
cdfenvs and oligonucleotide arrays

Laurent Gautier

October 3, 2007

Contents

Introduction

This document describes briefly how the package gets (or tries to get) the needed cdfenvs.
Various issues like security and configuring the options for the package affy are outlined.
To some extend, what is developped here could1 be applied to the package oligochips .

As usual, loading the package in your R session is required.

R> library(affy) ##load the affy package

Why and how

The cdfenvs are associative data structures to map efficiently a probeset id with indices for
the corresponding probes. These indices are used to subset a matrix storing probe level
intensities. Technically, a cdfenv is a R environment. The functions get and multiget

(in Biobase) are a convenient way to access what is in an environment. Expert users
only will consider modifying what is those environment.

In the case of Affymetrix data, the cdfenvs are built from the .CDF files. The pack-
age makecdfenvs is dedicated to the building of packages with cdfenvs. The simplest
way to proceed is to have the package needed for the analysis installed. A number of
cdfenv packages for Affymetrix chips are available for download on the Bioconductor
data packages repository. This release (1.2.x) of the affy package has an option to al-
low automatic downloading and install of a cdfenv that would be found missing during
an analysis. However, if you are using an unconventional chip, it is possible that Bio-
conductor has not created the appropriate package for your .CDF file. We recommend
that you use the package makecdfenvs to create the appropriate source code for the
cdfenv package you need. For Microsoft Windows binaries you need to do more, see
http://www.stats.ox.ac.uk/pub/R/rw-FAQ.html. If you contribute the package to

1Currently this would require a bit of effort, but it should become very easy very soon

1

http://www.stats.ox.ac.uk/pub/R/rw-FAQ.html


Bioconductor a windows binary will be made for you (and everybody else). The last
section outlines briefly how to change the associated cdfenv.

The complete structure of the options for the package is not completely described, but
one can refer the source code for the function .setAffyOptions(). The entry probesloc
in the options details the path used to look for the corresponding cdfenv. We introduce a
simple function to display the content of the options for the obtention of the information
about probe locations:

> print.probesloc.opt <- function(affy.opt, fields) {

+ all.fields <- c("what", "where", "autoload", "repository",

+ "installdir")

+ if (sum(!(fields %in% all.fields)) > 0)

+ stop(paste("'fields' can only contain elements of:",

+ paste(all.fields, collapse = " ")))

+ l <- lapply(affy.opt$probesloc, function(x) x[fields])

+ l <- lapply(l, function(x) {

+ unk <- is.na(names(x))

+ x[unk] <- rep(list(unk = NA), sum(unk))

+ x <- lapply(x, function(y) if (is.null(y))

+ "NULL"

+ else y)

+ return(x)

+ })

+ ul <- as.character(unlist(l))

+ m <- t(matrix(ul, nr = length(fields)))

+ colnames(m) <- fields

+ print(m)

+ }

The default search path for cdfenvs will be:

> affy.opt <- getOption("BioC")$affy

> print.probesloc.opt(affy.opt, c("what", "where", "autoload"))

what where autoload

[1,] "environment" "<environment>" "NA"

[2,] "libPath" "NULL" "NA"

[3,] "data" "affy" "NA"

[4,] "bioC" "/tmp/Rinst212077129" "NA"

The option autoload is only relevant where what is equal to package. Having it set
to TRUE means that an attempt will be made to download the package if it is not found
in .libPaths() or in the search path shown above.

The following function returns a set of options with any existing automatic download
deactivated :

2



> deactivate.autoload <- function(affy.opt) {

+ l <- lapply(affy.opt$probesloc, function(x) {

+ i <- names(x) == "autoload"

+ x[i] <- list(FALSE)

+ return(x)

+ })

+ affy.opt$probesloc <- l

+ return(affy.opt)

+ }

It can be used to deactivate any automatic download:

> affy.opt <- getOption("BioC")$affy

> affy.opt.noauto <- deactivate.autoload(affy.opt)

> .setAffyOptions(affy.opt.noauto)

Security

The autoload mecanism can be perceived as a security breach. It is the case, but not
more than any R package you might install (unless you inspect carefully the source of
every single package you install).

By default the cdfenv packages are downloaded from the bioconductor repository.
This can be changed through the options for the package. One might want to check
what it is like on his/her local installation:

> print.probesloc.opt(affy.opt, c("what", "autoload", "repository"))

what autoload repository

[1,] "environment" NA NA

[2,] "libPath" NA NA

[3,] "data" NA NA

[4,] "bioC" NA NA

If you do not have install permissions, you might consider installing the cdfenvs
packages to a particular place. For that you need to change the installdir (passed to the
function install.packages).

> my.installdir <- "mydir/is/here"

> has.installdir <- unlist(lapply(affy.opt$probesloc, function(x) if ("installdir" %in%

+ names(x)) grep("installdir", names(x)) else numeric(0)))

> l <- lapply(affy.opt$probesloc, function(x) {

+ if ("installdir" %in% names(x)) {

+ x$installdir <- my.installdir

3



+ }

+ return(x)

+ })

> affy.opt$probesloc <- l

> .setAffyOptions(affy.opt)

Note that a given cdfenv package is searched as specified in the argument where.
Depending on your settings, you might prefer updating the .libPaths() of your R
session, or the field where for the probelocs).

Changing the associated cdfenv

If you do not care about mapping probeset ids with indices and only want to deal with
probe intensities, or if you would like to make a custom cdfenv from scratch, you will
have to modify the association between your AffyBatch object(s) and cdfenvs.

If you want to experiment with this feature of the package, we would recommend to
create a dummy cdfenv and associate your AffyBatch to it:

> data(affybatch.example)

> dummymap.name <- "dummymap"

> assign(dummymap.name, new.env())

> affybatch.example@cdfName <- paste(dummymap.name, "cdf", sep = "")

As explained in the first part, the affy package will then find a matching environment
in the current environment (.GlobaEnv)and will not try to find a package. Note: the
environment should still be in the section probelocs of the package options.

4


