End-to-end analysis of cell-based screens: from raw intensity readings to the annotated hit list

Michael Boutros, Lígia Brás and Wolfgang Huber

January 6, 2008

Contents

1 Introduction 2
2 Reading the intensity data 3
2.1 Importing intensity data files with other formats 5
3 The cellHTS class and reports 6
4 Screen configuration: annotating the plate results 10
4.1 Format of the plate configuration file 11
4.1.1 Multiple plate configurations 12
4.2 Format of the screen \log file 14
5 Normalization, scoring and summarization of replicates 15
6 Probe annotation 19
6.1 Adding additional annotation from public databases 21
6.1.1 Installation 21
6.1.2 Using biomaRt to annotate the target genes online 22
7 Report 24
7.1 Exporting data to a tab-delimited file 28
8 Category analysis 29
9 Comparison with the results previously reported 31
10 Appendix: How to convert cellHTS to cellHTS2 configura- tion files 33
11 Appendix: Normalization methods implemented in cellHTS2 package 38
11.1 Controls-based normalization 38
11.1.1 Percent of control 38
11.1.2 Normalized percent inhibition 39
11.2 Non-controls-based normalization 39
11.2.1 Z score method 39
11.2.2 Plate median normalization 40
11.2.3 B score method 40
12 Appendix: Data transformation 41
13 Session info 43

1 Introduction

The package cellHTS2 is a revised and improved version of the cellHTS package ${ }^{1}$.

This report describes the structure of the cellHTS class, while explaining all the steps necessary to run a complete analysis of a cell-based highthroughput screen (HTS), from raw intensity readings to an annotated hit list.

This text has been produced as a reproducible document [6]. It contains the actual computer instructions for the methods it describes, and these in turn produce all results, including the figures and tables that are shown here. The computer instructions are given in the language R, thus, in order to reproduce the computations shown here, you will need an installation of R (version 2.3 or greater) together with a recent version of the package cellHTS2 and of some other add-on packages.

To reproduce the computations shown here, you do not need to type them or copy-paste them from the PDF file; rather, you can take the file cellhts2Complete.Rnw in the scripts directory of the package, open it in a text editor, run it using the R command Sweave, and modify it to your needs.

First, we load the package.
> library("cellHTS2")

[^0]| Filename | Plate | Replicate |
| ---: | ---: | ---: |
| FT01-G01.txt | 1 | 1 |
| FT01-G02.txt | 1 | 2 |
| FT02-G01.txt | 2 | 1 |
| FT02-G02.txt | 2 | 2 |
| FT03-G01.txt | 3 | 1 |
| \ldots | \ldots | \ldots |

Table 1: Selected lines from the example plate list file Platelist.txt.

2 Reading the intensity data

We consider a cell-based screen that was conducted in microtiter plate format, where a library of double-stranded RNAs was used to target the corresponding genes in cultured Drosophila $K c_{167}$ cells [2]. Each of the wells in the plates contains either a gene-specific probe, a control, or it can be empty. The experiments were done in duplicate, and the viability of the cells after treatment was recorded by a plate reader measuring luciferase activity. The promoter has been chosen such that the luciferase activity is indicative of ATP levels. Although this set of example data corresponds to a single-channel screening assay, the cellHTS2 package can also deal with cases where there are readings from more channels, corresponding to different reporters.

Usually, the measurements from each replicate and each channel come in individual result files. The set of available result files and the information about them (which plate, which replicate, which channel) is contained in a spreadsheet, which we call the plate list file. This file should contain at least the following columns: Filename, Plate and Replicate. The last two columns should be integer numbers, with values ranging from 1 to the maximum number of plates or replicates, respectively. The first few lines of an example plate list file are shown in Table 1, while Table 2 shows the first few lines from one of the plate result files listed in the plate list file.

The first step of the analysis is to read the plate list file, to read all the intensity files, and to assemble the data into a single R object that is suitable for subsequent analyses. The main component of that object are arrays with the intensity readings of all plates, channels, and replicates. We demonstrate the R instructions for this step. First we define the path where the input files can be found.

[^1]| FT01-G01 | A01 | 887763 |
| ---: | ---: | ---: |
| FT01-G01 | A02 | 958308 |
| FT01-G01 | A03 | 1012685 |
| FT01-G01 | A04 | 872603 |
| FT01-G01 | A05 | 1179875 |
| \ldots | \ldots | \ldots |

Table 2: Selected lines from the example signal intensity file FT01-G01.txt.

```
> dataPath = system.file(experimentName, package="cellHTS2")
```

In this example, the input files are in the KcViab directory of the cellHTS2 package. To read your own data, modify dataPath to point to the directory where they reside. We show the names of 12 files from our example directory:

```
> dataPath
[1] "/home/LPB/myR/R/library/cellHTS2/KcViab"
> rev(dir(dataPath)) [1:12]
\begin{tabular}{rll} 
[1] & "Screenlog.txt" & "Platelist.txt"
\end{tabular}\(\quad\) "Plateconf.txt" \({ }_{\text {[4] }}\) "old-Screenlog.txt" \(\quad\) "old-Plateconf.txt" \(\quad\) "GeneIDs_Dm_HFA_1.1.txt"
```

and read the data into the object x

```
> x = readPlateList("Platelist.txt",
+ name=experimentName,
+ path=dataPath)
> x
cellHTS (storageMode: lockedEnvironment)
assayData: 21888 features, 2 samples
    element names: ch1
phenoData
    sampleNames: 1, 2
    varLabels and varMetadata description:
        replicate: Replicate number
```

```
        assay: Biological assay
    additional varMetadata: channel
featureData
    featureNames: 1, 2, ..., 21888 (21888 total)
    fvarLabels and fvarMetadata description:
        plate: Plate number
        well: Well ID
        controlStatus: Well annotation
experimentData: use 'experimentData(object)'
state: configured = FALSE
            normalized = FALSE
            scored = FALSE
            annotated = FALSE
Number of plates: 57
Plate dimension: nrow = 16, ncol = 24
Number of batches:
Well annotation:
Annotation:
```

The plate format used in the screen (96 -well or 384 -well plate design) is automatically determined from the raw intensity files when calling the readPlateList function.

2.1 Importing intensity data files with other formats

The function readPlateList has the argument importFun that can be used to provide a different import function to read plate result files with a format different from that shown in Table 2. For example, to import plate data files from an EnVision plate reader, set importFun=getEnVisionRawData or importFun=getEnvisionCrosstalkCorrectedData when calling readPlateList. Please see the help page of function getEnVisionRawData for an example. Another import function ("importData.R") is given together with the example data set for a enhancer-supressor screen in the directory called TwoWayAssay of this package.

While for the above data sets, the measurements from each replicate and channel come in separate result files, this is not the case when measurement files are provided in the HTanalyst format. In this case, each output file contains meta-experimental data together with intensity readings (in a matrix-like layout) of a set of plates made for the same replicate or screen.

Thus, there is no need to have a plate list file, and instead of using readPlateList we should call the function readHTAnalystData. Please see the help page for this function (? readHTAnalystData), where we illustrate how it can be applied to import HTAnalyst data files.

3 The cellHTS class and reports

The basic data structure of the package is the class cellHTS, which is a container for cell-based high-throughput RNA interference assays (data and experimental meta-data) performed in multi-plate format. This class extends the class NChannelSet of the Biobase package [7].

The data can be thought of as being organised in a two- or threedimensional array as follows:

1. The first dimension corresponds to reagents (e.g. siRNAs, chemical compounds) that were used in the assays. For example, if the screen used 100 plates of 384 wells (24 columns, 16 rows), then the first dimension has size 38,400 , and the cellHTS object keeps track of plate ID, row, and column associated with each element. For historic reasons, and because we are using infrastructure that was developed for microarray experiments, the following terms are used synonymously for the elements of the first dimension: reagents, features, probes, genes.
2. The second dimension corresponds to assays, including replicates and different experimental conditions (cell type, treatment, genetic background). A potentially confusing terminology is that the data structure that annotates the second dimension is called phenoData (see below). This is because we are using infrastructure, namely the NChannelSet class from the Biobase package, that uses this unfortunate term for this purpose. Sometimes, the elements of this second dimension are also called samples.
3. The (optional) third dimension corresponds to different channels (e.g. different luminescence reporters)
The main structures contained in a cellHTS object are:
assayData an object of class AssayData, usually an environment containing a set of matrices of identical size. Each matrix represents a single channel. In each matrix, the rows correspond to features or reporters (e.g. siRNAs, dsRNAs) and the colums to samples (different conditions and/or replicates).
phenoData a dataframe (more precisely, an object of class AnnotatedDataFrame) containing information about the screens, such as the replicate number and the type of biological assay. It must have the following columns in its data component:
replicate a vector of integers giving the replicate number
assay a character vector giving the name of the biological assay or condition

Both of these columns have the same length as the number of samples in the assayData slot. The choice of name phenoData for this structure is unfortunate, it has nothing to do with phenotypes.
featureData a dataframe (more precisely, an object of class AnnotatedDataFrame) that contains information about the reagents used in the experiment. There are three mandatory columns, in addition there can be an arbitrary number of additional columns, for example a target gene identifier. The mandatory columns are:
plate integers specifying the plate number (e.g. 1, $2, \ldots$)
well alphanumeric character strings giving the well ID within the plate (e.g. A01, B01, ..., P24).
controlStatus a factor specifying the annotation for each well with possible levels: empty, other, neg, sample, pos. Other levels besides pos and neg may be employed for the positive and negative controls.
experimentData an object of class MIAME containing descriptions of the experiment.

The cellHTS class also includes additional slots that are used to store the input files used to assemble the cellHTS object. These are:
plateList a dataframe containing names and metadata about input measurement data files, plus a column named status, of type character, whose elements are the string "OK" if the data import appeared to have gone well, and the respective error or warning message otherwise.
intensityFiles a list whose components are copies of the imported input data files. Its length corresponds to the number of rows of plateList.
plateConf a data frame containing what was read from the configuration file for the experiment (except the first two header rows).
screenLog a data frame containing what was read from the screen log file for the experiment (in case there was one).
screenDesc a character containing what was read from the description file of the experiment.

Other slots are batch, rowcol.effects, overall.effects and annotation. For a detailed description of this class, please type class ? cellHTS.

In Section 2, we created the object x , which is an instance of the cellHTS class. The measurements intensities are stored in the slot assayData of x . The slot called state helps to keep track of the preprocessing state of our cellHTS object. This slot can be accessed through the state, as shown below:

```
> state(x)
configured normalized scored annotated
    FALSE FALSE FALSE FALSE
```

It contains a logical vector of length 4 representing the processing status of the object. It should have the names "configured", "normalized", "scored" and "annotated". We can thus see that x has not been configured, annotated, normalized or scored yet.

These 4 main stages are explained along this vignette and can be briefly described as follows:

Configuration involves annotating the experiment with information about the screen (e.g. title, when and how it was performed, which organism, which library, type of assay, etc.), annotating the measured values with information on controls and flagging invalid measurements. This step is covered in Section 4 and is prerequisite for preprocessing the experimental screening data (i.e. for normalization and scoring).

Annotation involves annotating the features (reagents) with information about, for example, their target genes. This step, detailed in Section 6, is not essential for preprocessing, but this information can be used for the HTML quality reports generated by cellHTS2 and in further analyses (see the complete report, as explained in Section 1).

Normalization involves removing systematic variations, making measurements comparable across plates and within plates, enhancing the biological signal and eventually transforming the data to a scale suitable for subsequent analyses.

Replicates scoring and summarization involves standardizing the values for each replicate and then summarizing replicate values in order to obtain a single-value per probe (for example, a robust z-score).

The steps of data normalization, replicate scoring and summarization constitute the preprocessing work-flow of the screening data. They alter the contents of assayData slot and even the number of channels of the cellHTS object. The complete analysis project is contained in a set of cellHTS objects that reflect different preprocessing stages and that can be shared with others and stored for subsequent computational analyses.

The cellHTS2 package offers export functions for generating humanreadable reports, which consist of linked HTML pages with tables and plots. The final scored hit list is written as a tab-delimited format suitable for reading by spreadsheet programs.

Returning to our example data set, we create a report using the function writeReport. Since until now we only have unnormalized experimental data, the cellHTS object should be given to the function as a list component named "raw":

```
> out <- writeReport(list("raw"=x))
```

It will create a directory of the name given by name(x) in the working directory. Alternatively, the argument outdir can be specified to direct the output to another directory. It can take a while to run this function, since it creates a large number of graphics files. After this function has finished, the index page of the report will be in the file indicated by the variable out,

```
> out
[1] "/home/LPB/temp/cellHTS2/inst/scripts/KcViab/index.html"
```

and you can view it by directing a web browser to that file.
> browseURL (out)

Wells:	384	
Plates:	57	
Plate	Well	Content
$*$	$*$	sample
$*$	A0[1-2]	other
$*$	B01	neg
$*$	B02	pos

Table 3: Selected lines from the example plate configuration file Plateconf.txt.

Plate	Sample	Well	Flag	Comment
6	1	A01	NA	Contamination
6	2	A01	NA	Contamination
6	1	A02	NA	Contamination
\ldots	\ldots	\ldots	\ldots	\ldots

Table 4: Selected lines from the example screen log file Screenlog.txt.

4 Screen configuration: annotating the plate results

The next step of the analysis involves reading and processing three input files specific of the screening experiment:

- Screen description file contains a general description of the screen, its goal, the conditions under which it was performed, references, and any other information that is pertinent to the biological interpretation of the experiments. In cellHTS2 package we provide a function that creates a template description file whose entries can be edited and completed by the user. Type ? templateDescriptionFile. This file contains the entries compliant with the MIAME class and also additional fields specific for the cellHTS class.
- Plate configuration file is used to annotate the measured data with information on controls. The content of this file for the example data set analysed here is shown in Table 3 and the expected format for this file is explained in Section 4.1.
- Screen log file (optional) is used to flag individual measurements as
invalid. The first 5 lines of this file are shown in Table 4, and the layout for the screen log file is detailed in Section 4.2.

To apply the information contained in these three files in our cellHTS object, we call:

```
> x = configure(x,
+ descripFile="Description.txt",
+ confFile="Plateconf.txt",
+ logFile="Screenlog.txt",
+ path=dataPath)
```

Note that the function configure ${ }^{2}$ takes x , the result from Section 2, as an argument, and we then overwrite x with the result of this function. If no screen \log file is available for the experiment, the argument logFile of the function configure should be omitted.

4.1 Format of the plate configuration file

The software expects this to be a rectangular table in a tabulator delimited text file, with mandatory columns Plate, Well, Content, plus two additional header lines that give the total number of wells and plates (see Table 3 for an example). The content of this file (except the two header lines) are stored in slot plateConf of x .

As the name suggests, the Content column provides the content of each well in the plate (here referred to as the well annotation). Mainly, this annotation falls into four categories: empty wells, wells targeting genes of interest, control wells, and wells containing other things that do not fit in the previous categories. The first two types of wells should be indicated in the Content column of the plate configuration file by empty and sample, respectively, while the last type of wells should be indicated by other. The designation for the control wells in the Content column is more flexible. By default, the software expects them to be indicated by pos (for positive controls), or neg (for negative controls). However, other names are allowed, given that they are specified by the user whenever necessary (for example, when calling the writeReport function). This versatility for the control wells' annotation is justified by the fact that, sometimes, multiple positive and/or negative controls can be employed in a given screen, making it useful to

[^2]give different names to the distinct controls in the Content column. Moreover, this versatility might be required in multi-channel screens for which we frequently have reporter-specific controls.

The Well column contains the name of each well of the plate in alphanumeric format (in this case, A01 to P24), while column Plate gives the plate number $(1,2, \ldots)$. These two columns are also allowed to contain regular expressions. In the plate configuration file, each well and plate should be covered by a rule, and in case of multiple definitions only the last one is considered. For example, in the file shown in Table 3, the rule specified by the first line after the column header indicates that all of the wells in each of the 57 assay plate contain "sample". However, a following rule indicate that the content of wells A01, A02 and B01 and B02 differ from "sample", containing other material (in this case, "other" and controls).

Note that the well annotations mentioned above are used by the software in the normalization, quality control, and gene selection calculations. Data from wells that are annotated as empty are ignored, i.e. they are set to NA.

Here we look at the frequency of each well annotation in the example data:

```
> table(wellAnno(x))
sample}\mathrm{ Other 
```

We can also use the function configurationAsScreenPlot to see the plate configuration of all of the plates as a screen plot:

```
> configurationAsScreenPlot(x)
```

The result is shown in Figure 1. This can be useful to verify the correctness of the plate configuration when a complex set of rules with regular expressions are used.

A special case of well annotation is when different types of positive controls are used for the screening, that is enhancer and suppressor compounds. The vignette Analysis of screens with enhancer and suppressor controls accompanying this package explains how such controls can be handled during the screen analysis using cellHTS2 package.

4.1.1 Multiple plate configurations

Although it is good practice to use the same plate configuration for the whole experiment, sometimes this does not work out, and there are different parts

Figure 1: Screen plot of the plate configuration.
of the experiment with different plate configurations. The use of regular expressions in columns Plate and Well of the plate configuration file allow therefore to specify different configurations within and between assay plates. The two header rows of this file ascertain that all of the plates and wells are covered in the plate configuration file.

Note that in contrast to the cellHTS package, in cellHTS2 package the concept of batch is separated from the concept of having multiple plate configurations. So, for example, different replicate of the same plate can be set as to belong to different batches (even though they are required to have the same plate configuration!) - since readouts were performed on different days, or due to the use of different lots of reagents, etc.

Batch information (expressed in terms of integer values giving the batch number: $1,2, \ldots$) can go into a particular slot called batch. This is expected to be a 3D-array (Features \times Samples \times Channels) of integer values giving the batch number $(1,2, \ldots)$ for each plate, sample and channel. Its first two dimensions correspond to the dimension of each matrix stored in assayData slot and the third dimension corresponds to the number of channels in assayData slot. This slot should be filled in by the user in case s/he wants to take into account this information in the analysis (for example, see normalizePlates function, which allows to adjust the data variance on a per-batch basis).

4.2 Format of the screen \log file

The screen \log file is a tabulator delimited file with mandatory columns Plate, Well, Flag. If there are multiple samples (replicates or conditions), a column called Sample should also be present; a column named Channel must also be provided when there are multiple channels. In addition, it can contain arbitrary optional columns. Each row corresponds to one flagged measurement, identified by the plate number (and possible sample number and channel number) and the well identifier (alphanumeric identifier). The type of flag is specified in the column Flag. Most commonly, this will have the value "NA", indicating that the measurement should be discarded and regarded as missing.

For those users that have been using cellHTS package and need to migrate their projects to cellHTS2 package, we explain how this can be smoothly performed in Appendix 10.

5 Normalization, scoring and summarization of replicates

The data normalization, replicates scoring and summarization functions available in cellHTS2 package work on the data stored in the assayData slot of the cellHTS object. They create a copy of their input cellHTS object, with the data replaced by the transformed values. For a list of the available functions, type ? cellHTS2.

The preprocessing work-flow of a typical RNAi screen using cellHTS2 package is the following:
(a) Per-plate normalization to remove plate and/or edge effects. This can be done using the function normalizePlates.
(b) Scoring of measurements (for example, compute, for each replicate, z scores). This can be done using the function scoreReplicates.
(c) Summarization of replicates (for example, take the median value). This can be done using the summarizeReplicates.

Note that this work-flow is suitable for single-channel data. For dualchannel data, further steps are required, as explained in the vignette Analysis of multi-channel cell-based screens, accompanying this package.

The function normalizePlates can be called to perform per-plate data transformation, normalization and variance adjustment. The normalization is performed in a plate-by-plate fashion and has three components:

Data transformation logarithmic transformation (optional, this can be advisable if the data are on multiplicative scale)

Per-plate normalization location adjustment for possible plate effects and/or possible spatial effects, using a choice of methods that you need to adapt to your data

Variance adjustment plate-specific scale (variance) adjustment (optional)
For more details about this function and available normalization methods, please type ? normalizePlates. To provide the means to perform the above steps, normalizePlates has the arguments scale, log, method and varianceAdjust.

The argument scale allows to define the scale of the data ("additive" or "multiplicative"), which will then control the subsequent data transformation
and normalization steps. Namely, when data are in multiplicative scale, the function allows to perform $\log _{2}$ data transformation. For that we need to set the function's argument log to TRUE. Log transformation will then change the scale of the data to be "additive".

Per-plate median normalization is one of the methods available in normalizePlates and can be chosen by setting the argument method="median". In this case, plate effects are corrected by dividing (if the current scale of the data is multiplicative) each measurement by the median value across wells annotated as sample, for each plate and replicate. If data are in additive scale, the per-plate median values are subtracted from each plate measurement instead. All of the available normalization methods are described in Appendix 11.

The variance of normalized intensities can be adjusted according to argument varianceAdjust, as follows:

- varianceAdjust="byPlate": per plate normalized intensities are divided by the per-plate median absolute deviations (MAD) in "sample" wells. This is done separately for each replicate and channel;
- varianceAdjust="byBatch": using the content of slot batch, plates are split according to assay batches and the individual normalized intensities in each group of plates (batch) are divided by the per-"batch of plates" MAD values (calculated based on "sample" wells). This is done separately for each replicate and channel;
- varianceAdjust="byExperiment": each normalized measurement is divided by the overall MAD of normalized values in wells containing "sample". This is done separately for each replicate and channel.

If varianceAdjust="none", no variance adjustment is performed (default).

As explained above, the parameter method of normalizePlates allows to choose between different types of per-plate normalization methods. Returning to our example data set, we choose to apply plate median scaling:

$$
\begin{align*}
x_{k i}^{\prime} & =\frac{x_{k i}}{M_{i}} \quad \forall k, i \tag{1}\\
M_{i} & =\operatorname{median}_{m \in \text { samples }} x_{m i} \tag{2}
\end{align*}
$$

where $x_{k i}$ is the raw intensity for the k-th well in the i-th replicate file, and $x_{k i}^{\prime}$ is the corresponding normalized intensity. The median is calculated
across the wells annotated as sample in the i-th result file. This is achieved by calling:

```
> xn = normalizePlates(x,
+ scale="multiplicative",
+ log=FALSE,
+ method="median",
+ varianceAdjust="none")
```

after which we obtain a cellHTS object with the normalized intensities stored in the slot assayData. In the previous call to normalizePlates function, we have chosen not to adjust the data variance (default behaviour of normalizePlates). For example, we can use function compare2cellHTS provided with the package to check whether these two cellHTS objects, x and xn belong to the same experiment:

```
> compare2cellHTS(x, xn)
```


[1] TRUE

After normalizing the data, we standardize the values for each replicate experiment using Equation (3). In this equation, $\hat{\mu}$ and $\hat{\sigma}$ are estimators of location and scale of the distribution of $x_{k i}^{\prime}$ taken across all plates and wells of a given replicate experiment. This function uses robust estimators, namely, median and median absolute deviation (MAD). Moreover, it only considers the wells containing "sample" for estimating $\hat{\mu}$ and $\hat{\sigma}$. The symbol \pm indicates that we allow for either plus or minus sign in Equation (3); the minus sign can be useful in the application to an inhibitor assay, where an effect results in a decrease of the signal and we may want to see this represented by a large score. This is done by calling the scoreReplicates function, where arguments sign and method define the sign and the scoring method to apply (robust z-scores, in this case), respectively:

```
> xsc <- scoreReplicates(xn, sign="-", method="zscore")
```

After data standardization, we summarize the replicates, calculating a single score for each gene. This is performed using the summarizeReplicates function, where we use its argument summary to select the summary to apply. One option is rms, which corresponds to take the root mean square of the replicates values, and is shown in Equation (4). The chosen summary is taken over all the $n_{\text {rep }_{k}}$ replicates of probe k.

$$
\begin{align*}
z_{k i} & = \pm \frac{x_{k i}^{\prime}-\hat{\mu}}{\hat{\sigma}} \tag{3}\\
z_{k} & =\sqrt{\frac{1}{n_{\mathrm{rep}_{k}}} \sum_{r=1}^{n_{\mathrm{rep}_{k}}} z_{k r}^{2}} \tag{4}
\end{align*}
$$

Depending on the intended stringency of the analysis, other plausible choices of summary function between replicates are the minimum, the maximum, the mean or the median. In the first case, the analysis would be particularly conservative: all replicate values have to be high in order for z_{k} to be high. For the cases where both sides of the distribution of z-score values are of interest, alternative summary options for the replicates are to select the value closest to zero (conservative approach) by setting summary="closestToZero" or the value furthest from zero (summary="furthestFromZero"). In order to compare our results with those obtained in the paper of Boutros et al. [2], we choose to consider the mean as a summary:

```
> xsc <- summarizeReplicates(xsc, summary="mean")
```

after which we obtain a cellHTS object with the resulting single z-score value per probe stored in assayData slot.

Boxplots of the z-scores for the different types of probes are shown in Figure 2.

```
> scores <- Data(xsc)
> ylim <- quantile(scores, c(0.001, 0.999), na.rm=TRUE)
> boxplot(scores ~ wellAnno(x), col="lightblue", outline=FALSE, ylim=ylim)
```

In the cellHTS2 package, we provide a further transformation of the z score values to obtain the so-called calls. This involves applying a sigmoidal transformation to the z-score values, with parameters z_{0} and $\lambda(>0)$, given by:

$$
\begin{equation*}
y_{k}=\frac{1}{1+e^{-\lambda\left(z_{k}-z_{0}\right)}} \tag{5}
\end{equation*}
$$

This transformation maps the z-score values to the interval $[0,1]$ and is intended to expand the scale of z-scores with intermediate values and shrink the ones showing extreme values, therefore making the difference between intermediate phenotypes larger. The parameter z_{0} defines the centre of the sigmoidal transformation, while λ controls the smoothness of the transformation.

Figure 2: Boxplots of z-scores for the different types of probes.

This transformation can be done by calling the function scores2calls, as shown in Figure 3.

```
> y = scores2calls(xsc, z0=1.5, lambda=2)
> plot(Data(xsc), Data(y), col="blue", pch=".",
+ xlab="z-scores", ylab="calls",
+ main=expression(1/(1+e^{-lambda *(z-z[0])})))
```

However, for the purpose of the present analysis, we will consider the z-score values instead of the call values.

6 Probe annotation

Up to now, the assayed genes have been identified solely by the identifiers of the plate and the well that contains the probe for them. The annotation file contains additional annotation, such as the probe sequence, references to the probe sequence in public databases, the gene name, gene ontology annotation, and so forth. Mandatory columns of the annotation file are Plate, Well, and GeneID, and it has one row for each well. The content of the GeneID column will be species- or project-specific. The first 5 lines of

Figure 3: A sigmoidal transformation that can be used for obtaining call values.

Plate	Well	HFAID	GeneID
1	A03	HFA00274	CG11371
1	A04	HFA00646	CG31671
1	A05	HFA00307	CG11376
1	A06	HFA00324	CG11723
\ldots	\ldots	\ldots	\ldots

Table 5: Selected lines from the example gene ID file GeneIDs_Dm_HFA_1.1.txt.
the example file are shown in Table 5, where we have associated each probe with CG-identifiers for the genes of Drosophila melanogaster.

```
> xsc <- annotate(xsc, geneIDFile="GeneIDs_Dm_HFA_1.1.txt", path=dataPath)
```

An optional column named GeneSymbol can be included in the annotation file, and its content will be displayed by the tooltips added to the plate plots and screen-wide plot in the HTML quality report (see Section 7).

6.1 Adding additional annotation from public databases

For the analysis of the RNAi screening results, we usually want to consider gene annotation information such as Gene Ontology, chromosomal location, gene function summaries, homology. The package biomaRt can be used to obtain such annotation from public databases [4]. However, there are also numerous alternative methods to annotate a list of gene identifiers with public annotation - pick your favourite one.

This section demonstrates how to do it with the package biomaRt. It is optional, you can move on to Section 7 if you do not have the biomaRt package or do not want to use it. If you do skip this section, then for the purpose of this vignette, please load a cached version of the gene annotation:

```
> data("bdgpbiomart")
> fData(xsc) <- bdgpbiomart
> fvarMetadata(xsc) [names(bdgpbiomart), "labelDescription"] <-
+ sapply(names(bdgpbiomart),
+ function(i) sub("_", " ", i)
+ )
```


6.1.1 Installation

The installation of the biomaRt package can be a little bit tricky, since it relies on the two packages $R C u r l$ and $X M L$, which in turn rely on the presence of the system libraries libcurl and libxml2 on your computer. If you are installing the precompiled R packages (for example, this is what most people do on Windows), then you need to make sure that the system libraries on your computer are version-compatible with those on the computer where the R packages were compiled, and that they are found. If you are installing the R packages from source, then you need to make sure that the library header files are available and that the headers as well as the actual library is found by the compiler and linker. Please refer to the Writing R Extensions manual and to the FAQ lists on www.r-project.org.

6.1.2 Using biomaRt to annotate the target genes online

In the remainder of this section, we will demonstrate how to obtain the dataframe bdgpbiomart by querying the online webservice BioMart and through it the Ensembl genome annotation database [1].

```
> library("biomaRt")
```

By default, the biomaRt package will query the webservice at http://www.ebi.ac.uk/biomart/martservice. Let us check which BioMart databases it covers:

> listMarts()	
1	name
2	compara_mart_homology_46
3	compara_mart_pairwise_ga_46
4	compara_mart_multiple_ga_46
5	snp
6	genomic_features
7	vega
8	uniprot
9	msd
10	ENSEMBL_MART_ENSEMBL
11	wormbase176
12	dicty
13	rgd_mart
14	SSLP_mart
15	pepseekerGOLD_mart
16	pride
17	Pancreatic_Expression

version
ENSEMBL 46 GENES (SANGER)
ENSEMBL 46 HOMOLOGY (SANGER)
ENSEMBL 46 PAIRWISE ALIGNMENTS (SANGER)
ENSEMBL 46 MULTIPLE ALIGNMENTS (SANGER)
ENSEMBL 46 VARIATION (SANGER)
ENSEMBL 46 GENOMIC FEATURES (SANGER)
VEGA 21 (SANGER)
UNIPROT PROTOTYPE (EBI)
MSD PROTOTYPE (EBI)
WORMBASE (CSHL)
DICTYBASE (NORTHWESTERN)
RGD GENES (MCW)
RGD MICROSATELLITE MARKERS (MCW)
PEPSEEKER (UNIVERSITY OF MANCHESTER)
PRIDE (EBI)
PANCREATIC EXPRESSION DATABASE (INSTITUTE OF CANCER)

```

In this example, we use the Ensembl database [1], from which we select the D. melanogaster dataset.
```

> mart <- useMart("ensembl", dataset = "dmelanogaster_gene_ensembl")

```

We can query the available gene attributes and filters for the selected dataset using the following functions.
```

> attrs <- listAttributes(mart)
> filts <- listFilters(mart)

```

In the BioMart system [10], a filter is a property that can be used to select a gene or a set of genes (like the "where" clause in an SQL query), and an attribute is a property that can be queried (like the "select" clause in an SQL query). We use the get \(B M\) function of the package biomaRt to obtain the gene annotation from Ensembl.
```

> myGetBM = function(att) getBM(attributes = c("ensembl_gene_id",

+ att), filter = "ensembl_gene_id", values = unique(geneAnno(xsc)),
+ mart = mart)

```

For performance reasons, we split up our query in three subqueries, which corresponds to different areas in the BioMart schema, and then assemble the results together in R. Alternatively, it would also be possible to submit a single query for all of the attributes, but then the result table will be enormous due to the 1:many mapping especially from gene ID to GO categories [8].
```

> bm1 <- myGetBM(c("chromosome_name", "start_position", "end_position",

+ "description"))
> bm2 <- myGetBM(c("flybasename_gene"))
> bm3 = myGetBM(c("go", "go_description"))

```

There are only a few CG-identifiers for which we were not able to obtain chromosomal locations:
```

> unique(setdiff(geneAnno(xsc), bm1\$ensembl_gene_id))

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & NA & "CG7245" & & & "CG31314" & "CG31085" & "CG15509" \\
\hline & "CG & "CG15389" & "CG5061" & 'CG5074 & "CG31722" & "CG31756" & - \\
\hline [15] & "CG15280" & "CG31766" & "CG11169" & "CG13596" & "CG18510" & CG12557 & 14493" \\
\hline [2] & "CG5719" & "CG14499 & "CG14501" & CG4383 & C & CG1211 & "CG13289" \\
\hline [2] & "CG13290 & "CG7973" & "CG7867" & " & "CG13444" & 48" & 9 \\
\hline [36] & "CG5571" & "CG31350" & "CG6989" & "CG18553" & "CG32469" & "CG11676" & "CG12600" \\
\hline [43] & "CG7552" & "CG12537" & "CG14559" & "CG15507" & "CG15781" & "CG15348" & "CG15349" \\
\hline 50 & "CG5652" & "CR33460" & "CR33465" & 'CG30322" & "CR33258" & & \\
\hline
\end{tabular}

Below, we add the results to the dataframe featureData of xsc. Since the tables bm1, bm2, and bm3 contain zero, one or several rows for each gene ID, but in featureData we want exactly one row per gene ID, the function oneRowPerId does the somewhat tedious task of reformatting the tables: multiple entries are collapsed into a single comma-separated string, and empty rows are inserted where necessary.
```

> id <- geneAnno(xsc)
> bmAll <- cbind(oneRowPerId(bm1, id), oneRowPerId(bm2, id), oneRowPerId(bm3,

+ id))
> bdgpbiomart <- cbind(fData(xsc), bmAll)
> fData(xsc) <- bdgpbiomart
> fvarMetadata(xsc)[names(bmAll), "labelDescription"] <- sapply(names(bmAll),
+ function(i) sub("_", " ", i))

```

\section*{7 Report}

We have now completed the analysis tasks: the dataset has been read, configured, normalized, scored, and annotated:
```

> xSC
cellHTS (storageMode: lockedEnvironment)
assayData: 21888 features, 1 samples
element names: score
phenoData
sampleNames: 1
varLabels and varMetadata description:
replicate: Replicate number
assay: Biological assay

```
```

 additional varMetadata: channel
 featureData
featureNames: 1, 2, ..., 21888 (21888 total)
fvarLabels and fvarMetadata description:
plate: plate
well: well
...: ...
go_description: go description
(12 total)
experimentData: use 'experimentData(object)'
state: configured = TRUE
normalized = TRUE
scored = TRUE
annotated = TRUE
Number of plates: 57
Plate dimension: nrow = 16, ncol = 24
Number of batches:
Well annotation: sample other neg pos
pubMedIds: 14764878
Annotation:

```

We can now save the scored data set to a file.
```

> save(xsc, file=paste(experimentName, ".rda", sep=""))

```

The data set can be loaded again for subsequent analysis, or passed on to others. To produce a comprehensive report, we can call the function writeReport again, this time specifying in the functions argument cellHTSlist the three cellHTS objects: "raw", "normalized" and "scored" cellHTS objects.
```

> out <- writeReport(cellHTSlist=list("raw"=x, "normalized"=xn, "scored"=xsc),

+ force=TRUE, plotPlateArgs = TRUE,
+ imageScreenArgs = list(zrange=c(-4, 8), ar=1), map=TRUE)

```
and use a web browser to view the resulting report.
> browseURL (out)
The report contains a quality report for each plate, and also for the whole screening assays. The per-plate HTML reports display the scatterplot between duplicated plate measurements, the histogram of the normalized signal intensities for each replicate, and plate plots representing, in a false color
scale, the normalized values of each replicate, and the standard deviation between replicate measurements at each plate position. It also reportes different measures of agreement between replicate measurements, such as the repeatability standard deviation between replicate plates and the Spearman correlation coefficient between duplicates. The per-plate reports also show the dynamic range, calculated as the ratio between the geometric means of the positive and negative controls. These measures can also be obtained independently from writeReport function, by using the functions getMeasureRepAgreement and getDynamicRange provided in cellHTS2 package. If different positive controls were specified at the configuration step and when calling writeReport, the dynamic range is calculated separately for the distinct positive controls, since different positive controls might have different potencies.

The experiment-wide HTML report presents, for each replicate, the boxplots with raw and normalized intensities for the different plates, and two plots for the controls: one showing the signal from positive and negative controls at each plate, and another plot displaying the distribution of the signal from positive and negative controls, obtained from kernel density estimates. The latter plot further gives the \(Z^{\prime}\)-factor determined for each experiment (replicate) using the negative controls and each different type of positive controls [13], as a measure to quantify the distance between their distributions. This measure can also be obtained by calling the function getZfactor.

The experiment-wide report also shows a screen-wide plot with the \(z\) scores in every well position of each plate. If the argument map of writeReport function is set to TRUE, this plot and the plate plots of the per-plate reports contain tooltips (information pop-up boxes) dispaying the annotation information at each position within the plates. If the scored cellHTS object provided for writeReport is not annotated with gene identifiers, the annotation information shown by the tooltips is simply the well identifiers. For an annotated cellHTS object, if an optional column called GeneSymbol was included in the annotation file (see Section 6), and therefore is present in featureData slot of the annotated object, then its content is used for the tooltips. Otherwise, the content of column "GeneID" of the featureData slot (which can be accessed via geneAnno) is considered.

The screen-wide image plot can also be produced separately using the function imageScreen given in the cellHTS2 package. This might be useful if we want to select the best display for our data, namely, the aspect ratio for the plot and/or the range of \(z\)-score values to be mapped into the color scale. These can be passed to the function's arguments ar and zrange,
respectively. For example,
```

> imageScreen(xsc, ar=1, zrange=c(-3,4))

```

It should be noted that the per-plate and per-experiment quality reports are constructed based on the normalized cellHTS object, in case it is provided to writeReport function. Otherwise, it uses the data of the raw cellHTS object. The quality report produced by writeReport function has also a link to a file called topTable.txt that contains the list of scored probes ordered by decreasing \(z\)-score values, when the final scored cellHTS object is provided. This file has one row for each well and plate, and for the present example data set, it has the following columns:

\section*{- plate plate identifier for each feature;}
- position gives the position of the well in the plate (runs from 1 to the total number of wells in the plate);
- well gives the alphanumeric well identifier for each feature;
- score corresponds to the summarized score calculated for each probe (data stored in the scored and summarized object xsc);
- wellAnno corresponds to the well annotation (as given by the plate configuration file);
- finalWellAnno gives the final well annotation for the scored values. It combines the information given in the plate configuration file with the values in assayData slot of the scored cellHTS object, in order to have into account the wells that have been flagged either by the screen log file, or manually by the user during the analysis. These flagged wells appear with the annotation flagged.
- raw_r1_ch1 and raw_r2_ch1 contain the raw intensities for replicate 1 and replicate 2 , respectively (data stored in the unnormalized cellHTS object x ). 'ch' refers to channel;
- median_ch1 corresponds to the median of raw measurements across replicates;
- diff_ch1 gives the difference between replicated raw measurements (only given if the number of replicates is equal to two);
- average_ch1 corresponds to the average between replicate raw intensities (only given if the number of replicates is higher than two);
- raw/PlateMedian_r1_ch1 and raw/PlateMedian_r2_ch1 give the ratio between each raw measurement and the median intensity in each plate for replicate 1 and replicate 2 , respectively. The plate median is determined for the raw intensities, using exclusively the wells annotated as "sample".
- normalized_r1_ch1 and normalized_r2_ch1 give the normalized intensities for replicate 1 and replicate 2 , respectively. This corresponds to the data stored in the normalized cellHTS object xn.

Additionally, if any of the cellHTS objects provided in the argument cellHTSlist to writeReport has been annotated (as in the present case), it also contains the data given in the content of featureData slot of the annotated object. The above file with the list of scored probes can also be obtained without the need to run writeReport by using the function getTopTable provided in the package.

\subsection*{7.1 Exporting data to a tab-delimited file}

The cellHTS2 package contains a function called writeTab to save the data stored in assayData slot of a cellHTS object to a tab-delimited file. The rows of the file are sorted by plate and well, and there is one row for each plate and well. When the cellHTS object is annotated, the probe information (i.e. the probe identifiers stored in column "GeneID" of the featureData slot) is also added.
```

> writeTab(xsc, file="Scores.txt")

```

Since you might be interestered in saving other values to a tab delimited file, below we demonstrate how you can create a matrix with the ratio between each raw measurement and the plate median, together with the gene and well annotation, and export it to a tab-delimited file using the function write.tabdel \({ }^{3}\) also provided in the cellHTS2 package.
```

> \# determine the ratio between each well and the plate median
> y <- array(as.numeric(NA), dim=dim(Data(x)))
> nrWell = prod(pdim(x))

```

\footnotetext{
\({ }^{3}\) This function is a wrapper of the function write.table, whereby you just need to specify the name of the data object and the file
}
```

> nrPlate = max(plate(x))
> for(p in 1:nrPlate) {

+ j <- (1:nrWell)+nrWell*(p-1)
+ samples <- wellAnno(x)[j]=="sample"
+ y[j, ,] <- apply(Data(x)[j, , , drop=FALSE], 2:3,
+ function(w) w/median(w[samples], na.rm=TRUE)) }
> y=signif(y, 3)
> out <- y[,,1]
> out <- cbind(fData(xsc), out)
> names(out) = c(names(fData(xsc)),
+ sprintf("Well/Median_r%d_ch%d", rep(1:dim(y)[2], dim(y)[3]),
+ rep(1:dim(y)[3], each=dim(y)[2])))
> write.tabdel(out, file="WellMedianRatio.txt")

```

At this point we are finished with the basic analysis of the screen. As one example for how one could continue to further mine the screen results for biologically relevant patterns, we demonstrate an application of category analysis.

\section*{8 Category analysis}

We would like to see whether there are Gene Ontology categories [8] overrepresented among the probes with a high score. For this we use the category analysis from Robert Gentleman's Category package [5]. Similar analyses could be done for other categorizations, for example chromosome location, pathway membership, or categorical phenotypes from other studies.
```

> library("Category")

```

Now we can create the category matrix. Conceptually, this a matrix with one column for each probe and one row for each category. The matrix element [ \(\mathrm{i}, \mathrm{j}]\) is 1 if probe j belongs to the j -th category, and 0 if not.
```

> obsolete = c("GO:0005489", "GO:0015997", "GO:0045034", "GO:0005660")

```

Some distractions are the GO terms GO:0005489, GO:0015997, GO:0045034, GO:0005660, which are annotated to some of the genes, but are obsolete.
```

> scores <- as.vector(Data(xsc))
> names(scores) <- geneAnno(xsc)
> sel <- !is.na(scores) \& (!is.na(fData(xsc)\$go))

```
```

> goids <- strsplit(fData(xsc)\$go[sel], ", ")
> goids <- lapply(goids, function(x) x[!(x %in% obsolete)])
> genes <- rep(geneAnno(xsc)[sel], listLen(goids))
> cache(categs <- cateGOry(genes, unlist(goids, use.names=FALSE)))

```

We will select only those categories that contain at least 3 and no more than 1000 genes.
```

> nrMem <- rowSums(categs) \# number of genes per category
> remGO <- which(nrMem < 3 | nrMem > 1000)
> categs <- categs[-remGO,,drop=FALSE]
> \# see if there are genes that don't belong to any category after applying the filtel
> nrMem <- rowSums(t(categs))
> rem <- which(nrMem==0)
> if(length(rem)!=0) categs <- categs[,-rem, drop=FALSE]

```

As the statistic for the category analysis we use the \(z\)-score. First, we need to select the subset of genes that actually have GO annotation:
```

> stats <- scores[sel \& (names(scores) %in% colnames(categs))]

```

There are some replicated probes in stats. We will handle this by taking the maximum value between replicate probes (non-conservative approach):
```

> \#\# handle duplicated genes in stats:
> isDup <- duplicated(names(stats))
> table(isDup)
isDup
FALSE TRUE
6947 935
> dupNames <- names(stats)[isDup]
> sp <- stats[names(stats) %in% dupNames]
> sp <- split(sp, names(sp))
> table(sapply(sp, length))

2	3	4	5	6	8	9	12
531	116	32	10	2	1	1	1

> aux <- stats[!isDup]
> aux[names(sp)] <- sapply(sp, max)
> stats <- aux
> rm(aux)

```

Before calling the category summary functions, we need to order our statistic vector according to the names of the columns of the category matrix.
```

> m <- match(colnames(categs), names(stats))
> stats <- stats[m]
> stopifnot(colnames(categs)==names(stats))

```

Finally, we are ready to call the category summary functions:
```

> acMean <- applyByCategory(stats, categs)
> acTtest <- applyByCategory(stats, categs, FUN=function(v) t.test(v, stats)\$p.value)
> acNum <- applyByCategory(stats, categs, FUN=length)
> isEnriched <- (acTtest<=1e-3) \& (acMean>0.5)

```

A volcano plot of the \(-\log _{10}\) of the \(p\)-value acTtest versus the per category mean \(z\)-score acMean is shown in Figure 4. For a given category, the \(p\)-value is calculated from the \(t\)-test against the null hypothesis that there is no difference between the mean \(z\)-score of all probes and the mean \(z\)-score of the probes in that category. To select the enriched categories (isEnriched), we considered a significance level of \(0.1 \%\) for the \(t\)-test, and a per category mean \(z\)-score greater than 0.5 . This led to the 36 categories marked in red in Figure 4 are listed in Table 6.

\section*{9 Comparison with the results previously reported}

In this section we compare the current results obtained using cellHTS package, with the ones previously reported in Boutros et al. [2]. The file "Analysis2003.txt" in the same directory as the input data files, i.e. in KcViab directory of the cellHTS package. First, We will load this file:
```

> data2003 <- read.table(file.path(dataPath, "Analysis2003.txt"), header=TRUE,

+ as.is=TRUE, sep="\t")

```

The file contains the columns Plate, Position, Score, Well, HFAID, GeneID. The scored values in the Scores column will be compared with the ones obtained in our analysis. For that, I will start by adding to data2003, a column with the corresponding \(z\)-score values calculated using the cellHTS package.
> i = data2003\$Position + 384*(data2003\$Plate-1)
> data2003\$ourScore = as.vector(Data(xsc)) [i]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(n\) & \(z_{\text {mean }}\) & \(p\) & GOID & Ontology & description \\
\hline 113 & 2.5 & \(3.9 \mathrm{e}-18\) & GO:0005840 & CC & ribosome \\
\hline 184 & 1.8 & \(9.7 \mathrm{e}-17\) & GO:0030529 & CC & ribonucleoprotein complex \\
\hline 746 & 0.78 & \(1.2 \mathrm{e}-16\) & GO:0032991 & CC & macromolecular complex \\
\hline 491 & 0.83 & \(1.3 \mathrm{e}-12\) & GO:0043228 & CC & non-membrane-bound organelle \\
\hline 491 & 0.83 & \(1.3 \mathrm{e}-12\) & GO:0043232 & CC & intracellular non-membrane-bound organelle \\
\hline 804 & 0.58 & \(4.1 \mathrm{e}-10\) & GO:0044444 & CC & cytoplasmic part \\
\hline 45 & 2.8 & \(2.5 \mathrm{e}-08\) & GO:0000502 & CC & proteasome complex (sensu Eukaryota) \\
\hline 80 & 1.8 & \(2.6 \mathrm{e}-08\) & GO:0005829 & CC & cytosol \\
\hline 19 & 4 & \(4 \mathrm{e}-06\) & GO:0005838 & CC & proteasome regulatory particle (sensu Eukaryota) \\
\hline 578 & 0.5 & \(4.5 \mathrm{e}-06\) & GO:0043234 & CC & protein complex \\
\hline 26 & 2.6 & \(7.3 \mathrm{e}-06\) & GO:0033279 & CC & ribosomal subunit \\
\hline 24 & 2.2 & 0.00039 & GO:0005839 & CC & proteasome core complex (sensu Eukaryota) \\
\hline 238 & 1.5 & \(7.4 \mathrm{e}-18\) & GO:0006412 & BP & translation \\
\hline 322 & 1.1 & \(5.7 \mathrm{e}-15\) & GO:0009059 & BP & macromolecule biosynthetic process \\
\hline 511 & 0.84 & \(5.2 \mathrm{e}-14\) & GO:0044249 & BP & cellular biosynthetic process \\
\hline 629 & 0.64 & \(3.2 \mathrm{e}-10\) & GO:0009058 & BP & biosynthetic process \\
\hline 546 & 0.5 & \(1.5 \mathrm{e}-05\) & GO:0048513 & BP & organ development \\
\hline 71 & 1 & \(1 \mathrm{e}-04\) & GO:0000375 & BP & RNA splicing, via transesterification reactions \\
\hline 71 & 1 & \(1 \mathrm{e}-04\) & GO:0000377 & BP & RNA splicing, via transesterification reactions with bulged adenosine as nucleophile \\
\hline 71 & 1 & \(1 \mathrm{e}-04\) & GO:0000398 & BP & nuclear mRNA splicing, via spliceosome \\
\hline 301 & 0.59 & \(1 \mathrm{e}-04\) & GO:0009790 & BP & embryonic development \\
\hline 102 & 0.86 & 0.00014 & GO:0006397 & BP & mRNA processing \\
\hline 106 & 0.83 & 0.00015 & GO:0016071 & BP & mRNA metabolic process \\
\hline 75 & 0.96 & 0.00016 & GO:0008380 & BP & RNA splicing \\
\hline 240 & 0.59 & 0.00017 & GO:0022402 & BP & cell cycle process \\
\hline 307 & 0.52 & 0.00031 & GO:0007399 & BP & nervous system development \\
\hline 4 & 1 & 0.00086 & GO:0008335 & BP & ovarian ring canal stabilization \\
\hline 47 & 1.1 & 0.00098 & GO:0048024 & BP & regulation of nuclear mRNA splicing, via spliceosome \\
\hline 47 & 1.1 & 0.00098 & GO:0050684 & BP & regulation of mRNA processing \\
\hline 249 & 0.56 & 0.00099 & GO:0007444 & BP & imaginal disc development \\
\hline 114 & 2.5 & \(3.6 \mathrm{e}-18\) & GO:0003735 & MF & structural constituent of ribosome \\
\hline 280 & 1.1 & \(9.5 \mathrm{e}-12\) & GO:0005198 & MF & structural molecule activity \\
\hline 212 & 0.67 & \(2.5 \mathrm{e}-05\) & GO:0003723 & MF & RNA binding \\
\hline 377 & 0.63 & \(4.5 \mathrm{e}-05\) & GO:0030528 & MF & transcription regulator activity \\
\hline 230 & 0.73 & 0.00025 & GO:0003700 & MF & transcription factor activity \\
\hline 24 & 2.2 & 0.00039 & GO:0004298 & MF & threonine endopeptidase activity \\
\hline
\end{tabular}

Table 6: Top 36 Gene Ontology categories with respect to \(z\)-score.


Figure 4: Volcano plot of the \(t\)-test \(p\)-values and the mean \(z\)-values of the category analysis for Gene Ontology categories. The top categories are shown in red.

Figure 5 shows the scatterplot between Boutros et al.'s scores and our scores in each of the 384 -well plates. The results between the two analyses are very similar, except for two minor details: use of robust estimators of location and spread (median and MAD instead of mean and standard deviation), and estimation of MAD over the whole experiment instead of plate-by-plate. In fact, Figure 5 evidenciates how the scored values exactly agree up to an offset (mean versus median) and scale (standard deviation versus MAD).

\section*{10 Appendix: How to convert cellHTS to cellHTS2 configuration files}

We advise the users of cellHTS package to start using the improved package cellHTS2 described herein, since the latter provides better functionality for working with multi-channel screens and multiple screens.

To facilitate this transition and help users to migrate their cellHTSspecific projects to cellHTS2, we provide in this package a function that converts the old S3 cellHTS object associated with cellHTS package into one or several S 4 cellHTS defined with the cellHTS2 package. This function is called convertOldCellHTS.

However, you might want to migrate an existing project from start, i. e.,


Figure 5: Scored values obtained in the paper of Boutros et al. against the scored values calculated herein. Each panel corresponds to one 384 -well plate. Axis labels are not pretty - they overlap with neighboring panels due to space constraints.
redo all the steps starting by reading the intensity files and configuring the screening data. In this case, you need to update the screen log file (if available), the screen description file and the screen configuration file \({ }^{4}\).

Regarding the screen description file, as mentioned in Section 4, we provide a function that creates a template screen description file that can be edited and modified by the user. Below we examplify how such file can be created:
```

> out <- templateDescriptionFile("template-Description.txt", force=TRUE)
> out
[1] "./template-Description.txt"
> readLines(out)
[1] "[Lab description]"
[2] "Experimenter name: <put here the experimenter name>"
[3] "Laboratory: <put here the name of the laboratory where the experiment was condu
[4] "Contact information: <put here contact information for lab and/or experimenter>
[5] ""
[6] "[Screen description]"
[7] "Screen: <put here the screen name>"
[8] "Title: <put there the single-sentence giving the experiment title>"
[9] "Version: <put here the screen version>"
[10] "Date: <put here the date when the experiment was performed>"
[11] "Screentype: <put here the type of screen>"
[12] "Organism:"
[13] "Celltype:"
[14] "Library:"
[15] "Assay: <put here the name of the assay>"
[16] "Assaytype: <put here the type of assay>"
[17] "Assaydescription: <put here the description of the assay>"
[18] ""
[19] "[Publication description]"
[20] "Publicationtitle:"
[21] "Reference:"
[22] "PMIDs: <put here the PubMed identifiers of papers relevant to the dataset>"

```

\footnotetext{
\({ }^{4}\) The expected format of the other input files, namely the raw intensity data files (Section 2) and the annotation file (Section 6) remains unchanged between the two packages.
}
```

[23] "URL: <put here the URL for the experiment>"
[24] "License:"
[25] "Abstract: <put here the abstract describing the experiment>"
[26] ""
[27] "[Files]"
[28] "plateList: <put the name of the plate result list file>"
[29] "annotation: <put the name of the screen library annotation file>"
[30] "plateConf: <put the name of the screen plate configuration file>"
[31] "screenLog: <put the name of screen log file, if available>"

```

The format of the screen log file compatible with cellHTS2 package is shown in Table 4. Compared to the previous format required for cellHTS package (Table 8), we note that column Filename was replaced by two columns named Plate and Sample.

In cellHTS package, the concept of batch is intrinsically related with the plate configuration, since a change in plate configuration along the experiment had to be handled by setting each distinct plate configuration as corresponding to a different batch. Therefore, in cellHTS package, the plate configuration file had three mandatory columns named Batch, Well, Content, where the Batch column allowed for different plate configurations. The first 28 lines of such file for the example RNAi screen considered in this report is shown in Table 7. Thus, in the old format required for the plate configuration file, we had to have a number of rows equal to the product between the total number of batches and the total number of wells per plate.

In contrast to cellHTS package, in cellHTS2 package the concept of batch and multiple plate configurations were made independent (see Section 4.1.1). For cellHTS2 package, Table 3 shows the required file format, which was discussed in more detail in Section 4.1.

Due to the separation between batch and multiple plate configuration, the column Batch was removed, and replaced by the column Plate. The other two mandatory columns Well and Content were kept. Additionally, we now require that this file contains two extra header lines giving the total number of wells and plates (Table 3). There is also an improvement in the file format related with the fact that Plate and Well columns now allow the use of regular expressions (see Section 4.1 for more specific information), which allows to cover the plate configuration used in the screen with just a few lines. Besides, it allows to specify different configurations within and between assay plates.
\begin{tabular}{rrr} 
Batch & Well & Content \\
1 & A01 & other \\
1 & A02 & other \\
1 & A03 & sample \\
1 & A04 & sample \\
1 & A05 & sample \\
1 & A06 & sample \\
1 & A07 & sample \\
1 & A08 & sample \\
1 & A09 & sample \\
1 & A10 & sample \\
1 & A11 & sample \\
1 & A12 & sample \\
1 & A13 & sample \\
1 & A14 & sample \\
1 & A15 & sample \\
1 & A16 & sample \\
1 & A17 & sample \\
1 & A18 & sample \\
1 & A19 & sample \\
1 & A20 & sample \\
1 & A21 & sample \\
1 & A22 & sample \\
1 & A23 & sample \\
1 & A24 & sample \\
1 & B01 & neg \\
1 & B02 & pos \\
1 & B03 & sample \\
1 & B04 & sample \\
\(\ldots\) & \(\ldots\) & \(\ldots\)
\end{tabular}

Table 7: Selected lines from the example cellHTS package-specific plate configuration file old-Plateconf.txt.
\begin{tabular}{rrrr} 
Filename & Well & Flag & Comment \\
FT06-G01.txt & A01 & NA & Contamination \\
FT06-G02.txt & A01 & NA & Contamination \\
FT06-G01.txt & A02 & NA & Contamination
\end{tabular}

Table 8: Selected lines from the example cellHTS package-specific screen log file old-Screenlog.txt.

\section*{11 Appendix: Normalization methods implemented in cellHTS2 package}

There are two main normalization methods available with cellHTS2 package: methods based on the use of reference controls, and distribution-based methods. These methods can be applied using the function normalizePlates.

\subsection*{11.1 Controls-based normalization}

\subsection*{11.1.1 Percent of control}

Percent of control (POC) is a preprocessing method that tries to correct for plate-to-plate variability by normalizing each \(k\) th compound raw measurements in the \(i\) th result file, \(x_{k i}\), relative to the average of within-plate controls. In an antagonist (or inhibition) type assay, it is defined as:
\[
\begin{equation*}
x_{k i}^{\mathrm{POC}}=\frac{x_{k i}}{\mu_{i}^{\mathrm{pos}}} \times 100 \tag{6}
\end{equation*}
\]
where \(\mu_{i}^{\text {pos }}\) is the average of the measurements on the positive controls in the \(i\) th result file (i.e., for a given plate and replicate).

In cellHTS2 package, this method can be applied by setting the argument method="POC" when calling normalizePlates function.

We also provide in the package a normalization method for normalizePlates (method="negatives") that consists of scaling the plate measurements by the per-plate median of the intensities on the negative controls \({ }^{5}\).

\footnotetext{
\({ }^{5}\) If the scale of the data is defined as being additive (i.e., argument scale="additive", or arguments scale="multiplicate" and log=TRUE), measurements are subtracted by the median of per-plate negative controls instead.
}

\subsection*{11.1.2 Normalized percent inhibition}

If normalizePlates is called with method="NPI", the method known as normalized percent inhibition (NPI) is applied in a per-plate basis to correct for plate effects. For an antagonist assay, this method divides the difference between each measurement in a given result file \(i\left(x_{k i}\right)\) and the average of the positive controls on that plate \(\left(\mu_{i}^{\mathrm{pos}}\right)\) by the difference between the averages of the measurements on the positive ( \(\mu_{i}^{\text {pos }}\) ) and the negative controls \(\left(\mu_{i}^{\mathrm{neg}}\right)\) :
\[
\begin{equation*}
x_{k i}^{\mathrm{NPI}}=\frac{\mu_{i}^{\mathrm{pos}}-x_{k i}}{\mu_{i}^{\mathrm{pos}}-\mu_{i}^{\mathrm{neg}}} \tag{7}
\end{equation*}
\]

\subsection*{11.2 Non-controls-based normalization}

There are several normalization method implemented in cellHTS2 package that make use of the overall distribution of values, instead of relying exclusively on controls. These are described in the following sections.

\subsection*{11.2.1 Z score method}

Z score is a simple and widely known normalizing method that is performed in a per-plate basis as follows:
\[
\begin{equation*}
x_{k i}^{\mathrm{Z}}=\frac{x_{k i}-\mu_{i}}{\sigma_{i}} \tag{8}
\end{equation*}
\]
where \(\mu_{i}\) and \(\sigma_{i}\) are the mean and standard deviation, respectively, of all measurements within the \(i\) th result file (replicated plate). In the Z score method, measurements are re-scaled relative to within-plate variation by subtracting the average of the plate values and dividing this difference by the standard deviation estimated from all measurements of the plate.

In cellHTS2, we consider a robust version of this method, where the mean and standard deviation are replaced by the median and the MAD, respectively, calculated at the sample wells. This robust Z score method is performed by calling normalizePlates as follows:
```

> xZ <- normalizePlates(x, scale="additive", log=FALSE,

+ method="median", varianceAdjust="byPlate")

```

\subsection*{11.2.2 Plate median normalization}

Plate median normalization involves calculating the relative signal of each well compared to the median of the sample wells in the plate, as shown in Equation (1) and Equation (2). The median is calculated among the \(m\) wells containing sample (i. e. , for wells that contain genes of interest) in result file i. Plate median normalization can be chosen by setting method="median" in normalizePlates. When applied to data on additive scale, the plate median normalization involves subtracting the plate measuments by the per-plate median instead.

We also have two variants of the plate median scaling which consist of using as the per-plate scaling factor \(M_{i}\) the per-plate average intensity on sample wells (method="mean") or the midpoint of the shorth of the per-plate distribution of values on sample wells (method="shorth").

The next methods are intended to explicitly correct for spatial effects within plates, i. e., the presence of intensity gradients within the plates. Such signal gradients can be caused by differences in temperature, incubation time or concentration, etc., in different wells across a plate. Typically, these gradients produce repeatitive patterns, which make it possible to distinguish them from real actives that should be more or less randomly dispersed for quasi-randomized collections of compounds.

\subsection*{11.2.3 B score method}

In the B score method, row and column biases within each plate are explicitly corrected for by fitting a two-way median polish to the raw data in a perplate fashion [3]:
\[
\begin{array}{r}
e_{r c i}=x_{r c i}-\hat{x}_{r c i}=x_{r c i}-\left(\hat{\mu}_{i}+\hat{R}_{r i}+\hat{C}_{c i}\right) \\
x_{r c i}^{\mathrm{B}}=\frac{e_{r c i}}{M A D_{i}} \tag{10}
\end{array}
\]

Here, \(x_{r c i}\) is the measurement value in the \(r\) th row and \(c\) th column of the plate corresponding to the \(i\) th result file, \(\hat{x}_{r c i}\) is the corresponding fitted value defined as the sum between the estimated average of the replicate plate \(\left(\hat{\mu}_{i}\right)\), the estimated systematic offset for row \(r\left(\hat{R}_{r i}\right)\) and the systematic offset for column \(c\left(\hat{C}_{c i}\right)\) in that replicated plate. In a second step, each of the obtained residual values \(e_{r c i}\) 's of the \(i\) th result file are divided by their median absolute deviation \(\left(M A D_{i}\right)\) giving the final B score value - Equation (10).

We implemented a method similar to the B score method described in Malo et al. [11] and Brideau et al. [3] using the Tukey's median polish procedure [12] (function medpolish of the package stats) which fits an additive model to the data according to Equation (10). The Tukey's median polish algorithm works by alternately removing the row and column medians and continues until the proportional reduction in the sum of absolute residuals is less than \(\epsilon\) or until the maximum number of iterations has been reached. The B score method can be applied by defining argument method="Bscore" in normalizePlates. Alternatively, the method can be applied by calling a separate function called Bscore provided in the cellHTS2 package.

In cellHTS2 package, we provide two additional spatial normalization methods that fit a polynomial surface to the intensities within each assay plate using local regression and that can be performed via normalizePlates or spatialNormalization functions, although we advise to apply these methods using the former function. The fit can be performed either using the loess procedure or the locfit.robust function of package locfit. In normalizePlates, if method="locfit", spatial effects are removed by fitting a bivariate local regression to each plate and replicate, while if method="loess", a loess curve is fitted instead.

\section*{12 Appendix: Data transformation}

An obvious question is whether to do the statistical analyses on the original intensity scale or on a transformed scale such as the logarithmic one. Many statistical analysis methods, as well as visualizations work better if (to sufficient approximation)
- replicate values are normally distributed,
- the data are evenly distributed along their dynamic range,
- the variance is homogeneous along the dynamic range [9].

Figure 6 compares these properties for untransformed and log-transformed normalized data, showing that the difference is small. Intuitively, this can be explained by the fact that for small \(x\),
\[
\log (1+x) \approx x
\]
and that indeed the range of the untransformed data is mostly not far from 1. Hence, for the data examined here, the choice between original scale and logarithmic scale is one of taste, rather than necessity.


Figure 6: Comparison between untransformed (left) and logarithmically (base 2) transformed (right), normalized data. Upper: histogram of intensity values of replicate 1 . Middle: scatterplots of standard deviation versus mean of the two replicates. Bottom: Normal quantile-quantile plots.
```

> library("vsn")
> par(mfcol=c(3,2))
> myPlots=function(z,...) {

+ hist(z[,1], 100, col="lightblue", xlab="",...)
+ meanSdPlot(z, ylim=c(0, quantile(abs(z[,2]-z[,1]), 0.95, na.rm=TRUE)), ...)
+ qqnorm(z[,1], pch='.', ...)
+ qqline(z[,1], col='blue')
+ }
> dv = Data(xn)[,,1]
> myPlots(dv, main="untransformed")
> xlog = normalizePlates(x, scale="multiplicative", log=TRUE,
+ method="median", varianceAdjust="byExperiment")
> dvlog = Data(xlog)[,,1]
> myPlots(dvlog, main="log2")

```

\section*{13 Session info}

\section*{References}
[1] E Birney, D Andrews, M Caccamo, Y Chen, L Clarke, G Coates, T Cox, F Cunningham, V Curwen, T Cutts, T Down, R Durbin, X M Fernandez-Suarez, P Flicek, S Graf, M Hammond, J Herrero, K Howe, V Iyer, K Jekosch, A Kahari, A Kasprzyk, D Keefe, F Kokocinski, E Kulesha, D London, I Longden, C Melsopp, P Meidl, B Overduin, A Parker, G Proctor, A Prlic, M Rae, D Rios, S Redmond, M Schuster, I Sealy, S Searle, J Severin, G Slater, D Smedley, J Smith, A Stabenau, J Stalker, S Trevanion, A Ureta-Vidal, J Vogel, S White, C Woodwark, and T J P Hubbard. Ensembl 2006. Nucleic Acids Res, 34(Database issue):556-561, 2006. 22, 23
[2] Michael Boutros, Amy A Kiger, Susan Armknecht, Kim Kerr, Marc Hild, Britta Koch, Stefan A Haas, Heidelberg Fly Array Consortium, Renato Paro, and Norbert Perrimon. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science, 303(5659):832-835, 2004. 3, 18, 31
[3] C Brideau, B Gunter, B Pikounis, and A Liaw. Improved statistical methods for hit selection in high-throughput screening. J. Biomol. Screen, 8:634-647, 2003. 40, 41
```

> toLatex(sessionInfo())

```
- R version 2.7.0 Under development (unstable) (2007-12-31 r43817), i686-pc-linux-gnu
- Locale: LC_CTYPE=en_US.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=en_US.UTF-8;LC_MONETARY=en_US.UTF-8;LC_MESSAGES=en_US.UTF-8;LC_PAPER=en_US.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF8;LC_IDENTIFICATION=C
- Base packages: base, datasets, graphics, grDevices, grid, methods, splines, stats, tcltk, tools, utils
- Other packages: affy 1.17.3, affyio 1.7.7, annotate 1.17.3, AnnotationDbi 1.1.8, Biobase 1.17.7, Category 2.5.0, cellHTS2 2.3.18, DBI 0.2-4, genefilter 1.17.7, geneplotter 1.17.3, GO 2.0.1, GO.db 2.1.1, graph 1.17.14, lattice \(0.17-2\), limma 2.13.2, prada 1.15.0, preprocessCore 1.1.5, RColorBrewer 1.0-2, robustbase 0.2-8, rrcov 0.4-03, RSQLite \(0.6-4\), splots 1.5.1, survival 2.34, vsn 3.4.3, xtable 1.5-2
- Loaded via a namespace (and not attached): cluster 1.11.9, KernSmooth 2.22-21, MASS 7.2-38, RBGL 1.15.7, stats4 2.7.0

Table 9: The output of sessionInfo on the build system after running this vignette.
[4] Steffen Durinck, Yves Moreau, Arek Kasprzyk, Sean Davis, Bart De Moor, Alvis Brazma, and Wolfgang Huber. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics, 21(16):3439-3440, Aug 2005. 21
[5] R. Gentleman. Category: Category Analysis, 2006. R package version 1.3.3. 29
[6] Robert Gentleman. Reproducible research: A bioinformatics case study. Statistical Applications in Genetics and Molecular Biology, 3, 2004. 2
[7] Robert C Gentleman, Vincent J. Carey, Douglas M. Bates, et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology, 5:R80, 2004. 6
[8] M A Harris, J Clark, A Ireland, J Lomax, M Ashburner, R Foulger, K Eilbeck, S Lewis, B Marshall, C Mungall, J Richter, G M Rubin, J A Blake, C Bult, M Dolan, H Drabkin, J T Eppig, D P Hill, L Ni, M Ringwald, R Balakrishnan, J M Cherry, K R Christie, M C Costanzo, S S Dwight, S Engel, D G Fisk, J E Hirschman, E L Hong, R S Nash, A Sethuraman, C L Theesfeld, D Botstein, K Dolinski, B Feierbach, T Berardini, S Mundodi, S Y Rhee, R Apweiler, D Barrell, E Camon, E Dimmer, V Lee, R Chisholm, P Gaudet, W Kibbe, R Kishore, E M Schwarz, P Sternberg, M Gwinn, L Hannick, J Wortman, M Berriman, V Wood, N de la Cruz, P Tonellato, P Jaiswal, T Seigfried, and R White. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res, 32(Database issue):258-261, 2004. 23, 29
[9] Wolfgang Huber, Anja von Heydebreck, Holger Sültmann, Annemarie Poustka, and Martin Vingron. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics, 18 Suppl. 1:S96-S104, 2002. 41
[10] Arek Kasprzyk, Damian Keefe, Damian Smedley, Darin London, William Spooner, Craig Melsopp, Martin Hammond, Philippe RoccaSerra, Tony Cox, and Ewan Birney. EnsMart: a generic system for fast and flexible access to biological data. Genome Res, 14(1):160-169, Jan 2004. 23
[11] Nathalie Malo, James Hanley, Sonia Cerquozzi, Jerry Pelletier, and Robert Nadon. Statistical practice in high-throughput screening data analysis. Nature Biotechnology, 24(2):167-175, 2006. 41
[12] J.W. Tukey. Exploratory Data Analysis. Addison-Wesley, Cambridge, MA, 1977. 41
[13] JH Zhang, TD Chung, and KR Oldenburg. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen, 4(2):67-73, 1999. 26```


[^0]:    ${ }^{1}$ To convert a S 3 class cellHTS object that was made using the cellHTS package into an S4 class cellHTS object suitable for cellHTS2, please see the function convertOldCellHTS.

[^1]:    > experimentName = "KcViab"

[^2]:    ${ }^{2}$ More precisely, configure is a method for the S 4 class cellHTS.

