
AnnotationDbi

Herve Pages, Marc Carlson, Seth Falcon, Nianhua Li

June 17, 2008

1 Introduction

1.0.1 General remarks

AnnotationDbi is used primarily to create maps that allow easy access
from R to underlying annotation databases. AnnotationDbi introduces a
new future for the Bioconductor annotation data packages by changing the
paradigm that is used for exchanging annotations.

The largest difference between the older style of annotation packages
and the newer ones is the decision to place a real database inside of each
package. This is an improved design, because ultimately, the amount of
annotation as well as the complexity of this information is likely to increase
with time. And perhaps more importantly, this large amount of information
needs to be organized in a flexible way in order to maximise its usefulness
in a wide array of different circumstances. Since databases were created
to solve problems just like this, the benefits of using real databases as the
ultimate data structures for annotation packages is self evident.

For this remake of these classic annotation packages, the decision has
been made to keep these databases gene centric rather than transcript centric
or protein centric.

1.0.2 Database Schemas

For developers, a lot of the benefits of having the information loaded into a
real database will require some knowledge about the database schema. For
this reason the schemas that were used in the creation of each database type
are included in AnnotationDbi. The currently supported schemas are listed
in the DBschemas directory of AnnotationDbi. But it is also possible to
simply print out the schema that a give package is currently using by using
its ” dbschema” method.

1

Please note that there is one schema for each kind of package. These
schemas specify which tables and indices will be present for each package of
that type. The schema that a particular package is using is also listed when
you type the name of the package as a function to obtain quality control
information.

The code to make most kinds of the new database packages is also in-
cluded in AnnotationDbi. Please see the vignette on SQLForge for more
details on how to make additional database packages.

1.0.3 Internal Design

The current design of these packages is as deliberatly simple as it is gene
centric. Each table in the database contains a unique kind of information
and also an internal identifier called id. The internal id has no meaning
outside of the context of a single database. But id does connect all the data
within a single database.

As an example if we wanted to connect the values in the genes table with
the values in the kegg table, we could simply join the two tables using the
internal id column. It is very important to note however that id does not
have any absolute significance. That is, it has no meaning outside of the
context of the database where it is used. It is tempting to think that an
id could have such significance because within a single database, it looks

and behaves similarly to an entrez gene ID. But id is definitely NOT an
entrez gene ID. The entrez gene IDs are in another table entirely, and can
be connected to using the internal id just like all the other meaningful
information inside these databases.

2 Examples

2.0.4 Basic information

The AnnotationDbi package provides an interface to SQLite-based annota-
tion packages. Each SQLite-based annotation package (identified by a “.db”
suffix in the package name) contains a number of AnnDbBimap objects in
place of the environment objects found in the old-style environment-based
annotation packages. The API provided by AnnotationDbi allows you to
treat the AnnDbBimap objects like environment instances. For example,
the functions [[, get, mget, and ls all behave the same as with the old-
style packages. In addition, new methods like [, toTable, subset and others
provide some additional flexibility in accessing the annotation data.

2

R> library("hgu95av2.db")

The same basic set of objects is provided with the db packages:

R> ls("package:hgu95av2.db")

[1] "hgu95av2" "hgu95av2ACCNUM"
[3] "hgu95av2ALIAS2PROBE" "hgu95av2CHR"
[5] "hgu95av2CHRLENGTHS" "hgu95av2CHRLOC"
[7] "hgu95av2_dbconn" "hgu95av2_dbfile"
[9] "hgu95av2_dbInfo" "hgu95av2_dbschema"
[11] "hgu95av2ENSEMBL" "hgu95av2ENSEMBL2PROBE"
[13] "hgu95av2ENTREZID" "hgu95av2ENZYME"
[15] "hgu95av2ENZYME2PROBE" "hgu95av2GENENAME"
[17] "hgu95av2GO" "hgu95av2GO2ALLPROBES"
[19] "hgu95av2GO2PROBE" "hgu95av2MAP"
[21] "hgu95av2MAPCOUNTS" "hgu95av2OMIM"
[23] "hgu95av2ORGANISM" "hgu95av2PATH"
[25] "hgu95av2PATH2PROBE" "hgu95av2PFAM"
[27] "hgu95av2PMID" "hgu95av2PMID2PROBE"
[29] "hgu95av2PROSITE" "hgu95av2REFSEQ"
[31] "hgu95av2SYMBOL" "hgu95av2UNIGENE"

As before, it is possible to call the package name as a function to get
some QC information about it.

R> qcdata = capture.output(hgu95av2())

R> head(qcdata, 20)

[1] "Quality control information for hgu95av2:"
[2] ""
[3] ""
[4] "This package has the following mappings:"
[5] ""
[6] "hgu95av2ACCNUM has 12625 mapped keys (of 12625 keys)"
[7] "hgu95av2ALIAS2PROBE has 36833 mapped keys (of 36833 keys)"
[8] "hgu95av2CHR has 12117 mapped keys (of 12625 keys)"
[9] "hgu95av2CHRLENGTHS has 25 mapped keys (of 25 keys)"
[10] "hgu95av2CHRLOC has 11817 mapped keys (of 12625 keys)"
[11] "hgu95av2ENSEMBL has 11156 mapped keys (of 12625 keys)"
[12] "hgu95av2ENSEMBL2PROBE has 8286 mapped keys (of 8286 keys)"

3

[13] "hgu95av2ENTREZID has 12124 mapped keys (of 12625 keys)"
[14] "hgu95av2ENZYME has 1957 mapped keys (of 12625 keys)"
[15] "hgu95av2ENZYME2PROBE has 709 mapped keys (of 709 keys)"
[16] "hgu95av2GENENAME has 12124 mapped keys (of 12625 keys)"
[17] "hgu95av2GO has 11602 mapped keys (of 12625 keys)"
[18] "hgu95av2GO2ALLPROBES has 8383 mapped keys (of 8383 keys)"
[19] "hgu95av2GO2PROBE has 5898 mapped keys (of 5898 keys)"
[20] "hgu95av2MAP has 12093 mapped keys (of 12625 keys)"

Alternatively, you can get similar information on how many items are in
each of the provided maps by looking at the MAPCOUNTs:

R> hgu95av2MAPCOUNTS

To demonstrate the environment API, we’ll start with a random sample
of probe set IDs.

R> all_probes <- ls(hgu95av2ENTREZID)

R> length(all_probes)

[1] 12625

R> set.seed(0xa1beef)

R> probes <- sample(all_probes, 5)

R> probes

[1] "31882_at" "38780_at" "37033_s_at" "1702_at" "31610_at"

The usual ways of accessing annotation data are also available.

R> hgu95av2ENTREZID[[probes[1]]]

[1] "9136"

R> hgu95av2ENTREZID$"31882_at"

[1] "9136"

R> syms <- unlist(mget(probes, hgu95av2SYMBOL))

R> syms

31882_at 38780_at 37033_s_at 1702_at 31610_at
"RRP9" "AKR1A1" "GPX1" "IL2RA" "PDZK1IP1"

4

2.0.5 Manipulating Bimap Objects

Many filtering operations on the annotation environment objects require
conversion of the environment into a list . There is an as.list method
for AnnDbBimap objects. In general, converting to lists will not be the
most efficient way to filter the annotation data when using a SQLite-based
package.

R> zz <- as.list(hgu95av2SYMBOL)

In an environment-based package, each mapping is its own object. To
save disk and memory resources, not all reverse mappings are included in
the environment-based packages. Here is the common idiom for creating a
list that serves as the reverse map of a given environment.

R> library("hgu95av2", warn.conflicts=FALSE)

R> ## we load the environment so as not

R> ## to include the load time in the timing

R> class(hgu95av2SYMBOL)

[1] "environment"

R> system.time({

p2sym <- as.list(hgu95av2SYMBOL)

lens <- sapply(p2sym, length)

nms <- rep(names(p2sym), lens)

sym2p <- split(unlist(p2sym), nms)

})

user system elapsed
0.096 0.012 0.111

R> ## in fact, there is a convenience function

R> ## for this operation in Biobase

R> system.time({

p2sym <- as.list(hgu95av2SYMBOL)

sym2p <- reverseSplit(p2sym)

})

user system elapsed
0.088 0.000 0.085

5

R> detach("package:hgu95av2")

The SQLite-based package provide the same reverse maps as objects
in the package name space for backwards compatibility, but the reverse
mappings of any map is available using revmap. Since the data are stored
as tables, no extra disk space is needed to provide reverse mappings.

R> system.time(sym2p <- revmap(hgu95av2SYMBOL))

user system elapsed
0.004 0.000 0.000

R> unlist(mget(syms, revmap(hgu95av2SYMBOL)))

RRP9 AKR1A1 GPX1 IL2RA PDZK1IP1
"31882_at" "38780_at" "37033_s_at" "1702_at" "31610_at"

So now that you know about the revmap function you might try some-
thing like this:

R> as.list(revmap(hgu95av2PATH)["00300"])

$`00300`
[1] "34336_at" "35870_at" "35761_at"

But in the case of the PATH map, we don’t need to use revmap(x)
because hgu95av2.db already provides the PATH2PROBE map:

R> x <- hgu95av2PATH

R> ## except for the name, this is exactly revmap(x)

R> revx <- hgu95av2PATH2PROBE

R> revx2 <- revmap(x, objName="PATH2PROBE")

R> revx2

PATH2PROBE map for chip hgu95av2 (object of class "AnnDbBimap")

R> identical(revx, revx2)

[1] TRUE

R> as.list(revx["00300"])

$`00300`
[1] "34336_at" "35870_at" "35761_at"

6

2.0.6 Displaying the Contents and Structure or Bimap Objects

Sometimes you may just want to know what elements are in an individual
map. A Bimap interface is available to access the data in table (data.frame)
format using [and toTable.

R> toTable(hgu95av2GO[probes[1:3]])

probe_id go_id Evidence Ontology
1 31882_at GO:0006364 TAS BP
2 37033_s_at GO:0001836 IMP BP
3 37033_s_at GO:0006749 IDA BP
4 37033_s_at GO:0006916 IMP BP
5 37033_s_at GO:0008631 IEA BP
6 37033_s_at GO:0009650 IMP BP
7 37033_s_at GO:0010269 IMP BP
8 37033_s_at GO:0030503 IDA BP
9 37033_s_at GO:0033599 IMP BP
10 37033_s_at GO:0040029 IDA BP
11 37033_s_at GO:0042744 IEA BP
12 37033_s_at GO:0043154 IMP BP
13 37033_s_at GO:0060047 IMP BP
14 38780_at GO:0006006 TAS BP
15 38780_at GO:0019853 IEA BP
16 38780_at GO:0042840 IEA BP
17 38780_at GO:0046185 IEA BP
18 31882_at GO:0005634 IEA CC
19 31882_at GO:0005732 TAS CC
20 31882_at GO:0030532 TAS CC
21 37033_s_at GO:0005737 IEA CC
22 37033_s_at GO:0005739 IEA CC
23 38780_at GO:0005829 IEA CC
24 38780_at GO:0016324 IEA CC
25 31882_at GO:0003723 IEA MF
26 37033_s_at GO:0004602 IEA MF
27 37033_s_at GO:0008430 IEA MF
28 37033_s_at GO:0008539 IDA MF
29 37033_s_at GO:0016491 IEA MF
30 37033_s_at GO:0017124 IPI MF
31 37033_s_at GO:0043295 IC MF
32 38780_at GO:0004032 TAS MF

7

33 38780_at GO:0005515 IPI MF
34 38780_at GO:0008106 IEA MF
35 38780_at GO:0009055 TAS MF
36 38780_at GO:0016491 IEA MF
37 38780_at GO:0047939 IEA MF

The toTable function will display all of the information in a Bimap.
This includes both the left and right values along with any other attributes
that might be attached to those values. The left and right keys of the Bimap
can be extracted using Lkeys and Rkeys. If is is necessary to only display
information that is directly associated with the left to right links in a Bimap,
then the links function can be used. The links returns a data frame with
one row for each link in the bimap that it is applied to. It only reports the
left and right keys along with any attributes that are attached to the edge
between these two values.

Note that the order of the cols returned by toTable does not depend on
the direction of the map (”undirected method”):

R> toTable(x)[1:6,]

probe_id path_id
1 38187_at 00232
2 38912_at 00232
3 36512_at 00650
4 36512_at 00960
5 36332_at 00380
6 36185_at 00252

R> toTable(revx)[1:6,]

probe_id path_id
1 38187_at 00232
2 38912_at 00232
3 36512_at 00650
4 36512_at 00960
5 36332_at 00380
6 36185_at 00252

Note however that the Lkeys are always on the left (1st col), the Rkeys
always in the 2nd col

There can be more than 2 columns in the returned data frame:
3 cols:

8

R> toTable(hgu95av2PFAM)[1:6,] # the right values are tagged

probe_id ipi_id PfamId
1 1000_at IPI00018195 PF00069
2 1000_at IPI00304111 PF00069
3 1000_at IPI00742900 PF00069
4 1000_at IPI00793141 PF00069
5 1001_at IPI00019530 PF07714
6 1001_at IPI00019530 PF00041

R> as.list(hgu95av2PFAM["1000_at"])

$`1000_at`
IPI00018195 IPI00304111 IPI00742900 IPI00793141
"PF00069" "PF00069" "PF00069" "PF00069"

But the Rkeys are ALWAYS in the 2nd col.
For length() and keys(), the result does depend on the direction (”di-

rected methods”):

R> length(x)

[1] 12625

R> length(revx)

[1] 199

R> allProbeSetIds <- keys(x)

R> allKEGGIds <- keys(revx)

There are more ”undirected” methods listed below:

R> junk <- Lkeys(x) # same for all maps in hgu95av2.db (except pseudo-map

R> # MAPCOUNTS)

R> Llength(x) # nb of Lkeys

[1] 12625

R> junk <- Rkeys(x) # KEGG ids for PATH/PATH2PROBE maps, GO ids for

R> # GO/GO2PROBE/GO2ALLPROBES maps, etc...

R> Rlength(x) # nb of Rkeys

[1] 199

Notice how they give the same result for x and revmap(x)

9

2.0.7 Advantages of using revmap

Using revmap can be very efficient in some use cases:

R> x <- hgu95av2CHR

R> Rkeys(x)

[1] "8" "14" "3" "2" "17" "16" "9" "X" "6" "1" "7" "12" "10"
[14] "11" "22" "19" "15" "20" "21" "5" "18" "4" "13" "Y"

R> chroms <- Rkeys(x)[23:24]

R> chroms

[1] "13" "Y"

R> Rkeys(x) <- chroms

R> toTable(x)[1:10,]

probe_id chromosome
1 37303_at 13
2 37099_at 13
3 32991_f_at Y
4 40435_at Y
5 40436_g_at Y
6 35447_s_at Y
7 32482_at 13
8 32439_at 13
9 37930_at 13
10 1503_at 13

To get this in the classic named-list format:

R> z <- as.list(revmap(x)[chroms])

R> names(z)

[1] "13" "Y"

R> z[["Y"]][1:5]

[1] "32991_f_at" "40435_at" "40436_g_at" "35447_s_at" "33665_s_at"

Compare to what you need to do this with the current envir-based pack-
age:

10

R> library(hgu95av2)

R> u <- unlist(as.list(hgu95av2CHR))

R> u <- u[u %in% chroms]

R> split(names(u), u)

A last example with cytogenetic locations:

R> x <- hgu95av2MAP

R> toTable(hgu95av2MAP)[1:6,]

probe_id cytogenetic_location
1 38187_at 8p23.1-p21.3
2 38912_at 8p22
3 33825_at 14q32.1
4 36512_at 3q21.3-q25.2
5 38434_at 2q35
6 36332_at 17q25

R> as.list(revmap(x)["8p22"])

$`8p22`
[1] "38912_at" "32372_at" "41209_at" "39981_at" "39982_r_at"
[6] "36850_at" "36851_g_at" "36852_at" "34553_at" "37363_at"
[11] "37951_at" "38013_at"

Are the probes in ’pbids’ mapped to cytogenetic location ”6p21.3”?

R> pbids <- c("38912_at", "41654_at", "907_at", "2053_at", "2054_g_at",

"40781_at")

R> x <- subset(x, Lkeys=pbids, Rkeys="18q11.2")

R> toTable(x)

probe_id cytogenetic_location
1 2053_at 18q11.2
2 2054_g_at 18q11.2

To coerce this map to a named vector:

R> pb2cyto <- as.character(x)

R> pb2cyto[pbids]

<NA> <NA> <NA> 2053_at 2054_g_at <NA>
NA NA NA "18q11.2" "18q11.2" NA

11

The coercion of the reverse map works too but issues a warning because
of the duplicated names:

R> cyto2pb <- as.character(revmap(x))

2.0.8 Using SQL to speed things up

Another area where the SQLite-based packages provide some advantages
is when one wishes to filter the available annotation data in a complex
fashion. For example, consider the task of obtaining all gene symbols on
which are probed on a chip that have at least one GO BP ID annotation
with evidence code IMP, IGI, IPI, or IDA. Here is one way to extract this
using the environment-based packages:

R> ## Obtain SYMBOLS with at least one GO BP

R> ## annotation with evidence IMP, IGI, IPI, or IDA.

R> probes <- sample(all_probes, 500)

R> library("hgu95av2", warn.conflicts=FALSE)

R> system.time({

bpids <- eapply(hgu95av2GO, function(x) {

if (length(x) == 1 && is.na(x))

NA

else {

sapply(x, function(z) {

if (z$Ontology == "BP")

z$GOID

else

NA

})

}

})

bpids <- unlist(bpids)

bpids <- unique(bpids[!is.na(bpids)])

g2p <- mget(bpids, hgu95av2GO2PROBE)

wantedp <- lapply(g2p, function(x) {

x[names(x) %in% c("IMP", "IGI", "IPI", "IDA")]

})

wantedp <- wantedp[sapply(wantedp, length) > 0]

wantedp <- unique(unlist(wantedp))

ans <- unlist(mget(wantedp, hgu95av2SYMBOL))

})

12

user system elapsed
5.828 0.076 5.902

R> detach("package:hgu95av2")

R> length(ans)

[1] 1806

R> ans[1:10]

39970_at 35364_at 37778_at 38911_at 39024_at 39404_s_at
"NR0B1" "NAE1" "KIN" "NUP98" "NUP98" "UPF1"
41293_at 41294_at 36891_at 37058_at
"KRT7" "KRT7" "MCAT" "UGT2B4"

All of the above code could have been reduced to a single SQL query
with the SQLite-based packages. But to put together this query, you would
need to look 1st at the schema to know what tables are present:

R> hgu95av2_dbschema()

This function will give you an output of all the create table statements
that were used to generate the hgu5av2 database. Then you could assem-
ble the sql query and use the helper function hgu95av2_dbconn to get a
connection object for the database as follows:

R> system.time({

SQL <- "SELECT symbol FROM go_bp INNER JOIN gene_info USING(_id)

WHERE go_bp.evidence in ('IPI', 'IDA', 'IMP', 'IGI')"

zz <- dbGetQuery(hgu95av2_dbconn(), SQL)

})

user system elapsed
0.064 0.000 0.066

2.0.9 Combining data from separate annotation packages

Sometimes a user may wish to combine data that is found in two different
annotation packages. One nice thing about the new packages is a side ben-
efit of the fact that they are sqlite databases. This means that they can be
attached into the same session, allowing easy joining of tables across oth-
erwise separate databases. Being able to select items from multiple tables

13

requires that their be a common value that can be used to identify those
entries which are identical. It is also important to note that the internal
IDs used in the AnnotationDbi packages cannot be used to map between
packages since they have no meaning outside of the databases where they
are defined.

In this example, we will join tables from hgu95av2.db and GO.db. To do
this, we will attach the GO database to the HGU95-Av2 database to allow
access to tables from both databases. We can then use GO identifiers as the
link across the two data packages to create the join. In this section we are
using the term attach to mean attaching using the SQL function ATTACH,
and not the R function, or concept, of attaching. Before we begin, it is
important to understand a little about where the GO database is located
and its name. We use this information with the system.file function to
construct a path to that database. In contrast, the hgu95av2.db package is
already attached and we can use our predefined AnnotationDbi connection
to it, hgu95av2_dbconn() to pass the SQL query that will attach the other
database.

R> goDBLoc = system.file("extdata", "GO.sqlite", package="GO.db")

R> attachSQL = paste("ATTACH '", goDBLoc, "' as goDB;", sep = "")

R> dbGetQuery(hgu95av2_dbconn(), attachSQL)

NULL

Next, we are going to select some data, based on the GO ID, from
two tables, one table from the HGU95-Av2 database and one from the GO
database. Fro brevity of output we will limit the query to 10 values. The
WHERE clause on the last line of the SQL query sqecifies that the GO identi-
fiers are the same. The first five lines of the query set up what variables to
extract and what they will be named in the output.

R> selectSQL = paste("SELECT DISTINCT a.go_id AS 'hgu95av2.go_id',",

"a._id AS 'hgu95av2._id',",

"g.go_id AS 'GO.go_id', g._id AS 'GO._id',",

"g.ontology",

"FROM go_bp_all AS a, goDB.go_term AS g",

"WHERE a.go_id = g.go_id LIMIT 10;")

R> dataOut = dbGetQuery(hgu95av2_dbconn(), selectSQL)

R> dataOut

hgu95av2.go_id hgu95av2._id GO.go_id GO._id ontology
1 GO:0000002 255 GO:0000002 13 BP

14

2 GO:0000002 1633 GO:0000002 13 BP
3 GO:0000002 3804 GO:0000002 13 BP
4 GO:0000002 4680 GO:0000002 13 BP
5 GO:0000003 41 GO:0000003 14 BP
6 GO:0000003 43 GO:0000003 14 BP
7 GO:0000003 81 GO:0000003 14 BP
8 GO:0000003 83 GO:0000003 14 BP
9 GO:0000003 104 GO:0000003 14 BP
10 GO:0000003 105 GO:0000003 14 BP

R> #just to clean up we can now detach the GO database...

R> detachSQL = paste("DETACH goDB")

R> dbGetQuery(hgu95av2_dbconn(), detachSQL)

NULL

This query combines the go_bp_all table from the HGU95-Av2 database
with the go_term table from the GO database. They are joined based on
their go_id collumns. For illustration purposes, the internal ID _id and the
go_id from both tables are included in the output. This demonstrates that
the go_ids can be used to join these tables while the internal IDs cannot.
The internal IDs, _id, are suitable for joins within a single database, but
cannot be used across databases.

15

