely but rather to use the pca() wrapper function.

Usage

robustPca(Matrix, nPcs = 2, center = TRUE, completeObs = FALSE, verbose = interactive(), ...)

Arguments

Matrix matrix – Data containing the variables in columns and observations in rows.
The data may contain missing values, denoted as NA.

nPcs numeric – Number of components to estimate. The preciseness of the missing
value estimation depends on the number of components, which should resemble
the internal structure of the data.

center boolean Mean center the data if TRUE

robustPca 27

completeObs boolean Return the complete observations if TRUE. This is the original data
with NA values filled with the estimated values. Please note that robustPca was
NOT designed for missing value estimation. Use one of the other pca methods,
like e.g. BPCA, for missing value estimation!

verbose boolean Print some output to the command line if TRUE

... Reserved for future use. Currently no further parameters are used.

Details

The method is very similar to the standard prcomp() function. The main difference is that
robustSvd() is used instead of the conventional svd() method.

Value

pcaRes Standart PCA result object used by all PCA-based methods of this package.
Contains scores, loadings, data mean and more. See pcaRes for details.

Author(s)

Wolfram Stacklies
CAS-MPG Partner Institute for Computational Biology, Shanghai, China.
〈wolfram.stacklies@gmail.com〉

See Also

robustSvd, robustSvd, robustSvd, robustSvd.

Examples

Load a complete sample metabolite data set and mean center the data
data(metaboliteDataComplete)
mdc <- scale(metaboliteDataComplete, center=TRUE, scale=FALSE)
Now create 5% of outliers.
cond <- runif(length(mdc)) < 0.05;
mdcOut <- mdc
mdcOut[cond] <- 10

Now we do a conventional PCA and robustPca on the original and the data
with outliers.
We use center=FALSE here because the large artificial outliers would
affect the means and not allow to objectively compare the results.
resSvd <- pca(mdc, method = "svd", nPcs = 10, center = FALSE)
resSvdOut <- pca(mdcOut, method = "svd", nPcs = 10, center = FALSE)
resRobPca <- pca(mdcOut, method = "robustPca", nPcs = 10, center = FALSE)

Now we plot the results for the original data against those with outliers
We can see that robustPca is hardly effected by the outliers.
plot(resSvd@loadings[,1], resSvdOut@loadings[,1])
plot(resSvd@loadings[,1], resRobPca@loadings[,1])

28 robustSvd

robustSvd Alternating L1 Singular Value Decomposition

Description

A robust approximation to the singular value decomposition of a rectangular matrix is computed
using an alternating L1 norm (instead of the more usual least squares L2 norm).

Usage

robustSvd(x)

Arguments

x A matrix whose SVD decomposition is to be computed. Missing values ARE
allowed.

Details

As the SVD is a least-squares procedure, it is highly susceptible to outliers and in the extreme case,
an individual cell (if sufficiently outlying) can draw even the leading principal component toward
itself.

See Hawkins et al (2001) for details on the robust SVD algorithm. Briefly, the idea is to sequentially
estimate the left and right eigenvectors using an L1 (absolute value) norm minimization.

Note that the robust SVD is able to accomodate missing values in the matrix x, unlike the usual
svd function.

Also note that the eigenvectors returned by the robust SVD algorithm are NOT (in general) orthog-
onal and the eigenvalues need not be descending in order.

Value

The robust SVD of the matrix is x = u d v’.

d A vector containing the singular values of x.

u A matrix whose columns are the left singular vectors of x.

v A matrix whose columns are the right singular vectors of x.

Warning

Two differences from the usual SVD may be noted. One relates to orthogonality. In the conventional
SVD, all the eigenvectors are orthogonal even if not explicitly imposed. Those returned by the AL1
algorithm (used here) are (in general) not orthogonal.

Another difference is that, in the L2 analysis of the conventional SVD, the successive eigen triples
(eigenvalue, left eigenvector, right eigenvector) are found in descending order of eigenvalue. This
is not necessarily the case with the AL1 algorithm. Hawkins et al (2001) note that a larger eigen
value may follow a smaller one.

Author(s)

Kevin Wright, modifications by Wolfram Stacklies

slplot 29

References

Hawkins, Douglas M, Li Liu, and S Stanley Young (2001) Robust Singular Value Decomposition,
National Institute of Statistical Sciences, Technical Report Number 122. http://www.niss.
org/technicalreports/tr122.pdf

See Also

svd, nipals for an alternating L2 norm method that also accommodates missing data.

Examples

Load a complete sample metabolite data set and mean center the data
data(metaboliteDataComplete)
mdc <- scale(metaboliteDataComplete, center=TRUE, scale=FALSE)
Now create 5
cond <- runif(length(mdc)) < 0.05;
mdcOut <- mdc
mdcOut[cond] <- 10

Now we do a conventional SVD and a robustSvd on both, the original and the
data with outliers.
resSvd <- svd(mdc)
resSvdOut <- svd(mdcOut)
resRobSvd <- robustSvd(mdc)
resRobSvdOut <- robustSvd(mdcOut)

Now we plot the results for the original data against those with outliers
We can see that robustSvd is hardly effected by the outliers.
plot(resSvd$v[,1], resSvdOut$v[,1])
plot(resRobSvd$v[,1], resRobSvdOut$v[,1])

slplot Plot a side by side scores and loadings plot

Description

A common way of representing PCA result for two component

Usage

slplot(object, pcs=c(1,2), scoresLoadings=c(TRUE, TRUE),
sl="def", ll="def", hotelling=0.95, rug=TRUE, sub=NULL,...)

Arguments

object a pcaRes object

pcs which two pcs to plot
scoresLoadings

Which should be shown scores and or loadings

sl labels to plot in the scores plot

ll labels to plot in the loadings plot

http://www.niss.org/technicalreports/tr122.pdf
http://www.niss.org/technicalreports/tr122.pdf

30 svdImpute

hotelling confidence interval for ellipse

rug logical, rug x axis or not

sub Subtitle, defaults to annotate with amount of explained variance.

... Further arguments to plot functions

Details

Uses layout instead of par to provide side-by-side so it works with Sweave.

Value

None, used for side effect.

Author(s)

Henning Redestig

See Also

prcomp, pca, princomp

Examples

data(iris)
pcIr <- pca(iris[,1:4], scale="UV", method="svd")
slplot(pcIr, sl=NULL, pch=5, col=as.integer(iris[,5]))

svdImpute SVDimpute algorithm

Description

This implements the SVDimpute algorithm as proposed by Troyanskaya et al, 2001. The idea be-
hind the algorithm is to estimate the missing values as a linear combination of the k most significant
eigengenes.

Missing values are denoted as NA

It is not recommended to use this function directely but rather to use the pca() wrapper function.

Usage

svdImpute(Matrix, nPcs = 2, center=TRUE, completeObs=TRUE, threshold = 0.01,
maxSteps = 100, verbose = interactive(), ...)

svdImpute 31

Arguments

Matrix matrix – Data containing the variables in columns and observations in rows.
The data may contain missing values, denoted as NA.

nPcs numeric – Number of components to estimate. The preciseness of the missing
value estimation depends on the number of components, which should resemble
the internal structure of the data.

center Mean center the data if TRUE

completeObs Return the estimated complete observations if TRUE. This is the input data with
NA values replaced by the estimated values.

threshold The iteration stops if the change in the matrix falls below this threshold, the
default is 0.01. (0.01 was empirically determined by Troyanskaya et. al)

maxSteps Maximum number of iteration steps. Default is 100.

verbose Print some output if TRUE. Default is interactive()

... Reserved for parameters used in future version of the algorithm

Details

As SVD can only be performed on complete matrices, all missing values are initially replaced by 0
(what is in fact the mean on centred data). The algorithm works iteratively until the change in the
estimated solution falls below a certain threshold. Each step the eigengenes of the current estimate
are calculated and used to determine a new estimate. Eigengenes denote the loadings if pca is
performed considering variable (for Microarray data genes) as observations.

An optimal linear combination is found by regressing the incomplete variable against the k most
significant eigengenes. If the value at position j is missing, the jth value of the eigengenes is not
used when determining the regression coefficients.

Complexity: Each iteration, standard PCA (prcomp) needs to be done for each incomplete vari-
able to get the eigengenes. This is usually fast for small data sets, but complexity may rise if the
data sets become very large.

Value

pcaRes Standart PCA result object used by all PCA-based methods of this package.
Contains scores, loadings, data mean and more. See pcaRes for details.

Author(s)

Wolfram Stacklies
Max Planck Institut fuer Molekulare Pflanzenphysiologie, Potsdam, Germany
〈wolfram.stacklies@gmail.com〉

References

Troyanskaya O. and Cantor M. and Sherlock G. and Brown P. and Hastie T. and Tibshirani R. and
Botstein D. and Altman RB. - Missing value estimation methods for DNA microarrays. Bioinfor-
matics. 2001 Jun;17(6):520-5.

See Also

bpca, bpca, bpca, bpca, bpca, bpca.

32 svdPca

Examples

Load a sample metabolite dataset with 5% missing values (metaboliteData)
data(metaboliteData)

Perform svdImpute using the 3 largest components
result <- pca(metaboliteData, method="svdImpute", nPcs=3, center = TRUE)

Get the estimated principal axes (loadings)
loadings <- result@loadings

Get the estimated scores
scores <- result@scores

Get the estimated complete observations
cObs <- result@completeObs

Now plot the scores
plotPcs(result, type = "scores")

svdPca Perform principal component analysis using singular value decompo-
sition

Description

A wrapper function for R’s standard function prcomp. Delivers the result as a pcaRes method
for compatibility with the rest of the pcaMethods package.

It is not recommended to use this function directely but rather to use the pca() wrapper function.

Usage

svdPca(Matrix, nPcs=2, center=TRUE, completeObs=FALSE, varLimit=1,...)

Arguments

Matrix Numerical matrix samples in rows and variables as columns.

nPcs Number of components that should be extracted.

center Center the data column wise if TRUE

completeObs Return the complete observations. This exisits for compatibility only, as svdPca
cannot missing values. If set TRUE the input matrix will be returned in the
completeObs field.

varLimit Optionally the ratio of variance that should be explained. nPcs is ignored if
varLimit < 1

... Only used for passing through arguments.

Details

svdPca can preferrably be called using pca(object, method="svd").

svdPca 33

Value

A pcaRes object.

Author(s)

Henning Redestig

See Also

prcomp, princomp, pca

Examples

data(iris)
pcIr <- svdPca(iris[,1:4], nPcs=2)

Index

∗Topic algebra
robustSvd, 28

∗Topic classes
nniRes, 7
pcaRes, 6, 8

∗Topic datasets
helix, 9
metaboliteData, 15
metaboliteDataComplete, 16

∗Topic manip
prep, 25

∗Topic multivariate
asExprSet, 2
bpca, 3
checkData, 5
fitted.pcaRes, 9
KEstimate, 10
KEstimateFast, 12
llsImpute, 13
nipalsPca, 16
nlpca, 18
nni, 19
pca, 20
plotPcs, 22
plotR2, 23
ppca, 23
Q2, 1
robustPca, 26
slplot, 29
svdImpute, 30
svdPca, 32

asExprSet, 2

bpca, 3, 21, 25, 31

checkData, 5
completeObs,pcaRes-method

(pcaRes), 8

fitted,pcaRes-method
(fitted.pcaRes), 9

fitted.pcaRes, 9

helix, 9

KEstimate, 10
kEstimate, 13
kEstimate (KEstimate), 10
KEstimateFast, 12
kEstimateFast, 11
kEstimateFast (KEstimateFast), 12

llsImpute, 13, 20

metaboliteData, 15, 16
metaboliteDataComplete, 16

nipals, 29
nipalsPca, 16, 21
nlpca, 7, 18
nlpcaNet (pcaRes), 6
nlpcaNet-class (pcaRes), 6
nni, 19
nniRes, 7, 14
nniRes-class (nniRes), 7

pairs, 22
pca, 2, 15, 20, 20
pcaRes, 4, 6, 8, 19, 24, 27, 31
pcaRes-class (pcaRes), 8
plotPcs, 22
plotR2, 23
ppca, 4, 21, 23
prcomp, 21
prep, 25
princomp, 21
print,nniRes-method (nniRes), 7
print,pcaRes-method (pcaRes), 8

Q2, 1

robustPca, 26
robustSvd, 27, 28

scale, 26
slplot, 29
slplot,pcaRes-method (pcaRes), 8
summary,pcaRes-method (pcaRes), 8
svd, 29
svdImpute, 21, 30
svdPca, 21, 32

34

	Q2
	asExprSet
	bpca
	checkData
	pcaRes
	nniRes
	pcaRes
	fitted.pcaRes
	helix
	KEstimate
	KEstimateFast
	llsImpute
	metaboliteData
	metaboliteDataComplete
	nipalsPca
	nlpca
	nni
	pca
	plotPcs
	plotR2
	ppca
	prep
	robustPca
	robustSvd
	slplot
	svdImpute
	svdPca
	Index

