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Introduction

There are two methods for describing the results of a BeadArray experiment. Firstly, we can use
bead-level data whereby the position and intensity of each individual bead on an array is known

Bead summary data can also be used whereby a summary intensity for each bead type on an array is
given. The summarised values for a particular bead type can then be compared between different arrays
within an experiment. This is the format of the data output by Illumina’s BeadStudio application. The
methods described within this document are for the analysis of bead summary expression data which
can be obtained using either the BeadChip (6 or 8 arrays on a slide) or SAM (arrays organised in 96
well plates) technologies.

1 Citing beadarray

If you use beadarray for the analysis or pre-processing of BeadArray data please cite:
Dunning MJ, Smith ML, Ritchie ME, Tavaré S, beadarray: R classes and methods for Illumina

bead-based data, Bioinformatics, 23(16):2183-2184

2 Getting help with beadarray

Wherever possible, questions about beadarray should be sent to the Bioconductor mailing list (biocon-
ductor@stat.math.ethz.ch). Therefore all problems and solutions will be kept in a searchable archive.
When posting to this mailing list, please state the version of beadarray and R to help to diagnose the
problem. This can be done by pasting the output of running the command sessionInfo().

3 Importing Bead Summary Data

The beadarray package is able to read the output of BeadStudio versions 1, 2 and 3 which comes
in the form of a text file. We assume the file to have one row for each probe and a set of columns
for each array, depending on which columns have been exported from BeadStudio. We prefer that the
annotation columns are not exported from BeadStudio. These columns often contain unusual characters
which cannot be easily read into R. If required, annotation information can be imported at a later time
through other Bioconductor packages.

An example data set is included with the beadarray package and can be found as a zip file (BeadSum-
maryExample.zip) inside the inst/demodata directory of the beadarray download. Inside this zip you
will find the raw non-normalised data, a sample sheet and a quality control file for an example experi-
ment. These data were obtained as part of a pilot study into BeadArray technology and comprises of
3 Human-6 BeadChips with 6 different samples, I, MC, MD, MT, P and Norm hybridised. MC, MD,
MT and P are all tumours whereas Norm is a normal sample and I is a sample provided by Illumina.
The normalised data and quality control information was produced using BeadStudio version 1.
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3.1 Description of Files

We now describe the included files in more detail.

� raw_data.csv (required) - This contains the raw, non-normalised bead summary values as output
by BeadStudio. Inside the file are several lines of header information followed by a data matrix
with some 48,000 rows. Each row is a different gene in the experiment and the columns give
different measurements for the gene. For each array, we record the summarised expression level
(AVG Signal), standard error of the bead replicates (BEAD STDEV), Number of beads used
(Avg NBEADS) and a Detection score which estimates the probability of a gene being detected
above the background. When exporting this file from BeadStudio, the user is able to choose which
columns to export. beadarray is able to read any combination of these columns.

With versions 2 and 3 of BeadStudio it is possible to export annotation information. We rec-
ommend this data not be exported if the file is to be read into beadarray, as some of the special
characters used in the annotation fields cause problems for the readBeadSummaryData function.
This information can be retrieved later on from other Bioconductor packages, such as illuminaHu-
manv1.

� raw_data_sample_sheet.csv (optional) - Defines the array IDs and samples placed on each array.
In order for this information to be read into beadarray, we require that the 4th column is a unique
identifier for each array in the experiment. This is a file format that Illumina recommend for users
of BeadStudio to specify the contents of each array. This file is created by the user.

� raw_data_qcinfo.csv (optional) - Gives the summarised data for each of the controls on each
array, which may be useful for diagnostic purposes. This file was produced using BeadStudio
version 1. The format of the quality control files differs slightly between BeadStudio versions 1
and 2. Version 1 of the software gives one averaged value for each control type, whereas version
2 gives sumarised values for each control of a particular type. The user does not have to know
the version of BeadStudio used to generate the file. Refer to the Illumina documentation for
information on what each control measures.

� FullControlInfo.txt (optional) - Quality control information exported by BeadStudio version
2.

The following code can be used to read the example data into R. First make sure that the contents
of BeadSummaryExample.zip are extracted to the current working directory. If the quality control file
and sample sheet are not available, then the raw data can be read in on it’s own.

The function readBeadSummaryData can be made to read the ouput of either versions 1, 2 or 3 of
BeadStudio. The default settings will read BeadStudio version 3 output. Users may need to change
the argument sep, which specifies if the file is comma or tab delimited and skip which specifies the
number of lines of header information at the top of the file. Equivalent arguments are used to read the
quality control file (qc.skip and qc.sep). The name of the columns containing standard errors may
also change between BEAD STDEV and BEAD STDERR.

The columns argument is used to decide which column headings to read from the file and where to
store the data in the object created by the function (see later).

The following code shows how to read version 1 output by adjusting sep and skip. Version 3 output
can be read by running readBeadSummaryData without having to specify any additional parameters.

> library(beadarray)

> dataFile = "raw_data.csv"

> sampleSheet = "raw_data_sample_sheet.csv"

> qcFile = "raw_data_qcinfo.csv"

> BSData = readBeadSummaryData(dataFile,
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+ qcFile = qcFile, sampleSheet = sampleSheet,

+ skip = 7, columns = list(exprs = "AVG_Signal",

+ se.exprs = "BEAD_STDEV",

+ NoBeads = "Avg_NBEADS"),

+ qc.columns = list(exprs = "AVG.Signal",

+ se.exprs = "SeqVAR"),

+ qc.sep = ",", sep = ",",

+ qc.skip = 7)

4 The BSData object

BSData is an object of type ExpressionSetIllumina which is an extension of the ExpressionSet class
developed by the Biocore team used as a container for high-throughput assays. Objects of this type use
a series of slots to store data.

> BSData

ExpressionSetIllumina (storageMode: list)
assayData: 47293 features, 18 samples
element names: exprs, se.exprs, NoBeads, Detection, Narrays, arrayStDev, DiffScore

phenoData
rowNames: 1, 2, ..., 18 (18 total)
varLabels and varMetadata description:
Sample_Name: Sample_Name
Sample_Well: Sample_Well
...: ...
Sentrix_Position: Sentrix_

Position
(7 total)

featureData
featureNames:
fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
Annotation:
QC Information
Available Slots: exprs se.exprs Detection NoBeads controlType
featureNames: AVG.Signal.biotin, AVG.Signal.cy3_hyb_high, ..., AVG.Signal.low_stringency_hyb_pm, AVG.Signal.negative
sampleNames: 1475542110_F, 1475542113_E, ..., 1475542113_D, 1475542113_F

> slotNames(BSData)

[1] "QC"
[2] "assayData"
[3] "phenoData"
[4] "featureData"
[5] "experimentData"
[6] "annotation"
[7] ".__classVersion__"

> names(assayData(BSData))

[1] "exprs" "se.exprs"
[3] "NoBeads" "Detection"
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[5] "Narrays" "arrayStDev"
[7] "DiffScore"

> dim(assayData(BSData)$exprs)

[1] 47293 18

> dim(assayData(BSData)$se.exprs)

[1] 47293 18

> dim(assayData(BSData)$Narrays)

[1] 0 0

> exprs(BSData)[1:10, 1:2]

IH-1 IC-1
GI_10047089-S 87.8 131.8
GI_10047091-S 161.8 130.8
GI_10047093-S 481.2 401.4
GI_10047099-S 633.7 483.8
GI_10047103-S 1535.6 1186.5
GI_10047105-S 247.5 210.2
GI_10047121-S 113.0 101.3
GI_10047123-S 453.9 306.8
GI_10047133-A 103.6 114.5
GI_10047133-I 118.0 123.1

> se.exprs(BSData)[1:10,

+ 1:2]

IH-1 IC-1
GI_10047089-S 5.1 9.5
GI_10047091-S 12.0 7.9
GI_10047093-S 21.7 24.5
GI_10047099-S 21.6 20.9
GI_10047103-S 42.7 34.5
GI_10047105-S 12.7 11.8
GI_10047121-S 6.4 8.1
GI_10047123-S 14.0 13.1
GI_10047133-A 6.8 6.0
GI_10047133-I 5.6 7.2

> pData(BSData)[, c(4, 6)]

Sample_Group Sentrix_ID
1 IH-1 1475542114
2 IC-1 1475542114
3 IH-2 1475542114
4 MC-1 1475542114
5 MD-1 1475542114
6 MT-1 1475542114
7 IC-2 1475542110
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8 IH-3 1475542110
9 IC-3 1475542110
10 P-3 1475542110
11 P-3 1475542110
12 Norm-1 1475542110
13 MC-2 1475542113
14 MD-2 1475542113
15 MT-2 1475542113
16 P-1 1475542113
17 Norm-2 1475542113
18 P-2 1475542113

> QCInfo(BSData)$exprs[1:5,

+ 1:4]

1475542110_F
AVG.Signal.biotin 7551.0
AVG.Signal.cy3_hyb_high 32436.0
AVG.Signal.cy3_hyb_low 816.6
AVG.Signal.cy3_hyb_med 11178.2
AVG.Signal.gene 205.8

1475542113_E
AVG.Signal.biotin 6137.2
AVG.Signal.cy3_hyb_high 28081.0
AVG.Signal.cy3_hyb_low 739.4
AVG.Signal.cy3_hyb_med 9158.1
AVG.Signal.gene 176.6

1475542114_A
AVG.Signal.biotin 10255.0
AVG.Signal.cy3_hyb_high 41451.7
AVG.Signal.cy3_hyb_low 1040.9
AVG.Signal.cy3_hyb_med 13176.7
AVG.Signal.gene 320.3

1475542114_C
AVG.Signal.biotin 9358.7
AVG.Signal.cy3_hyb_high 41116.9
AVG.Signal.cy3_hyb_low 1100.0
AVG.Signal.cy3_hyb_med 13109.2
AVG.Signal.gene 395.2

The data from the the raw data file has been written to the assayData slot of the object. This slot
contains a number of matrices, each of which has a column for each array in the experiment and a row
for each probe. There is a matrix for each column that can be exported from BeadStudio, although
only the columns that we choose to read using the columns parameter in readBeadSummaryData will
be filled.

For consistency with the definition of other ExpressionSet objects, we now refer to the expression
values as the exprs matrix which can be accessed using exprs and subset in the usual manner. Similarly,
the se.exprs matrix can be accessed using se.exprs. The rows of exprs are named according to the
row names of the original raw data file.

Phenotypic data for the experiment can be accessed using pData and the QC slot contains the
quality control information.

Boxplots of expression may be useful for quality control. Below we show the code to produce boxplots
of the log2 intensities of each array in the experiment. Recall that there are 6 arrays per BeadChip and
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that differences between chip hybridised on different days may be seen. In this example the differences
in intensity between arrays on the same chip and different chips do not seem too large. However, we
can see that the first BeadChip seems to be more variable than the others and in particular the third
array on the first BeadChip could be an outlier.

Boxplots of the other slots in BSData can be easily plotted.1

> par(mfrow = c(1, 2))

> boxplot(log2(exprs(BSData)[1:1000,

+ ]), las = 2)

> boxplot(NoBeads(BSData)[1:1000,

+ ], las = 2)
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5 Normalisation and Quality Control

In the boxplots we notice that there are differences in expression level across a chip and between chips.
Therefore we might want to normalise the arrays in the experiment comparable. We also see the the
3rd array has a higher intensity than the others. The sample on this array is replicated three times on
the first chip, so comparing the MA and XY plots for the replicates of this sample can be informative.

> plotMAXY(exprs(BSData),

+ arrays = 1:3, labels = as.character(pData(BSData)[1:3,

+ 4]), pch = 16)

1We have restricted the number of points plotted in order to keep the size of this vignette small.
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In the top right corner we see the MA plots for all pairwise comparisons involving the 3 arrays. On
an MA plot, for each gene we plot the average of the expression levels on the two arrays on the x axis
and the difference in the measurements on the y axis. For replicate arrays we would expect all genes to
be unchanged between the two samples and hence most points on the plot to lie along the line y=0. In
the lower left corner of the MAXY plot we see the XY plot and for replicate arrays we would expect to
see most points along the diagonal y = x. From this MAXY plot it is obvious that the third array is
different to the other replicates and normalisation is required.

Both XY and MA plots for a particular comparison of arrays are available separately using plotXY
and plotMA

6 Using Quality Control Information

Quality control information from Illumina experiments can be exported from the BeadStudio applica-
tion. This information can be read into beadarray using the readBeadSummaryData function or at a
later time using readQC.

The quality control information which is read in by readBeadSummaryData can be plotted to provide
useful diagnostic information. To retrieve this quality control data we can use the QCInfo function.
Alternatively, quality control information can be read using readQC. QC is a list object and each item
can be accessed using the $ operator to give a matrix. The row names of the matrix indicates the
control types. In the following example we plot the values of the Biotin control across all arrays.

> QC = QCInfo(BSData)

> QC$exprs[1:3, ]

1475542110_F
AVG.Signal.biotin 7551.0
AVG.Signal.cy3_hyb_high 32436.0
AVG.Signal.cy3_hyb_low 816.6

1475542113_E
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AVG.Signal.biotin 6137.2
AVG.Signal.cy3_hyb_high 28081.0
AVG.Signal.cy3_hyb_low 739.4

1475542114_A
AVG.Signal.biotin 10255.0
AVG.Signal.cy3_hyb_high 41451.7
AVG.Signal.cy3_hyb_low 1040.9

1475542114_C
AVG.Signal.biotin 9358.7
AVG.Signal.cy3_hyb_high 41116.9
AVG.Signal.cy3_hyb_low 1100.0

1475542110_B
AVG.Signal.biotin 9595.1
AVG.Signal.cy3_hyb_high 41957.6
AVG.Signal.cy3_hyb_low 1017.8

1475542114_B
AVG.Signal.biotin 10818.4
AVG.Signal.cy3_hyb_high 44276.0
AVG.Signal.cy3_hyb_low 1039.5

1475542110_A
AVG.Signal.biotin 11483.9
AVG.Signal.cy3_hyb_high 47204.4
AVG.Signal.cy3_hyb_low 1037.6

1475542110_C
AVG.Signal.biotin 9977.0
AVG.Signal.cy3_hyb_high 45043.8
AVG.Signal.cy3_hyb_low 953.8

1475542114_D
AVG.Signal.biotin 7727.4
AVG.Signal.cy3_hyb_high 34646.3
AVG.Signal.cy3_hyb_low 868.5

1475542113_A
AVG.Signal.biotin 8822.6
AVG.Signal.cy3_hyb_high 36889.3
AVG.Signal.cy3_hyb_low 944.4

1475542114_E
AVG.Signal.biotin 7835.9
AVG.Signal.cy3_hyb_high 33330.6
AVG.Signal.cy3_hyb_low 820.0

1475542113_B
AVG.Signal.biotin 8588.6
AVG.Signal.cy3_hyb_high 40451.8
AVG.Signal.cy3_hyb_low 967.3

1475542114_F
AVG.Signal.biotin 6559.4
AVG.Signal.cy3_hyb_high 27580.2
AVG.Signal.cy3_hyb_low 697.4

1475542113_C
AVG.Signal.biotin 8527.5
AVG.Signal.cy3_hyb_high 39325.6
AVG.Signal.cy3_hyb_low 949.6
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1475542110_D
AVG.Signal.biotin 7908.9
AVG.Signal.cy3_hyb_high 33515.9
AVG.Signal.cy3_hyb_low 901.8

1475542110_E
AVG.Signal.biotin 7134.3
AVG.Signal.cy3_hyb_high 31132.7
AVG.Signal.cy3_hyb_low 797.9

1475542113_D
AVG.Signal.biotin 6706.2
AVG.Signal.cy3_hyb_high 30452.9
AVG.Signal.cy3_hyb_low 828.7

1475542113_F
AVG.Signal.biotin 6075.0
AVG.Signal.cy3_hyb_high 25584.2
AVG.Signal.cy3_hyb_low 730.8

> plot(log2(as.numeric(QC$exprs[1,

+ ])), type = "l")
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It is possible to use the normalisation methods available in the affy or lumi packages.

> library(affy)

> library(lumi)
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> BSData.quantile = normaliseIllumina(BSData,

+ method = "quantile",

+ transform = "log2")

> BSData.lumi = normaliseIllumina(BSData,

+ method = "quantile",

+ transform = "vst")

7 Differential Expression

Research into the best method for detecting differential expression for BeadArray data is still work in
progress. In the meantime, users are able to use the lmFit and eBayes functions from limma on the
matrix exprs(BSdata) with a log2 transformation applied.

The following code shows how to set up a design matrix for the example experiment combining the
I, MC, MD, MT, P and Normal samples together. We then define contrasts comparing the I samples to
the P samples and I to Normal and perform an empirical bayes shrinkage. In this particular experiment,
the I and P samples are completely different so we would expect to see plenty of differentially expressed
genes.

For more information about lmFit and eBayes please see the comprehensive limma documentation.

> design = matrix(nrow = 18,

+ ncol = 6, 0)

> colnames(design) = c("I",

+ "MC", "MD", "MT", "P",

+ "Norm")

> design[which(strtrim(colnames(exprs(BSData)),

+ 1) == "I"), 1] = 1

> design[which(strtrim(colnames(exprs(BSData)),

+ 2) == "MC"), 2] = 1

> design[which(strtrim(colnames(exprs(BSData)),

+ 2) == "MD"), 3] = 1

> design[which(strtrim(colnames(exprs(BSData)),

+ 2) == "MT"), 4] = 1

> design[which(strtrim(colnames(exprs(BSData)),

+ 1) == "P"), 5] = 1

> design[which(strtrim(colnames(exprs(BSData)),

+ 1) == "N"), 6] = 1

> design

I MC MD MT P Norm
[1,] 1 0 0 0 0 0
[2,] 1 0 0 0 0 0
[3,] 1 0 0 0 0 0
[4,] 0 1 0 0 0 0
[5,] 0 0 1 0 0 0
[6,] 0 0 0 1 0 0
[7,] 1 0 0 0 0 0
[8,] 1 0 0 0 0 0
[9,] 1 0 0 0 0 0
[10,] 0 0 0 0 1 0
[11,] 0 0 0 0 1 0
[12,] 0 0 0 0 0 1
[13,] 0 1 0 0 0 0
[14,] 0 0 1 0 0 0
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[15,] 0 0 0 1 0 0
[16,] 0 0 0 0 1 0
[17,] 0 0 0 0 0 1
[18,] 0 0 0 0 1 0

> ids = rownames(exprs(BSData))

> controlids = c("lysA",

+ "pheA", "thrB", "trpF")

> controlind = match(controlids,

+ ids)

> fit = lmFit(exprs(BSData.quantile)[-controlind,

+ ], design)

> cont.matrix = makeContrasts(IvsP = I -

+ P, IvsNorm = I - Norm,

+ PvsNorm = P - Norm,

+ levels = design)

> fit = contrasts.fit(fit,

+ cont.matrix)

> ebFit = eBayes(fit)

> topTable(ebFit, genelist = ids[-controlind])

ProbeID
9260 GI_28302132-S
13743 GI_34304351-S
21840 GI_4501988-S
22143 GI_4503886-S
9259 GI_28302130-S
2128 GI_15149480-S
19978 GI_42542384-S
22144 GI_4503888-S
3117 GI_18375521-A
9257 GI_28302128-S

IvsP
9260 7.05124284
13743 -6.41967544
21840 5.50531799
22143 5.12600762
9259 6.82821239
2128 -6.21848978
19978 5.20822549
22144 4.59044439
3117 -4.89612179
9257 0.07101028

IvsNorm
9260 6.775686661
13743 -3.060012038
21840 5.134115849
22143 5.115005439
9259 6.576394085
2128 -6.293353109
19978 4.977646454
22144 4.530531990
3117 -0.001238405
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9257 -6.325215556
PvsNorm F

9260 -0.27555618 6324.087
13743 3.35966341 5562.350
21840 -0.37120215 4661.143
22143 -0.01100219 4360.251
9259 -0.25181830 4338.271
2128 -0.07486333 3874.901
19978 -0.23057903 3754.780
22144 -0.05991240 3323.952
3117 4.89488338 3310.720
9257 -6.39622584 3062.805

P.Value
9260 5.413714e-38
13743 3.266853e-37
21840 3.879873e-36
22143 9.871758e-36
9259 1.059516e-35
2128 5.145356e-35
19978 7.992802e-35
22144 4.393341e-34
3117 4.645256e-34
9257 1.378672e-33

adj.P.Val
9260 2.560091e-33
13743 7.724312e-33
21840 6.115845e-32
22143 1.002069e-31
9259 1.002069e-31
2128 4.055312e-31
19978 5.399594e-31
22144 2.440772e-30
3117 2.440772e-30
9257 6.519604e-30

8 Further Analysis

The clustering functionality available in BeadStudio can be easily performed through R using the hlcust
once a distance matrix has been defined. In this example we see that the clusters correspond well to
the different sample types. The heatmap function could also be used in a similar manner and principal
components analysis is possible using princomp.

> d = dist(t(exprs(BSData.quantile)))

> plclust(hclust(d), labels = pData(BSData)[,

+ 4])
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So far, the results returned by the limma analysis are in terms of probes with Illumina IDs. This
alone is not very useful for drawing biologically meaningful conclusions from the experiment. More
useful information about each can be obtained using the illuminaHumanv1 package. In the following
code, we show how to obtain chromsomal information and gene names for every probe. The rows of
the expression matrix are used as a key to extract the relevant information from the environment. Note
that some probes on Illumina arrays will not have a matching gene name or RefSeq ID.

> library(illuminaHumanv1)

> illuminaHumanv1()

Quality control information for illuminaHumanv1
Date built: Created: Wed Apr 4 10:51:36 2007

Number of probes: 47297
Probe number missmatch: illuminaHumanv1ACCNUM; illuminaHumanv1CHRLOC; illuminaHumanv1CHR; illuminaHumanv1ENTREZID; illuminaHumanv1ENZYME; illuminaHumanv1GENENAME; illuminaHumanv1GO; illuminaHumanv1MAP; illuminaHumanv1OMIM; illuminaHumanv1PATH; illuminaHumanv1PMID; illuminaHumanv1REFSEQ; illuminaHumanv1SUMFUNC; illuminaHumanv1SYMBOL; illuminaHumanv1UNIGENE
Probe missmatch: None
Mappings found for probe based rda files:

illuminaHumanv1ACCNUM found 26092 of 47297
illuminaHumanv1CHRLOC found 18648 of 47297
illuminaHumanv1CHR found 19255 of 47297
illuminaHumanv1ENTREZID found 19258 of 47297
illuminaHumanv1ENZYME found 2147 of 47297
illuminaHumanv1GENENAME found 18182 of 47297
illuminaHumanv1GO found 16772 of 47297
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illuminaHumanv1MAP found 19160 of 47297
illuminaHumanv1OMIM found 12692 of 47297
illuminaHumanv1PATH found 4630 of 47297
illuminaHumanv1PMID found 19001 of 47297
illuminaHumanv1REFSEQ found 19258 of 47297
illuminaHumanv1SUMFUNC found 0 of 47297
illuminaHumanv1SYMBOL found 19258 of 47297
illuminaHumanv1UNIGENE found 19023 of 47297

Mappings found for non-probe based rda files:
illuminaHumanv1CHRLENGTHS found 25
illuminaHumanv1ENZYME2PROBE found 785
illuminaHumanv1GO2ALLPROBES found 8265
illuminaHumanv1GO2PROBE found 6093
illuminaHumanv1ORGANISM found 1
illuminaHumanv1PATH2PROBE found 192
illuminaHumanv1PFAM found 15279
illuminaHumanv1PMID2PROBE found 139948
illuminaHumanv1PROSITE found 10793

> ids = rownames(exprs(BSData))

> chr = mget(ids, illuminaHumanv1CHR,

+ ifnotfound = NA)

> chrloc = mget(ids, illuminaHumanv1CHRLOC,

+ ifnotfound = NA)

> refseq = mget(ids, illuminaHumanv1REFSEQ,

+ ifnotfound = NA)

> genename = mget(ids, illuminaHumanv1GENENAME,

+ ifnotfound = NA)

> anno = cbind(Ill_ID = as.character(ids),

+ Chr = as.character(chr),

+ Loc = as.character(chrloc),

+ RefSeq = as.character(refseq),

+ Name = as.character(genename))

> ebFit$genes = anno

> topTable(ebFit)

Ill_ID Chr
9260 GI_28302132-S 11
13743 GI_34304351-S X
21840 GI_4501988-S 4
22143 GI_4503886-S X
9259 GI_28302130-S 11
2128 GI_15149480-S 2
19978 GI_42542384-S 12
22144 GI_4503888-S X
3117 GI_18375521-A 1
9257 GI_28302128-S 11

Loc
9260 -5230996
13743 152413604
21840 74520796
22143 c(49221981, 49212423)
9259 -5226077
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2128 189547343
19978 -54634156
22144 49103620
3117 -103114611
9257 -5203271

RefSeq
9260 c("NM_000184", "NP_000175")
13743 c("NM_001711", "NP_001702")
21840 c("NM_001134", "NP_001125")
22143 c("NM_001476", "NP_001467")
9259 c("NM_000559", "NP_000550")
2128 c("NM_000090", "NP_000081")
19978 c("NM_006928", "NP_008859")
22144 c("NM_001477", "NP_001468")
3117 c("NM_001854", "NP_001845", "NM_080629", "NP_542196", "NM_080630", "NP_542197")
9257 c("NM_000518", "NP_000509")

Name
9260 hemoglobin, gamma G
13743 biglycan
21840 alpha-fetoprotein
22143 G antigen 6
9259 hemoglobin, gamma A
2128 collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)
19978 silver homolog (mouse)
22144 G antigen 7B
3117 collagen, type XI, alpha 1
9257 hemoglobin, beta

IvsP
9260 7.05124284
13743 -6.41967544
21840 5.50531799
22143 5.12600762
9259 6.82821239
2128 -6.21848978
19978 5.20822549
22144 4.59044439
3117 -4.89612179
9257 0.07101028

IvsNorm
9260 6.775686661
13743 -3.060012038
21840 5.134115849
22143 5.115005439
9259 6.576394085
2128 -6.293353109
19978 4.977646454
22144 4.530531990
3117 -0.001238405
9257 -6.325215556

PvsNorm F
9260 -0.27555618 6324.087
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13743 3.35966341 5562.350
21840 -0.37120215 4661.143
22143 -0.01100219 4360.251
9259 -0.25181830 4338.271
2128 -0.07486333 3874.901
19978 -0.23057903 3754.780
22144 -0.05991240 3323.952
3117 4.89488338 3310.720
9257 -6.39622584 3062.805

P.Value
9260 5.413714e-38
13743 3.266853e-37
21840 3.879873e-36
22143 9.871758e-36
9259 1.059516e-35
2128 5.145356e-35
19978 7.992802e-35
22144 4.393341e-34
3117 4.645256e-34
9257 1.378672e-33

adj.P.Val
9260 2.560091e-33
13743 7.724312e-33
21840 6.115845e-32
22143 1.002069e-31
9259 1.002069e-31
2128 4.055312e-31
19978 5.399594e-31
22144 2.440772e-30
3117 2.440772e-30
9257 6.519604e-30

This vignette was built using the following packages:

> sessionInfo()

R version 2.6.0 Under development (unstable) (2007-08-12 r42483)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_GB.UTF-8;LC_NUMERIC=C;LC_TIME=en_GB.UTF-8;LC_COLLATE=en_GB.UTF-8;LC_MONETARY=en_GB.UTF-8;LC_MESSAGES=en_GB.UTF-8;LC_PAPER=en_GB.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_GB.UTF-8;LC_IDENTIFICATION=C

attached base packages:
[1] tools stats
[3] graphics grDevices
[5] utils datasets
[7] methods base

other attached packages:
[1] illuminaHumanv1_1.2.0
[2] lumi_1.3.34
[3] mgcv_1.3-22
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[4] beadarray_1.5.14
[5] affy_1.15.7
[6] preprocessCore_0.99.12
[7] affyio_1.3.2
[8] geneplotter_1.15.6
[9] lattice_0.14-16
[10] annotate_1.13.4
[11] Biobase_1.15.26
[12] limma_2.11.9

loaded via a namespace (and not attached):
[1] grid_2.6.0
[2] KernSmooth_2.22-19
[3] RColorBrewer_0.2-3
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