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1 Introduction

1.1 Overview

The Bioconductor R package cosmo implements an algorithm for searching a set of unaligned
DNA sequences for a shared motif that may, for example, represent a common transcription
factor binding site (Bembom et al., 2007). cosmo is extends the popular motif discovery tool
MEME (Bailey and Elkan, 1995) in that it allows the search to be supervised by specifying
a set of constraints that the motif to be discovered must satisfy. Such constraints may, for
example, consist of bounds on the information content across certain regions of the unknown
motif and can often be formulated on the basis of prior knowledge about the structure of the
transcription factor in question. The user is not required to specify a priori the width of the
unknown motif, the distribution of motif occurrences among the input sequences (OOPS,
ZOOPS, or TCM), or a single correct constraint set. Instead these three model parameters
can be selected in a data-adaptive manner.

1.2 Motivation

An important goal in contemporary biology consists of deciphering the complex network that
regulates the expression of an organism’s genome. A central role in this network is played by
transcription factors that regulate gene expression by binding to conserved short sequences
in the vicinity of their target genes (Davidson, 2001). The discovery and description of these
binding sites or motifs has therefore been at the heart of efforts aimed at understanding gene
regulatory networks.

Traditionally, experimental methods have been used for this purpose, leading to a set of
target sites from multiple genes that could then be aligned to estimate the position weight
matrix (PWM) of the motif - a 4×W matrix in which position (j, w) gives the probability
of observing nucleotide j in position w of a motif of length W . Currently, however, such
position weight matrix estimates are more commonly obtained by applying pattern discovery
algorithms to functional genomics data. Modern high-throughput methods such as cDNA
microarrays (Roth et al., 1998; Eisen et al., 1998; Bussemaker et al., 2001)or SAGE (Powell,
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2000), for example, can identify sets of co-regulated genes whose promoter sequences can
then be scanned for statistically over-represented patterns that are likely transcription factor
binding sites (Lawrence et al., 1993; Bussemaker et al., 2001).

While this approach has proven fruitful for the discovery of such binding sites in yeast, its
application to metazoan genomes has met with considerable difficulty since binding sites tend
to be spread out over much larger regions of genomic sequence. Efforts at tackling this signal-
to-noise problem have concentrated mostly on phylogenetic footprinting, i.e. cross-species
sequence comparisons that remove noise by focusing on sequences under selective pressure
(Fickett and Wasserman, 2000). Sandelin and Wassermann (2004), however, recently de-
scribed an alternative approach that is based on prior knowledge about the structural class
of the mediating transcription factor of interest. Such knowledge is often available on the
basis of genetics or similarities between biological systems. For most structurally related fam-
ilies of transcription factors, there are clear similarities in the sequences of the sites to which
they bind (Luscombe et al., 2000). Eisen (2005), for example, has demonstrated that motifs
bound by proteins with structurally similar DNA binding domains tend to have similar infor-
mation content profiles (Schneider et al., 1986). Prior knowledge about the structural class
of the mediating transcription factor thus often translates into constraints on the unknown
position weight matrix that can be used to enhance the performance of pattern discovery
algorithms. Sandelin and Wassermann (2004) show that the benefit of such prior knowledge
is comparable to the specificity improvements obtained through phylogenetic footprinting.

Currently, only a few motif finding algorithms such as ANN-Spec (Workman and Stormo,
2000) or the Gibbs motif sampler (Neuwald et al., 1995; Thompson et al., 2003) are capable of
incorporating prior knowledge about the unknown motif. These algorithms generally require
the user to supply an appropriate prior distribution on the entries of the corresponding
position weight matrix. cosmo instead allows the user to target the motif search by specifying
a set of constraints that the unknown position weight matrix must satisfy. The algorithm is
based on a probabilistic model that describes the DNA sequences of interest through a two-
component multinomial mixture model as first introduced by Lawrence and Reilly (1990),
with estimates of the position weight matrix entries obtained by maximizing the observed
data likelihood over the smaller parameter space corresponding to the imposed constraints.

2 Methods

2.1 Probabilistic models

2.1.1 Motifs and background

All of the models described below assume that sequences are generated according to a multi-
nomial mixture model with two components, one that describes the distribution of nucleotides
in the motif, and one that describes the distribution of nucleotides in the background. Nu-
cleotides that are part of the length-W transcription factor binding site are assumed to be
generated independently of each other according to multinomial distributions that are al-
lowed to be different for each nucleotide in the motif. Nucleotides that are not part of a
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motif are assumed to be generated according to a k-th order Markov model that allows the
parameter vector of the multinomial distribution of the current nucleotide to depend on the
previous k nucleotides.

2.1.2 OOPS

The one-occurrence-per-sequence (OOPS) model assumes that every sequence contains ex-
actly one occurrence of the motif. For a given sequence of length Li, any of the Li −W + 1
eligible motif starts are equally likely to be the start site of the motif. At a given start site,
the motif is equally likely to be present in either one of the two possible orientations. For
example, a motif with consensus sequence ATGCCC may be present as ATGCCC or in its
reverse complement orientation as GGGCAT.

2.1.3 ZOOPS

The zero-or-one-occurrence-per-sequence (ZOOPS) model assumes that a given sequence
contains one occurrence of the motif with probability π and no occurrences of the motif with
probability 1− π. For a given sequence that contains a motif, any of the Li−W + 1 eligible
motif starts are equally to be the start site of the motif. At a given start site, the motif is
equally likely to be present in either one of the two possible orientations.

2.1.4 TCM

The OOPS and ZOOPS models allow at most one occurrence of the motif per sequence.
However, there are many biological examples of DNA sequences that contain multiple oc-
currences of the same transcription factor binding site. Bailey and Elkan (1995) propose a
two-component mixture (TCM) model for this situation that allows each sequence to con-
tain an arbitrary number of non-overlapping occurrences of the motif. This model assumes
that a given sequence is generated by repeatedly deciding whether to insert a background
nucleotide or a motif of width W . As before, a motif is inserted in either one of the two
possible orientations with equal probability. We denote by λ the probability that a motif is
inserted at a given position rather than a background nucleotide.

2.2 Constraints

2.2.1 Motif intervals

Many motifs can be conceptually divided into separate intervals that each correspond to a
distinct set of constraints on the position weight matrix. In order to specify constraints for
cosmo, we hence first specify how the motif can be divided into separate intervals. Since the
true motif width is usually unknown, forcing cosmo to search a range of candidate values,
we have to specify how the width of each interval changes with varying motif widths. We
offer three possibilities: The length of an interval may be a fixed number of based pairs no
matter what the length of the whole motif is; alternatively, the length of an interval may
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always be a fixed proportion of the length of the whole motif; finally, a motif may contain
one interval that for each motif width is assigned whatever number of base pairs is left after
all intervals of the first two kinds have been allocated. Once the motif has been divided into
separate intervals, we can add a number of different constraints to individual intervals or to
the motif as a whole.

2.2.2 Bound constraints on the information content across an interval

An important summary measure of a given position weight matrix is its information content
profile. The information content at position w of the motif is given by

IC(w) = log2(J) +
J∑

j=1

pwj log2(pwj) = log2(J)− entropy(w)

where J denotes the number of letters in the alphabet from which the sequences have been
derived so that here J = 4. The information content is measured in bits and, in the case
of DNA sequences, ranges from 0 to 2 bits. A position in the motif at which all nucleotides
occur with equal probability has an information content of 0 bits, while a position at which
only a single nucleotide can occur has an information content of 2 bits. The information
content at a given position can therefore be thought of as giving a measure of the tolerance
for substitutions in that position: Positions that are highly conserved and thus have a low
tolerance for substitutions correspond to high information content, while positions with a
high tolerance for substitutions correspond to low information content.

It has been shown that the information content at a given position of a motif is propor-
tional to the number of contacts between the protein and the base pair at that position. We
therefore expect higher information content in regions of the motif that are bound by the
transcription factor than in the remaining regions. If the transcription factor contains two
DNA-binding domains whose target sequences in the motif are separated by a short stretch
of sequence that does not interact with the protein, we would expect that the information
content of the motif follows a high-low-high pattern. In this case, it may be useful to give
bounds on the information content across an individual interval.

2.2.3 Shape constraints on the information content profile across an interval

We may want to exclude position weight matrices from consideration whose information
content profile is sharply discontinuous across a given interval. This can be achieved by
requiring the information content profile across that interval to follow a linear or monotone
shape. In both cases, we may also give bounds on the information content at the left and
right edge of the interval.

2.2.4 Lower bounds on nucleotide frequencies across an interval

We may suspect that a given nucleotide occurs with high frequency across a certain interval.
In that case, we may require that the average frequency of a given nucleotide j across all
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positions in the interval is no less than some lower bound. Similarly, we may require that
the GC-content or AT-content across an interval is no less than some lower bound. If the
length of the interval does not change with varying motif width, we may also impose lower
bounds for nucleotide frequencies at a single position in that interval.

2.2.5 Palindromic intervals

If the DNA-binding domains of the transcription factor are homodimeric, the DNA stretches
that are bound by the transcription factor will be palindromes of each other. cosmo allows the
user to specify two intervals that are thought to be palindromic with respect to each other.
In particular, we require that the frequency of nucleotide j at position l in the interval equal
the frequency of the palindrome of nucleotide j at position l from the right edge of interval,
to within a given error bound.

2.2.6 Submotifs

Families of transcription factors are often characterized by the occurrence of a certain sub-
motif within the motif. The exact location of the submotif within the motif, however, can
vary widely. DNA sequences bound by transcription factors with an ETS domain, for ex-
ample, all contain the stretch GGAA somewhere within the binding site. cosmo allows the
user to specify such a submotif that is then required to occur somewhere within the motif
of interest, with nucleotide frequencies of the consensus nucleotides in the submotif roughly
equal to some user-specified frequency.

2.2.7 Bounds on differences of shape parameters

Sometimes we may wish to impose constraints on the shape of the information content that
cannot be specified by the shape constraints described above. For example, we may wish
to require that the information content across a certain interval is constant, or that the
information content profile be continuous at the junction between two intervals.

Such constraints can be formulated by giving bounds on the difference between two
shape parameters. Recall that shape constraints on the information content profile across
an interval are parameterized using the information content at the left and right edge of
the interval. Hence we may require that these two quantities be identical, corresponding
to a constant information content profile across that interval. As another example, we
might require that the information content at the end of one interval is identical to the
information content at the beginning of the next interval, corresponding to the constraint
that the information content profile be continuous at the junction between the two intervals.

2.3 Model selection

The probabilistic models described above are indexed by by following four parameters:

1. The order of the background Markov model.
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2. The width of the motif.

3. The type of model used to describe the data generating process (OOPS, ZOOPS, or
TCM).

4. The set of constraints on the position weight matrix of the motif,

For each one of these four parameters, cosmo allows the user to either make a man-
ual selection or to have the appropriate index selected data-adaptively. For data-adaptive
selection, the user may choose from among a number of different model selection approaches.

2.3.1 Likelihood-based validity functionals

Apart from the likelihood, we also consider Akaike’s Information Criterion AIC (Akaike,
1973) and the Bayesian Information Criterion BIC (Schwarz, 1978). BIC has been found
to work fairly well for selecting the unknown motif width, while the likelihood and AIC
generally perform quite poorly in the model selection tasks we consider.

2.3.2 E-value of the resulting multiple alignment

The E-value of the multiple alignment consisting of the predicted motif occurrences is an
approximate p-value for testing the null hypothesis that this alignment was obtained from a
set of sequences that were generated entirely from the background distribution against the
alternative hypothesis that the sequences were generated according to the estimated model.

This measure of statistical significance has been found to work well for all three model
selection problems and forms the default approach used by cosmo for selecting the motif
width as well as the distribution of motif occurrences.

2.3.3 Likelihood-based cross-validation

Likelihood-based cross-validation is a popular approach to model selection in the context
of density estimation (van der Laan et al., 2003). The general idea of cross-validation is
to divide the original dataset into a training set that is used to estimate the parameters of
a given model and a validation set that is then used to evaluate the performance of this
estimated model. This performance assessment is based on an appropriately specified loss
function. In the context of likelihood-based cross-validation this loss function is taken to be
the Kullback-Leibler divergence (DKL), which gives a measure of the distance between two
densities f and g.

Likelihood-based cross-validation generally performs rather poorly at the model selection
problems encountered here, presumably because it is aimed at estimating the entire density
of the data-generating distribution well instead of the lower dimensional functionals of this
density we are concerned with here.
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2.3.4 Cross-validation based on the Euclidean norm

For selection problems in which W is fixed, notably in selecting between candidate constraint
sets, we may want to use as loss function the Euclidean norm between a position weight
matrix estimate obtained under a candidate constraint set and an independent position
weight matrix estimate obtained under no constraints.

Cross-validation based on this loss function has been found to perform well for the pur-
pose of selecting between different candidate constraint sets and forms the default approach
employed by cosmo for this problem.

2.3.5 Separate model selection criteria for different parameters

The user is allowed to specify different model selection criteria for selecting the different
parameters. In fact, the default settings cause cosmo to select the motif width and the
model type based on the E-value criterion, but the constraint set by cross-validation based
on the Euclidean-norm loss function.

cosmo handles such situations using the following profiling approach. For each given
combination of constraint set and model, it first finds the optimal motif width based on the
criterion selected for choosing the motif width. In the next step, it selects the optimal model
type for each given constraint set at the chosen value for the motif width. Finally, it selects
the optimal constraint set for the chosen values of the motif width and model type. This
approach is computationally attractive since cosmo is not required to evaluate the different
model selection criteria for all possible candidate models.

3 Software implementation

3.1 Overview

The supervised motif detection algorithm described above is implemented in the Biocon-
ductor R package cosmo. This package offers functions for generating random sequences
according to the three different probabilistic models, functions for generating R objects rep-
resenting sets of constraints on the unknown position weight matrix, as well as a function
for carrying out the algorithm itself.

Before being able to access these functions, the user is required to load the package using
the library() command:

> library(cosmo)

Welcome to cosmo version 1.6.0

cosmo is free for research purposes only. For more details, type

license.cosmo(). Type citation('cosmo') for details on how to cite

cosmo in publications.
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3.2 Simulating sequences

The function rseq() allows the user to generate random sequences according to the OOPS,
ZOOPS, or TCM models:

> args(rseq)

function (numSeqs, seqLength, rate, pwm, transMats, model = "ZOOPS",

posOnly = FALSE)

NULL

INPUT.

1. The number of sequences to be generated, numSeqs.

2. The number of nucleotides in each sequence, seqLength. This may be either a single
number, in which case that number is taken to be the common length of all sequence,
or a vector of sequence lengths.

3. The intensity parameter for the ZOOPS and TCM models, rate. For the ZOOPS
model, this corresponds to π; for the TCM model, this corresponds to λ.

4. The position weight matrix of the motif, pwm.

5. The transition matrix for the background Markov model, transMats. This is a list
of matrices, with the first matrix given the transition probabilities for the 0th order
Markov model, the second matrix giving the transition probabilities for a 1st order
Markov model, and so on.

6. The distribution of motif occurrences, model. This is either “ZOOPS” or “TCM”; the
OOPS model is a special case of the “ZOOPS” model.

7. A choice for whether motifs may only be inserted in the forward strand orientation
instead of allowing the reverse complement orientation as well, posOnly.

OUTPUT.

1. A list of the generated sequences, seqs.

2. An align object motifs summarizing the positions of the inserted motif occurrences.

3. An object empPWM of class pwm representing the position weight matrix obtained by
aligning the inserted motifs.

EXAMPLE.

The cosmo package contains the following example of a position weight matrix for a motif
of width 8:
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Figure 1: Sequence logo of motif used for simulating sequences.
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> data(motifPWM)

> motifPWM

1 2 3 4 5 6 7 8

A 0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.0

C 0.8 0.2 0.8 0.3 0.4 0.2 0.8 0.2

G 0.2 0.8 0.2 0.4 0.3 0.8 0.2 0.8

T 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

The seqLogo() function found in the seqLogo package can be used to produce the sequence
logo shown in figure 1 (Schneider and Stephens, 1990). The cosmo package also contains
the following example of transition matrices needed for a second-order Markov model for the
distribution of background nucleotides:

> data(transMats)

> transMats

$order0

A C G T

-- 0.3226181 0.1783398 0.1776999 0.3213423

$order1

A C G T

10



A 0.3750312 0.1604460 0.1771620 0.2873608

C 0.3253088 0.1891273 0.1671617 0.3184022

G 0.3140129 0.2090844 0.1865159 0.2903868

T 0.2732550 0.1739084 0.1795711 0.3732655

$order2

A C G T

AA 0.4224705 0.1437651 0.1841981 0.2495663

AC 0.3480425 0.1806008 0.1724194 0.2989373

AG 0.3419518 0.1958921 0.1892899 0.2728662

AT 0.3400486 0.1576593 0.1794790 0.3228131

CA 0.3492801 0.1812818 0.1829259 0.2865122

CC 0.3095298 0.1987338 0.1695311 0.3222054

CG 0.2844824 0.2251332 0.1906993 0.2996852

CT 0.2440334 0.1832112 0.1850531 0.3877023

GA 0.4109319 0.1418031 0.1867843 0.2604807

GC 0.3298844 0.1913179 0.1809832 0.2978145

GG 0.3169036 0.2158552 0.1905797 0.2766614

GT 0.3079272 0.1532995 0.2011074 0.3376659

TA 0.3046557 0.1818625 0.1577414 0.3557404

TC 0.3109209 0.1894812 0.1518175 0.3477804

TG 0.2995633 0.2100971 0.1795034 0.3108363

TT 0.2210835 0.1909250 0.1678571 0.4201344

We may now generate 20 sequence each of length 100 nucleotides according to the OOPS
model and this position weight matrix and background distribution as follows:

> simSeqs <- rseq(20, 100, 1, motifPWM, transMats, "ZOOPS")

> simSeqs$motifs

seq pos orient motif prob

1 Seq1 20 1 CGCACGCG 1

2 Seq2 50 -1 GCCGCCCG 1

3 Seq3 48 -1 GGCCTGCG 1

4 Seq4 53 1 CGCCCGCC 1

5 Seq5 71 1 CGCCCGGG 1

6 Seq6 65 1 CGGCCGCG 1

7 Seq7 68 1 CCGAGGGG 1

8 Seq8 51 1 CGCACCCG 1

9 Seq9 10 1 GGCACGCG 1

10 Seq10 34 -1 CGCGAGGC 1

11 Seq11 50 -1 CCCGCGCG 1

12 Seq12 56 1 GGGCACCG 1

13 Seq13 40 -1 CGCACGCG 1
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14 Seq14 42 -1 GGCCCGCG 1

15 Seq15 35 -1 CGGAGGCG 1

16 Seq16 47 1 GGGGAGCG 1

17 Seq17 83 -1 CCCAAGCG 1

18 Seq18 32 -1 CGCCAGGG 1

19 Seq19 7 1 CGGGCGCG 1

20 Seq20 80 1 CGGAGGCG 1

3.3 Constructing constraint sets

The cosmo package defines classes constraintSet and constraintGroup that represent a
single constraint sets and a collection of constraint Sets, respectively. A constraintSet

object is initially constructed using the function makeConSet()

> args(makeConSet)

function (numInt, type, length, descrip = "Constraint Set")

NULL

that takes as arguments the number of intervals that the motif is to be divided into, the
types of those intervals and the lengths of those intervals. A constraint set consisting of a
3-bp interval, a variable-length interval, and another 3-bp interval is constructed as

> conSet1 <- makeConSet(numInt = 3, type = c("B", "V", "B"), length = c(3,

+ NA, 3))

constraintSet objects are displayed in the format employed by the cosmoweb web applica-
tion (http://cosmoweb.berkeley.edu):

> conSet1

@ ConstraintSet: 1

>IntervalSetup

Length: 3 bp

Length: variable

Length: 3 bp

We may now construct a list of constraints that can then be added to this constraint set. To
require the information content across the first interval to be bounded between 1.0 and 2.0,
we construct the following boundCon object:

> boundCon1 <- makeBoundCon(lower = 1, upper = 2)

Likewise, we construct the following bound constraint for the second interval:

> boundCon2 <- makeBoundCon(lower = 0, upper = 1)

12
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Lastly, we may construct a palCon object to require that intervals 1 and 3 be palindromes
of each other:

> palCon1 <- makePalCon(int1 = 1, int2 = 3, errBnd = 0.05)

These constraints can now be added to the appropriate intervals of the initially defined
constraintSet object:

> constraint <- list(boundCon1, boundCon2, palCon1)

> int <- list(1, 2, NA)

> conSet1 <- addCon(conSet = conSet1, constraint = constraint,

+ int = int)

> conSet1

@ ConstraintSet: 1

>IntervalSetup

Length: 3 bp

Length: variable

Length: 3 bp

>IcBounds

Interval: 1

Bounds: 1 to 2

>IcBounds

Interval: 2

Bounds: 0 to 1

>Pal

Intervals: 1 and 3

ErrorTol: 0.05

We construct a second constraint set that requires the motif to contain the submotif TATA:

> conSet2 <- makeConSet(numInt = 1, type = "V", length = NA)

> subCon1 <- makeSubMotifCon(submotif = "TATA", minfreq = 0.9)

> conSet2 <- addCon(conSet = conSet2, constraint = subCon1, int = NA)

> conSet2

@ ConstraintSet: 1

>IntervalSetup

Length: variable

>SubMotif

Motif: TATA

MinFreq: 0.9
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3.4 cosmo function

The cosmo() function carries out the supervised motif detection algorithm described above.

> args(cosmo)

function (seqs = "browse", constraints = "None", minW = 6, maxW = 15,

models = "ZOOPS", revComp = TRUE, minSites = NULL, maxSites = NULL,

starts = 5, approx = "over", cutFac = 5, wCrit = "bic", wFold = 5,

wTrunc = 100, modCrit = "lik", modFold = 5, modTrunc = 100,

conCrit = "likCV", conFold = 5, conTrunc = 90, intCrit = "lik",

intFold = 5, intTrunc = 100, maxIntensity = FALSE, lstarts = FALSE,

backSeqs = NULL, backFold = 5, bfile = NULL, transMat = NULL,

order = NULL, maxOrder = 6, silent = FALSE)

NULL

INPUT.

1. A reference to the set of sequence to be analyzed, seqs. This may be a list with each
element representing a sequence in the form of a single string such as ”ACGTAGCTAG”
(”seq” entry) and a description (”desc” entry), the path of a file that contains the
sequences in FASTA format, or the string “browse”, in which case the user is prompted
to browse for a FASTA file containing the input sequences.

2. A reference to the constraint sets, constraints. This may be a constraintSet object,
a list of such objects, the name of a file containing the constraint definitions in the
format used by cosmoweb, the string“None”for no constraints. If the cosmoGUI package
has been installed, constraint sets may also be defined through an interactive Tcl/Tk-
based GUI by specifying constraints= GUI (see figure 2).

3. The minimum and maximum motif widths to search through, minW and maxW.

4. A character vector giving the model types to be considered as candidates for the se-
quences at hand, models. The possible candidates are“OOPS”,“ZOOPS”, and“TCM”.

5. A logical indicator for whether motifs are allowed to occur in the reverse complement
orientation, revComp.

6. The minimum and maximum number of motif occurrences in the entire set of sequences,
minSites and maxSites.

7. The number of starting values to use for the constrained optimization of the likelihood
function, starts. In many cases, increasing the number of starting values can help
improve the performance of the algorithm, whereas decreaseing the number of starting
values will reduce the computing time.
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Figure 2: GUI for constructing constraint sets.

8. A number of more advanced parameters, pertaining mostly to the model selection
procedure. The default values will be perfectly sufficient for the vast majority of users,
with the available options mostly given for testing and simulation purposes.

OUTPUT.

The S4 class/method object-oriented programming approach was adopted to summarize the
results of the motif search. Specifically, the output is an instance of the class cosmo. A brief
description of the class is given next. Please consult the documentation for details, e.g.,
using class ? cosmo and methods ? cosmo.

> slotNames("cosmo")

[1] "seqs" "pwm" "back" "tmat" "cand"

[6] "cons" "sel" "motifs" "probs" "objectCall"

1. A list seqs with each element representing one sequence of the input dataset in the
form of a single string such as ”ACGTAGCTAG”(”seq”entry) and a description (”desc”
entry).

2. The estimated position weight matrix, pwm. This is an instance of the class pwm,
containing additionally the information content profile of the position weight matrix
and the corresponding consensus sequence. Invoking the plot() method on an object of
class pwm produces a plot of the sequence logo of the position weight matrix (Schneider
et al., 1986)

3. A summary of the model selection process for the order of the background Markov
model, back. This is a data.frame that gives for each candidate order the cross-
validated Kullback-Leibler divergence.
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4. The estimated transition matrices for the background Markov model, tmat.

5. A summary of the model selection process for selecting the motif width, model type,
and constraint set, cand. This is a data.frame that gives for each candidate model
considered the values of the relevant model selection criteria.

6. The selected constraint set, cons. This is an instance of the class constraintSet.

7. A description of the selected model, sel. This is a data.frame that summarized the
selections made for the constraint set, the model type, the motif width, and the order
of the background Markov model.

8. A summary of the predicted motif occurrences, motifs. This is an instance of the
class align that gives, for each predicted motif occurrence, the sequence name, the
position on the sequence, the orientation of the motif, the motif itself, and the posterior
probability of this site being a motif occurrence.

9. A list probs with each entry giving the posterior probabilities of motif occurrences
along a given sequence. If the motif is more likely to occur in the reverse complement
orientation, this posterior probability appears with a negative sign.

EXAMPLE.

The cosmo package includes the example FASTA file seq.fasta. It contains 20 sequences
that were simulated as above according to the OOPS model to each contain one occurrence
of the motif whose sequence logo is given in figure 1. We can search these sequences for a
shared motif, considering as candidate constraint sets the two constraint sets constructed
in section 3.3, as candidate model types OOPS and TCM, and as candidate motif widths 7
through 8:

> seqFile <- system.file("Exfiles/seq.fasta", package = "cosmo")

> res <- cosmo(seqs = seqFile, constraints = list(conSet1, conSet2),

+ minW = 7, maxW = 8, models = c("OOPS", "TCM"))

The print() method outputs the estimated position weight matrix:

> print(res)

1 2 3 4 5 6 7 8

A 0.0000 0.0000 0.0000 0.1591 0.1932 0.0000 0.0000 0.0000

C 0.8165 0.2294 0.7676 0.3531 0.2984 0.1824 0.8206 0.2335

G 0.1835 0.7706 0.2324 0.4878 0.1607 0.8176 0.1794 0.7665

T 0.0000 0.0000 0.0000 0.0000 0.3476 0.0000 0.0000 0.0000

A more detailed summary of the results is obtained through the summary() method:
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> summary(res)

Input dataset:

Sequence Length

1 Seq1 100

2 Seq2 100

3 Seq3 100

4 Seq4 100

5 Seq5 100

6 Seq6 100

7 Seq7 100

8 Seq8 100

9 Seq9 100

10 Seq10 100

Candidate orders for background Markov model:

order klDiv

1 0 1.351885e+02

2 1 1.352459e+02

3 2 1.367819e+02

4 3 1.797693e+308

5 4 Inf

6 5 Inf

7 6 Inf

Candidate models considered:

conSet model width wCrit modCrit conCrit

1 1 OOPS 7 2705.698 NA NA

2 1 OOPS 8 2686.247 -1315.493 133.2590

3 1 TCM 7 2720.641 NA NA

4 1 TCM 8 2706.129 -1324.282 NA

5 2 OOPS 7 2731.628 NA NA

6 2 OOPS 8 2729.742 -1337.240 142.9390

7 2 TCM 7 2736.589 -1342.966 NA

8 2 TCM 8 2738.835 NA NA

Selected model:

choice crit critVal

Constraint 1 likCV 133.2590

Model OOPS lik -1315.4926
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Width 8 bic 2686.2472

NumSites 10 lik -1315.4926

Markov Order 0 likCV 135.1885

Selected constraint set:

@ ConstraintSet: 1

>IntervalSetup

Length: 3 bp

Length: variable

Length: 3 bp

>IcBounds

Interval: 1

Bounds: 1 to 2

>IcBounds

Interval: 2

Bounds: 0 to 1

>Pal

Intervals: 1 and 3

ErrorTol: 0.05

Estimated position weight matrix:

1 2 3 4 5 6 7 8

A 0.0000 0.0000 0.0000 0.1591 0.1932 0.0000 0.0000 0.0000

C 0.8165 0.2294 0.7676 0.3531 0.2984 0.1824 0.8206 0.2335

G 0.1835 0.7706 0.2324 0.4878 0.1607 0.8176 0.1794 0.7665

T 0.0000 0.0000 0.0000 0.0000 0.3476 0.0000 0.0000 0.0000

Motif occurrences:

E-value: 0.03375495

seq pos orient motif prob

1 Seq1 69 1 CGCCAGCG 1.0000000

2 Seq8 25 1 GGGCTGCC 1.0000000

3 Seq6 21 1 CCCATGGG 1.0000000

4 Seq2 35 1 CGCGCGCG 0.9998827

5 Seq3 86 -1 CGGACGCG 0.9994568

6 Seq10 14 -1 GGCACGCG 0.9949933

7 Seq5 79 -1 GGCCGGCG 0.9729926

8 Seq4 15 1 CCGGAGCG 0.9269565
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9 Seq7 69 -1 CGGGCGGG 0.9082883

10 Seq9 7 1 CGCCCGCG 0.9020536

The cand slot of the cosmo object consists of a data frame that summarizes the model
selection process:

> res@cand

conSet model width wCrit modCrit conCrit

1 1 OOPS 7 2705.698 NA NA

2 1 OOPS 8 2686.247 -1315.493 133.2590

3 1 TCM 7 2720.641 NA NA

4 1 TCM 8 2706.129 -1324.282 NA

5 2 OOPS 7 2731.628 NA NA

6 2 OOPS 8 2729.742 -1337.240 142.9390

7 2 TCM 7 2736.589 -1342.966 NA

8 2 TCM 8 2738.835 NA NA

Note that the E-value criterion was evaluated for all candidate models to select the optimal
motif width for each given combination of model type and constraint. The model type
critertion then needs to be only evaluated for that each combination of model type, constraint
set and selected motif width. The constraint set criterion, lastly, needs to be evaluated only
for the optimal motif widht and model type for each candidate constraint set. In this case,
cosmo selected a motif width of 8, the one-occurrence-per-sequence model, and the first
constraint set, choices that agree well with the data-generating distribution described above.

The alignment of predicted motif occurrences is stored in the motifs slot of the cosmo

output object:

> summary(res@motifs)

Motif sites:

E-value: 0.03375495

seq pos orient motif prob

1 Seq1 69 1 CGCCAGCG 1.0000000

2 Seq8 25 1 GGGCTGCC 1.0000000

3 Seq6 21 1 CCCATGGG 1.0000000

4 Seq2 35 1 CGCGCGCG 0.9998827

5 Seq3 86 -1 CGGACGCG 0.9994568

6 Seq10 14 -1 GGCACGCG 0.9949933

7 Seq5 79 -1 GGCCGGCG 0.9729926

8 Seq4 15 1 CCGGAGCG 0.9269565

9 Seq7 69 -1 CGGGCGGG 0.9082883

10 Seq9 7 1 CGCCCGCG 0.9020536
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Figure 3: Sequence logo.
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In this, case twenty motif occurrences were predicted, with an E-value for the resulting
alignment of 3.3755e-02. Invoking the plot() method on the cosmo object res produces a
sequence logo of the estimated motif (figure 3). Note that the sequence logo of the estimated
position weight matrix agrees well with the sequence logo of the true position weight matrix
shown in figure 1. A plot of the posterior probabilities along each sequence is obtained by
invoking the plot() method on the cosmo object res with the argument type="prob"(figure
4).

3.5 External estimates of the background Markov model

By default, the Markov model for the distribution of background nucleotides is estimated
from the input sequences supplied by the user. It is also possible, however, estimate this
model from a separate, usualy larger set of sequences. The user may, for example, want to
use the set of intergenic sequences of the organism of interest for this purpose. Estimating
the background model from a larger data set allows for more precise estimation and may thus
increase the performance of the algorithm in finding shared motifs in the input sequences.

A separate set of sequences for the estimation of the background model may be passed to
cosmo() through the (backSeqs) argument. As with the seqs argument, this may be either
the string browse, in which a GUI allows the user to browse the file system for a FASTA file
containing the sequences to be used, another string pointing to this FASTA file, or a list with
each element representing a sequence in the form of a single string such as ”ACGTAGCTAG”
(”seq” entry) and a description (”desc” entry).
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Figure 4: Posterior probability plot. If the motif is more likely to occur in the forward strand
orientation, the bar extends upward from the horizontal, otherwise it extends downward.
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If the background data set is large, one may wish to estimate the background Markov
model in a preliminary step and then pass the obtained estimates to all following calls to
cosmo(). The function bgModel() can be used for this purpose:

> args(bgModel)

function (seqs, order = NULL, fold = 5, maxOrder = 6)

NULL

Its main argument consists of the sequences from which the background model is to be esti-
mated. If a Markov model of a specific order is desired, this order may be specified through
the order argument. If order==NULL, the appropriate order is chosen data-adaptively
through likelihood-based cross-validation. This approach will larger orders, with correspond-
ing models that become more difficult to estimate, as the amount of available data increases.
The maxOrder argument gives the largest candidate order that is to be considered. To obtain
an estimate of the background Markov model from a set of example sequences contained in
the file bgSeqs, we might use the call

> bgFile <- system.file("Exfiles", "bgSeqs", package = "cosmo")

> tm <- bgModel(bgFile)

cvOrder: Order of background Markov model estimated as order = 2 by CV

The output produced by bgModel() is a list containing the selected order, a summary of
the Kullback-Leibler divergences for the different candidate orders, as well as the estimated
transition matrices:

> tm

$transMat

$transMat$order0

A C G T

-- 0.3210294 0.1994118 0.1820588 0.2975

$transMat$order1

A C G T

A 0.3581267 0.1864096 0.1769972 0.2784665

C 0.3621262 0.2045035 0.1513474 0.2820229

G 0.2983023 0.2215036 0.1843169 0.2958771

T 0.2675569 0.1965875 0.2064787 0.3293769

$transMat$order2

A C G T

AA 0.4163449 0.1570142 0.1898327 0.2368082

22



AC 0.3797781 0.1997534 0.1553637 0.2651048

AG 0.3328999 0.2015605 0.1768531 0.2886866

AT 0.3649876 0.1775392 0.1725846 0.2848885

CA 0.3159509 0.2361963 0.1758691 0.2719836

CC 0.4007220 0.2003610 0.1624549 0.2364621

CG 0.2926829 0.2243902 0.1658537 0.3170732

CT 0.2172775 0.2185864 0.2028796 0.3612565

GA 0.3717775 0.1763908 0.1818182 0.2700136

GC 0.3345521 0.2230347 0.1590494 0.2833638

GG 0.3114035 0.2609649 0.1600877 0.2675439

GT 0.2855191 0.1680328 0.2745902 0.2718579

TA 0.3022181 0.1903882 0.1561922 0.3512015

TC 0.3362720 0.1989924 0.1347607 0.3299748

TG 0.2598802 0.2179641 0.2131737 0.3089820

TT 0.1966967 0.2162162 0.2027027 0.3843844

$order

[1] 2

$klDivs

order klDiv

1 0 1.085906e+03

2 1 1.082700e+03

3 2 1.077639e+03

4 3 1.078179e+03

5 4 1.797693e+308

6 5 Inf

7 6 Inf

The transMat element of this list contains one estimated transition matrix for each order
between zero and the selected order. The entry in cell (i, j) of a given transition matrix gives
the estimated probability of observing nucleotide j in a given position after having observed
the tuple i in the previous k positions. The Kullback-Leibler divergences summarized in the
klDivs element of the output give the estimated risk for each candidate order corresponding
to the minus log loss function; likelihood-based cross-validation selects the order with the
minimal Kullback-Leibler divergence. The estimated transition matrix may be passed to
cosmo() through the transMat argument:

> res <- cosmo(seqs = seqFile, constraints = "None", minW = 8,

+ maxW = 8, models = "OOPS", transMat = tm$transMat)

> res
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1 2 3 4 5 6 7 8

A 0.0000 0.0000 0.000 0.2700 0.2000 0 0.000 0.0000

C 0.7544 0.1999 0.578 0.3818 0.4513 0 0.778 0.1752

G 0.2456 0.8001 0.422 0.3482 0.1189 1 0.222 0.8248

T 0.0000 0.0000 0.000 0.0000 0.2299 0 0.000 0.0000

MEME allows the user to specify the background Markov model in a slightly different format.
The files it accepts for specifyint a 1st-order Markov model, for example, are of the form

# tuple frequency_non_coding

a 0.324

c 0.176

g 0.176

t 0.324

# tuple frequency_non_coding

aa 0.119

ac 0.052

ag 0.056

at 0.097

ca 0.058

cc 0.033

cg 0.028

ct 0.056

ga 0.056

gc 0.035

gg 0.033

gt 0.052

ta 0.091

tc 0.056

tg 0.058

tt 0.119

Such files contain estimates of all relevant tuple frequencies. Note that these frequencies are
different from the conditional probabilities given in a transition matrix: The tuple frequencies
give an estimate of the probability of observing a given tuple, while the frequencies contained
in a transition matrix give estimates of the probality of observing a given nucleotide given
the previous k nucleotides. Thus, the entries in each row of a transition matrix must sum
to 1.0, not the entries in an entire matrix, as is the case with a MEME-style tupe frequency
matrix. A MEME-style background file may be passed to cosmo() through the bfile argument.
Alternatively, a MEME-style background file may be converted into a transition matrix by using
the function bfile2tmat():

> tmat <- bfile2tmat(bfile)

> tmat
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$order0

A C G T

-- 0.324 0.176 0.176 0.324

$order1

A C G T

A 0.3672840 0.1604938 0.1728395 0.2993827

C 0.3314286 0.1885714 0.1600000 0.3200000

G 0.3181818 0.1988636 0.1875000 0.2954545

T 0.2808642 0.1728395 0.1790123 0.3672840

3.6 Software Design

The following features of the programming approach employed in cosmo may be of interest
to users.

Class/method object-oriented programming. Like many other Bioconductor pack-
ages, cosmo has adopted the S4 class/method objected-oriented programming approach pre-
sented in Chambers (1998). In particular, a new class, cosmo, is defined to represent the
results obtained by the constrained motif search algorithm. As discussed to some extent
above, several methods are provided to operate on this class.

Calls to C. The R package was derived from an earlier stand-alone application that
was written entirely in C. This design was necessary to ensure that the computationally
intensive constrained optimization algorithm does not take too much time. The constrained
optimiziation itself is carried out using the donlp2() function by Peter Spellucci, available
at http://plato.asu.edu/ftp/donlp2/donlp2_intv_dyn.tar.gz.

3.7 License

The cosmo package incorporates two sources of foreign code whose free use has been restricted
to research purposes. Commercial purposes require permission and licensing by the owners
of the copyright to that code. This is true for the donlp2() function that is used here to
perform the constrained optimization of the likelihood function as well as of code that is
used by cosmo to compute the E-value criterion. The copyright to donlp2() is owned by its
author, Peter Spellucci; the copyright to the second piece of code, written by Timoty Bailey,
is owned by the Regents of the University of California. For these reasons, the cosmo package
must likewise be restricted to research purposes, with commercial uses requiring permission
by Oliver Bembom, Peter Spellucci, as well as the Regents of the University of California.

The license under with donlp2() is distributed furthermore requires that its use must be
acknowledged in any publication containing results obtained with donlp2() or parts of it.
The same is hence true for publications containing results obtained with cosmo. Citation of
the author’s name and netlib-source is suitable for this purpose.
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4 Discussion

The Bioconductor package cosmo implements a constrained motif detection algorithm that
includes as an important special case the popular motif detection tool MEME, but also allows
the user to enhance the performance of the algorithm by specifying constraints on the position
weight matrix to the be estimated.

We note that the same algorithm has also been implemented in the form of a web appli-
cation, accessible at http://cosmoweb.berkeley.edu, that allows users to submit jobs to
designated web servers, with results posted in HTML as well as XML format on a tempo-
rary web page. In this case, constraint definitions are supplied in a text file according to a
straightforward standard. In particular, the R function writeConFile() in the cosmo pack-
age can be used to convert a constraintSet or constraintGroup object into such a text
file. Lastly, we have also posted the source code of the original stand-alone C implementation
of the algorithm on this web site.
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