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1 Introduction

The package exonmap is intended to support various forms of data analysis for Affymetrix
Exon microarrays. It includes a variety of routines for translating between probesets,
exons, genes and transcripts, and makes use of a relational database (X:MAP) to define
these relationships for the current genome assembly. X:MAP is built using Ensembl and
Affymetrix annotation data, along with custom probeset to genome mappings.

Genome mappings were generated by searching probe sequences against the entire
human (or mouse) genome and building database tables representing their hit locations
and hit specificity. These are placed alongside data describing exon, transcript and gene
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relationships. Most of this is hidden from the user; the package uses a series of functions
(e.g. probeset.to.exon) that manage the underlying database queries.

The package provides graphics routines for plotting individual genes, and for colour-
ing them by expression level or fold-change, and functions are also provided to link to
the X:MAP web-based front end, at http://xmap.picr.man.ac.uk.

The X:MAP database and the exonmap package are described in more detail in (add
citations).

2 Initial processing of exon array data

Exonmap makes use of the affy package; a basic understanding of the library and its
vignette is a good idea. We also assume that the reader knows how the Affymetrix system
works. If not, a brief introduction can be found at http://bioinf.picr.man.ac.uk/; a more
detailed description is in the Affymetrix MAS manual at http://www.affymetrix.com.

Although this package is primarily to support annotation, it does contain some basic
utility functions to make it easy to load and begin to explore exon array data. The
following section exists simply to provide a quick route to a list of differentially expressed
probesets; alternative strategies are of course possible, and you may choose to skip this
section and use your own approach.

3 Reading in data and generating expression calls

The first thing you need to do is to get R to use the exonmap package by telling it to
load the library:

> library(exonmap)

> library(affy)

R needs to know about the replicates in your experiment, so we must also load some
descriptive data that says which arrays were replicates and also something about the
different experimental conditions you were testing. This means that exonmap needs two
things:

1. your .CEL files, and

2. a white-space delimited file describing the samples that went on them.

By default, this file is called covdesc. The first column should have no header, and
contains the names of the .CEL files you want to process. Each remaining column is
used to describe something in the experiment you want to study. For example you might
have a set of chips produced by treating a cell line with two drugs. Your covdesc file
might look like something like this:
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treatment
ctrl1.cel n
ctrl2.cel n
ctrl3.cel n

a1.cel a
a2.cel a
a3.cel a
b1.cel b
b2.cel b
b3.cel b

ab1.cel a.b
ab2.cel a.b

This is similar to the approach taken by simpleaffy .
The easiest way to get going is to:

1. Create a directory, move all the relevant CEL files to that directory

2. Create a covdesc file and put it in the same directory

3. If using linux/unix, start R in that directory.

4. If using the Rgui for Microsoft Windows make sure your working directory contains
the Cel files (use “File -> Change Dir” menu item).

5. Load the library.

Exon array CEL files may be read using the function read.exon. In all cases an
experiment description file (covdesc) must be present.

In addition, a CDF metadata package must be specified. Versions of CDF metadata
for mouse and human exon arrays can be downloaded from http://xmap.picr.man.ac.uk.
The CDF metadata cannot include control or backround probesets if you are going to
process it with RMA or plier.

For example, to get started, you might run something like:

> raw.data <- read.exon()

> if (exists(raw.data)) {

+ raw.data@cdfName <- "exon.pmcdf"

+ x.rma <- rma(raw.data)

+ }

The CDF files, exon.pmcdf for Human Exon 1.0ST array and mouseexonpmcdf for
Mouse Exon 1.0 ST arrays, available from http://bioinformatics.picr.man.ac.uk have
been prepared by processing the ASCII CDF files from Affymetrix, using the ( makecdfenv)
and ( altcdfenvs). They include PM probes only. Probesets representing genomic and
antigenomic background and control probesets have also been removed.
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4 Pairwise comparison of expression data

The function pc provides fast pairwise comparisons for exprSet objects.

> data(exonmap)

> pc.exonmap <- pc(x.rma, "group", c("a", "b"))

pc produces an object of class PC that has two slots: fc, for the log2 fold change and
tt containing a t-test p-value. For the purpose of this vignette, we use these to select
significant probesets, although other more in-depth approaches are of course possible.
For example:

> sigs <- names(fc(pc.exonmap))[abs(fc(pc.exonmap)) > 1 & tt(pc.exonmap) <

+ 1e-04]

> length(sigs)

[1] 31

5 Translation routines for genes, transcripts, exons

and probesets

The X:MAP database can be queried in a number of ways using translation functions.
All of them have the form X.to.Y, where X and Y may be a vector of gene, transcript,
exon or probeset identifiers. See, for example, ?probeset.to.gene for more details. All
the functions produce, by default, a vector of the identifiers resulting from the specified
mapping. More information can be generated by setting the parameter vector.out to
FALSE , in which case, a data frame is returned. If unique is true, duplicates are removed
before the result is returned.

> xmapDatabase("Human")

done.

> sig.exons <- probeset.to.exon(sigs)

> length(sig.exons)

[1] 20

> sig.transcripts <- probeset.to.transcript(sigs)

> length(sig.transcripts)

[1] 12

> sig.genes <- probeset.to.gene(sigs)

> length(sig.genes)

[1] 7

(These numbers are so small because there are only 7 genes represented in the example
dataset).
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6 More details

exon.details,transcript.details and gene.details can all be used to extract de-
tailed annotation, given the appropriate set of identifiers.

> exon.details(sig.exons)

> transcript.details(sig.transcripts)

> gene.details(sig.genes)

We can also find all of the probesets between two points by using probesets.in.range

> gds <- gene.details(sig.genes)

> x1 <- gds$seq_region_start

> x2 <- gds$seq_region_end

> chr <- gds$name

> strand <- gds$seq_region_strand

> ps <- apply(cbind(x1, x2, strand, chr), 1, function(a) {

+ probesets.in.range(a[1], a[2], a[3], a[4])

+ })

This gives us back a list of character vectors, one for each gene, containing the
probesets within that gene’s region.

> length(ps)

[1] 7

> class(ps)

[1] "list"

> sapply(ps, length)

ENSG00000137573 ENSG00000112559 ENSG00000160180 ENSG00000112299 ENSG00000198904

523 73 27 154 187

ENSG00000128394 ENSG00000082175

271 267

Often we want to find all the probesets hitting a gene’s exons. The function gene.to.exon.probeset
is designed to do this quickly (it is implemented as a stored procedure on the database
server).

> ps2 <- lapply(sig.genes, gene.to.exon.probeset)

This gives us back a list of dataframes, one for each gene:
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> ps2[[1]]

gene exon probeset_id probeset_name probe_count

1 ENSG00000137573 ENSE00000697174 635026 3102398 4

2 ENSG00000137573 ENSE00000697198 635033 3102405 4

3 ENSG00000137573 ENSE00000697200 635040 3102412 4

4 ENSG00000137573 ENSE00000980794 635058 3102430 4

5 ENSG00000137573 ENSE00000980794 635059 3102431 4

6 ENSG00000137573 ENSE00000980797 635065 3102437 4

7 ENSG00000137573 ENSE00000980803 635073 3102445 4

8 ENSG00000137573 ENSE00001191942 635088 3102460 4

9 ENSG00000137573 ENSE00001191942 635089 3102461 4

11 ENSG00000137573 ENSE00001191942 635091 3102463 4

12 ENSG00000137573 ENSE00001191942 635092 3102464 4

13 ENSG00000137573 ENSE00001191942 635093 3102465 4

14 ENSG00000137573 ENSE00001191955 635071 3102443 4

15 ENSG00000137573 ENSE00001191962 635067 3102439 4

16 ENSG00000137573 ENSE00001191968 635066 3102438 4

17 ENSG00000137573 ENSE00001191977 635063 3102435 4

18 ENSG00000137573 ENSE00001191981 635062 3102434 4

19 ENSG00000137573 ENSE00001191988 635047 3102419 4

20 ENSG00000137573 ENSE00001191988 635048 3102420 4

21 ENSG00000137573 ENSE00001191991 635045 3102417 4

22 ENSG00000137573 ENSE00001191996 635042 3102414 4

23 ENSG00000137573 ENSE00001192007 635038 3102410 4

24 ENSG00000137573 ENSE00001192007 635039 3102411 4

25 ENSG00000137573 ENSE00001192013 635032 3102404 4

26 ENSG00000137573 ENSE00001226516 635075 3102447 4

28 ENSG00000137573 ENSE00001304123 635021 3102393 4

29 ENSG00000137573 ENSE00001307988 635014 3102386 4

30 ENSG00000137573 ENSE00001324480 635019 3102391 4

31 ENSG00000137573 ENSE00001328622 635009 3102381 4

32 ENSG00000137573 ENSE00001364471 635001 3102373 4

7 Probeset filtering

Probesets can be filtered according to the number and quality of their matches to the
genome. Match statistics can be displayed with probeset.stats.

> probeset.stats(ps[[1]][1:5])

probeset_id probeset hitScore exonScore geneScore

1 635001 3102373 1 1 1
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11 634998 3102369 1 0 1

12 634999 3102370 1 0 1

13 635000 3102371 1 0 1

14 1277261 3889483 101 0 25

The hit, exon and gene scores are calculated using all the probes in the probesets
(usually 4) by finding how many times they match to the genome, to exons and to genes
- and then multiplying the minimum value for the probe within a probeset with the
maximum. Thus the first probeset in the example is “exonic” as it matches the genome
1 time and only matches 1 gene and 1 exon. The second one is “intronic” because not all
its probes hit an exon and the fifth one is a “multitarget” probeset because it includes
at least one probe that matches many locations in the genome.

These four types of probesets can be selected or excluded from a probeset list us-
ing the select.probewise and exclude.probewise functions. For example, to find
probesets that hit within genes, but outside regions annotated as exons by ensembl:

> select.probewise(sigs, filter = "intronic")

[1] "3388403"

In a similar way, a probeset list can be filtered to get rid of multiply targeting
probesets (i.e. those annotated by X:MAP to hit in more than one place on the genome):

> sigs.nomt <- exclude.probewise(sigs, filter = "multitarget")

8 Plotting genes of interest

plotGene provides plots of the transcript and exon structure of a given gene, coloured
by expression data.

In order to compute the values that go into the plot, one or more groups is supplied
as a list, using the parameter gps (note that this has changed slightly since the last
release of the package). Each element in gps is a vector of indexes into the expression
data in data. So, for example,

> plotGene("ENSG00000141510", x.rma, gps = c(1:3, 4:6), type = "mean-fc")

7515000 7520000 7525000 7530000

TP53 <

ENSG00000141510

ENST00000269305

ENSE00001255952

ENST00000396473

ENSE00001525072

ENST00000359597

−5−2.50 2.5 5
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will compute the fold changes between arrays 1:3 and 4:6. All well behaving exon-
matching probesets are found, and the mean value used to colour the plot. The process
is repeated for each transcript and each exon. Transcripts aren’t coloured, and the mean
value for the gene is shown as a bar running across the top of the plot.

The approach to averaging can be changed and, raw intensities can plotted instead;
see ?plotGene for more details. It is also possible to pre-scale the colouring to the
average for the gene (averaged over all the exons), so that data is coloured relative to
the gene-average, (using the parameter scale.to.gene).

By default, exons with no matching probesets (following filtering for multi-targeting
probesets) are coloured white.

> par(mfrow = c(3, 1))

> plotGene("ENSG00000141510", x.rma, gps = list(1:3, 4:6), type = "mean-fc",

+ scale.to.gene = TRUE)

> plotGene("ENSG00000141510", x.rma, gps = list(1:3), type = "mean-int",

+ col = heat.colors(16))

> plotGene("ENSG00000141510", x.rma, gps = list(4:6), type = "mean-int",

+ col = heat.colors(16))

7515000 7520000 7525000 7530000

TP53 <

ENSG00000141510

ENST00000269305

ENSE00001255952

ENST00000396473

ENSE00001525072

ENST00000359597

−5 −2.5 0 2.5 5

7515000 7520000 7525000 7530000

TP53 <

ENSG00000141510

ENST00000269305

ENSE00001255952

ENST00000396473

ENSE00001525072

ENST00000359597

0 4 8 12 16

7515000 7520000 7525000 7530000

TP53 <

ENSG00000141510

ENST00000269305

ENSE00001255952

ENST00000396473

ENSE00001525072

ENST00000359597

0 4 8 12 16

Another utility to visualize the expression of a gene is ?plot.gene.graph. It creates
a line-plot for a specified gene, including intronic probesets. For example:

> par(mfrow = c(3, 2))

> gene.graph("ENSG00000141510", x.rma, gps = list(1:3, 4:6), type = "mean-fc",

+ gp.col = "red")

> gene.graph("ENSG00000141510", x.rma, gps = list(1:3, 4:6), type = "mean-int",

+ gp.col = c("red", "orange"))

> gene.graph("ENSG00000141510", x.rma, gps = list(1, 2, 3, 4, 5,

8



+ 6), type = "mean-int", gp.col = 1:6)

> gene.graph("ENSG00000141510", x.rma, gps = list(1, 2, 3, 4, 5,

+ 6), type = "mean-int", gp.col = 1:6, by.order = TRUE)

> gene.graph("ENSG00000141510", x.rma, gps = list(1, 2, 3, 4, 5,

+ 6), type = "mean-int", gp.col = 1:6, by.order = TRUE, show.introns = TRUE)

> gene.graph("ENSG00000141510", x.rma, gps = list(1, 2, 3, 4, 5,

+ 6), type = "mean-int", gp.col = c(rep("red", 3), rep("orange",

+ 3)), gp.pch = c(1, 1, 1, 2, 2, 2), by.order = TRUE, show.introns = TRUE,

+ exon.bg.col = NA)
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Heatmap style plots can also be generated with the function gene.strip.

> all.genes <- probeset.to.gene(featureNames(x.rma))

> gene.strip(all.genes, x.rma, list(1:3, 4:6), type = "mean-fc")
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Here, each row corresponds to a gene, and each exon is plotted in exon-order along
the X axis. The plot is coloured as before; exons for which a uniquely matching probeset
cannot be found are, by default, coloured white. When multiple probesets hit the same
exon, these are stacked vertically within that exon’s rectangle.

Alternatively, plots could be coloured by intensity:

> par(mfcol = c(2, 1))

> gene.strip(all.genes, x.rma, list(1:3), type = "median-int",

+ col = heat.colors(16), main = "MCF7")

> gene.strip(all.genes, x.rma, list(4:6), type = "median-int",

+ col = heat.colors(16), main = "MCF10a")
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The parameter show.introns can be used to change the plotting behaviour so that
introns are shown, and exons are positioned relative to their nucleotide position within
the gene.

> gene.strip(sig.genes, x.rma, list(1:3, 4:6), type = "mean-fc",

+ show.introns = TRUE)
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9 Splicing index and splicing ANOVA

Splicing index and splicing ANOVA have also been implemented, as described in the
Affymetrix white paper: “Alternative transcript analysis methods for exon arrays”.

The splicing index gives a measure of the difference in expression level for each
probeset in a gene between two sets of arrays, relative to the gene-level average in each
set. This is calculateed only for those probesets that are defined as exon targeting and
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non-multitargetted (See select.probewise and exclude.probewise for more details of how
this filtering is performed.

The two sets of arrays can be specified in two ways: First, by using numeric indices
defining the appropriate columns in the expression data. This is doine by supplying
these as a list to members (e.g. members=list(1:3,4:6) will calculate the splicing index
between arrays 1,2,3 and 4,5,6. Alternatively, the annotation in the pData object from
x can be used (e.g. group=”treatment”,members=c(”a”,”b”), will compare between the
arrays labelled ”a”, and ”b” in the ”treatment” column of pData(x)).

The implementation also calculates a p.value and t.statistic for each probeset; these
are returned alongside the splicing index.

By default, the splicing index is calculated using the mean across genes and samples,
specifing median.gene=TRUE will use the median instead. It is calculated using the
unlogged data, unless unlogged=FALSE . This only affects the internal calculations -
values in x are always assumed to be logged, and the splicing index is always returned
on the log2 scale.

> si <- si(x.rma, c("ENSG00000141510", "ENSG00000082175"), "group",

+ c("a", "b"))

splanova is an implementation of the MIDAS approach suggested by Affymetrix.
It produces an object with F-values and significance of alternative splicing, for each
probeset and treatment in a multi-treatment experiment.
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