
The rtracklayer package

Michael Lawrence

April 30, 2008

1 Introduction

The rtracklayer package is an interface (or layer) between R and several
genome browsers. Its main purpose is the visualization of genomic annota-
tion tracks, whether generated through experimental data analysis performed in
R or loaded from a separate data source. The features of rtracklayer may be
divided into two categories: 1) the representation and import/export of track
data and 2) the control and querying of external genome browser sessions and
views.

For working with track data, the package defines a data structure named
trackSet, which extends the Bioconductor eSet class. A trackSet contains infor-
mation on the features of a track, including their chromosome, start and end
positions in the genome, as well as any associated experimental measurements.
Track data may be read from or written to connections (e.g. files on the disk) in
the following formats: Browser Extended Display (BED), versions 1, 2 and 3 of
the General Feature Format (GFF), and Wiggle (WIG). Support for additional
formats may be provided by other packages through a plugin system.

The rtracklayer package currently interfaces with the UCSC web-based
genome browser as well as the locally installed Java-based Argo browser. Other
packages may provide drivers for other genome browsers through a plugin sys-
tem. With rtracklayer, the user may start a genome browser session, create
and manipulate genomic views, and import/export tracks and sequences to and
from a browser. Please note that not all features are necessarily supported by
every browser interface.

The rest of this vignette will introduce these features through a demonstra-
tion.

2 Demonstration

In order to demonstrate the features of rtracklayer, we will import some track
data from a file and visualize it in the UCSC genome browser.

The first step is to attach the rtracklayer package, as in:

> require(rtracklayer)

1

2.1 Working with track data

Before we can demonstrate the features in rtracklayer for manipulating, ana-
lyzing and visualizing annotation track data, we must first load a track into the
R session. The track information is stored in a trackSet object. It is possible to
construct a trackSet directly from information within the R session, but for the
purpose of this demonstration, we will import the track data from a file.

The import function imports track data encoded in one of the supported
standard formats (BED, GFF and WIG are built-in). The source of the data
may be given as a connection, a filename or a character vector containing the
data. In this case, we will import the data from a GFF-formatted file included
with the rtracklayer package, as in the following code:

> track <- import(system.file("tests",

+ "v1.gff", package = "rtracklayer"))

The track information is now stored in the R session as a trackSet object. As
the trackSet class inherits from eSet defined in the Biobase package, it has slots
for storing feature information (featureData), experimental design information
(phenoData) and experimental measurements (assayData).

Most of the information for each feature in a track is stored in the feature-
Data. This includes the chromosome name, numeric start and end positions, the
DNA strand (+/-/NA), and any other information available. There are meth-
ods for accessing the most commonly used fields. For example, the following
code retrieves the chromosome names and then start positions for each feature
in the track:

> featChrom(track)

[1] chr22 chr22 chr22
Levels: chr22

> featStart(track)

[1] 1000000 1010000 1020000

The data values for a track are stored as a numeric matrix under the name
dataVals within the assayData. The values may be retrieved with the following
code:

> dataVals(track)

1
1 500
2 900
3 800

Sometimes, it may be convenient to extract the track information as a
data.frame. The trackData function does this by combining the featureData

2

matrix with the dataVals. It also adds a column named featMid, which gives
the mid-points (the mean of the start and end positions) of each feature in the
track. Here is an example of using trackData to plot the data values in the track
vs. their mid-points.

> df <- trackData(track)

> plot(df$featMid, df$dataVals)

●

●

●

1.0 1.5 2.0 2.5 3.010
00

00
0

10
05

00
0

10
10

00
0

10
15

00
0

10
20

00
0

Index

df
$f

ea
tM

id

2.2 Interacting with genome browsers

For the next step in our example, we will load the track into a genome browser
for visualization with other genomic annotations. The rtracklayer package is
capable of interfacing with any genome browser for which a driver exists. In this
case, we will interact with the web-based UCSC browser, but the same code
should work for any browser.

2.2.1 Starting a session

The first step towards interfacing with a browser is to start a browser session,
represented in R as a browserSession object. A browserSession is primarily a
container of tracks and genomic views. The following code creates a browserS-
ession for the UCSC browser:

3

> session <- browserSession("ucsc")

Note that the name of any other supported browser could have been given here
instead of “ucsc”. To see the names of supported browsers, enter:

> genomeBrowsers()

[1] "ucsc" "argo"

2.2.2 Laying tracks

Before a track can be viewed on the genome, it must be loaded into the session
using the layTrack function, as demonstrated below:

> session <- layTrack(session, track,

+ name = "Demo Track")

The name argument should be a character vector that will identify the track
within session.

2.2.3 Viewing tracks

By default, the layTrack function creates a browserView, an object that repre-
sents a view of a particular set of tracks along a particular region of the genome.
For UCSC, this roughly corresponds to one tab or window in the web browser.
To override the automatic creation of a view, pass view = FALSE to the layTrack
function.

The default view of the track attempts to show the entire track. The view
region is determined by a call to genomeSegment on the track object, as in:

> genomeSegment(track)

An object of class "genomeSegment"
Slot "genome":
[1] "hg18"

Slot "chrom":
[1] "chr22"

Slot "start":
[1] 1e+06

Slot "end":
[1] 1020000

The returned value from genomeSegment is an instance of the genomeSegment
class, which specifies a segment of a genome by its genome name, chromosome
name and start and end positions.

In order to zoom in on the first two features of the track, one may subset the
track and then create a browser view of the new region using the browserView
function, as demonstrated below:

4

> subtrack <- track[1:2,]

> view <- browserView(session, segment = genomeSegment(subtrack))

2.2.4 A shortcut

There is also a shortcut to the above steps. The browseGenome function creates
a session for a specified browser, loads one or more tracks into the session and
creates a view of a given genome segment. In the following code, we create a
new UCSC session, load the track and view the first two features, all in one
call:

> session <- browseGenome(tracks = track,

+ browser = "ucsc", segment = genomeSegment(subtrack))

It is even simpler to view the entire track in UCSC by relying on parameter
defaults:

> session <- browseGenome(track)

2.2.5 Downloading tracks

It is possible to query the browser to obtain the names of the loaded tracks and
to download the tracks into R. To list the tracks loaded in the browser, enter
the following:

> loaded_tracks <- tracks(session)

One may download any of the tracks, such as the “Demo Track” that was loaded
previously in this example, with the following code:

> demo_track <- trackSet(session,

+ name = "Demo Track")

By default, the segment of the track downloaded is the current default genome
segment associated with the session. One may download track data for any
genome segment, such as that displayed by a particular view, as in this code:

> view_track <- trackSet(session,

+ genomeSegment(view), "Demo Track")

2.2.6 Querying view state

The view variable is an instance of browserView. To programmatically query the
segment displayed by a view, use the genomeSegment method for a browserView,
as in:

> segment <- genomeSegment(view)

Similarly, one may extract the names of the visible tracks in the view by entering:

> visible_tracks <- tracks(view)

5

2.3 Conclusion

This short demonstration has explained a few of the most important features
of rtracklayer, but many have been left unexplained. Please see the package
documentation for more details.

The following is the session info that generated this vignette:

> sessionInfo()

R version 2.7.0 (2008-04-22)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

attached base packages:
[1] tools stats graphics
[4] grDevices utils datasets
[7] methods base

other attached packages:
[1] rtracklayer_1.0.0 RCurl_0.8-3
[3] Biobase_2.0.0

loaded via a namespace (and not attached):
[1] rJava_0.5-1 XML_1.93-2

6

