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1 Introduction

The process of obtaining biological samples is often expensive, involved, and time con-
suming. Thus, the issue of the appropriate sample size is important in planning a study.
If the sample size is too large, we waste resources. If the sample size is too small, we
cannot draw inferences with the desired precision. Thus, we need to calculate the sam-
ple size of a study before proceeding in order to determine the best trade-off between
precision and resource use.

The calculation of the sample size is closely related to that of power. One goal of
microarray studies is to find a subset of genes that are differentially expressed across
experimental conditions. The key question is the strength of the claim that a given gene
is differentially expressed. In other words, what is the power of the test to determine if
a gene is differentially expressed to a specified degree?

The R package, sizepower, is used to calculate sample size and power in the planning
stage of a microarray study. It helps the user to determine how many samples are needed
to achieve a specified power for a test of whether a gene is differentially expressed or, in
reverse, to determine the power of a given sample size.

This R package provides two functions for sample-size calculations for two types of
experimental designs (a completely randomized treatment-control design and a matched-
pairs design) and three functions for power calculation for four types of experimental
designs (a completely randomized treatment-control design, a matched-pairs design, a
multiple-treatment design having an isolated treatment effect, and a randomized block
design).
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2 Experiment Designs

The following discussion of sample size planning for microarray studies assumes that
the investigator has already chosen a particular microarray technology and selected the
measure of gene expression. The statistical testing proceeds after the application of
appropriate background correction, normalization and mathematical transformations.
Thus, expression levels in the following discussion of testing refer to data that have been
through these preprocessing steps.

2.1 Completely randomized treatment-control designs

In this design, we consider two groups of biological samples: a treatment group and a
control group. We are interested in testing if the mean expression level for a given gene
is the same for the two groups. The hypotheses of interest for any specific gene are

H0 : θt = θc vs H1 : θt 6= θc, (1)

where θt and θc are the mean expression levels of the treatment and control groups,
respectively, for the given gene. When we proceed to consider the required sample size
or power level, we will let µ1 = θt− θc denote the specific difference in means postulated
in the alternative hypothesis H1.

All statistical observations in the design are assumed to be mutually independent. In
addition, after appropriate mathematical transformation (such as a log-transformation),
all observations in the treatment group are assumed to be drawn from the normal distri-
bution N(θt, σ

2), while samples in the control group are assumed to be drawn from the
normal distribution N(θc, σ

2), where the two distributions share a common variance σ2.
To simplify the presentation, we only consider the case where each group has the same
number of observations n.

For example, in a microarray toxicity study, we randomly assign 2n mice in equal
numbers to treatment and control groups. The n mice in the treatment group will be
exposed to a toxin and the n mice in the control group will not be exposed to the toxin.
We are interested in detecting if any mouse gene on the microarray will be differentially
expressed between the treatment and control groups.

2.2 Matched-pairs designs

Like the completely randomized treatment-control design, the matched-pairs design con-
sists of two groups of biological samples and we are interested in whether the mean ex-
pression levels for genes from the two groups are different. In the matched-pairs design,
however, the observations from the two groups are not independent. Instead, each treat-
ment sample is paired with one control sample, creating n pairs of matched (correlated)
observations. Within a matched pair, the two observations are dependent. The matched
pairs themselves are independent. We still assume that observations in the treatment
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and control groups are normally distributed with means θt and θc, respectively, and with
common variance σ2.

For example, in a microarray liposarcoma study, we have n patients. From each
patient, we obtain one sample of liposarcoma tissue and one sample of normal fat tissue,
giving a total of n pairs of tissue samples. Within each pair, the two tissue samples
share some features because they are taken from the same patient. We are interested
in detecting genes on the microarray that are differentially expressed in the two types
of tissue (liposarcoma and normal fat tissues). In other words, for any single gene, we
would like to test if the mean difference in expression levels of the two types of tissue is
equal to zero.

2.3 Multiple-treatment designs having an isolated treatment
effect

This design is a generalization of the completely randomized treatment-control designs
to multiple treatments. Suppose there are T treatments, designated t = 1, . . . , T . We
first randomly divide nT biological samples into T groups, each with n samples. Then
the t-th group is assigned the t-th treatment. The hypotheses are:

H0 : θ1 = · · · = θT

H1 : One treatment mean differs from the other T − 1 means,
(2)

where θt, t = 1, . . . , T , are the gene expression means of the T treatment groups. The
term isolated effect design refers to the fact that, under the alternative hypothesis, all
treatments are assumed to have the same mean level of expression except for one treat-
ment that has a different mean level. When we proceed to consider the required sample
size or power level, we will let µ1 denote the specific difference between the mean of the
isolated treatment and the common mean of the remaining T − 1 treatments under H1.

We assume that all observations for the nT samples are mutually independent and
that observations from the t-th treatment group are normally distributed with mean
θt and variance σ2. Thus, we assume the treatment groups have a common variance.
As already seen, we also assume that all treatment groups have the same number of
observations.

2.4 Randomized block designs having an isolated treatment
effect

This design is a generalization of matched-pairs designs to multiple treatments. The
benefits of matching are achieved when biological samples within the same block are
more homogeneous than samples in different blocks. For example, mice in the same litter
tend to be more similar than mice in different litters. A total of n blocks are constructed
with each block having T biological samples. The T treatments are randomly applied
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to the samples within each block. For each gene, we are interested in testing if all
treatments have the same mean level of expression except for one treatment that has a
different mean level.

Within a block, the expression levels of a gene are assumed to be dependent. Between
blocks, the expression levels of a gene are assumed to be independent. We assume that
the expression level of a gene in the t-th treatment group is normally distributed with
mean θt and variance σ2, i = 1 . . . , T .

3 Sample-size Calculation

In this section, we show the method of sample-size calculation for completely randomized
treatment-control designs and matched-pairs designs.

Denote the total number of genes in a microarray study by G. Next, let G0 be the
true number of genes that are not differentially expressed and R0 be the number of genes
that are not differentially expressed but are falsely declared by the test procedure to be
differentially expressed, i.e., R0 is the number of false positives. The count G0 is some
fixed but unknown number. Prior to applying the test procedure to the data, R0 is an
unknown and random count.

The probability α0 of a type I error for any single gene g among the G0 genes that
are not differentially expressed is given by

α0 =
E(R0)

G0

, (3)

where E(R0) is the expected number of false positives from applying the test procedure
to all of the G0 genes.

Recall that we let µ1 = θt − θc denote the difference in means postulated in the
alternative hypothesis H1. For specified values of E(R0) and G0, we can calculate the
requisite sample size to achieve a specified power for completely randomized treatment-
control designs and matched-pairs designs as follows:

n =

(
za + zb

|µ1|/σd

)2

, (4)

where n is the sample size for each group, a = 1 − α0/2, b is the power of the test,
za and zb are the lower a and b percentiles of the standard normal distribution, and σd

is the standard deviation of the difference in expression between treatment and control
samples, as defined below.

For a completely randomized treatment-control design, σ2
d is the variance of the

difference in expression between randomly chosen treatment and control samples. For
a matched-pairs design, σ2

d is the variance of the difference in expression between the
treatment and control samples in a matched pair. In both cases,

σ2
d = 2σ2, (5)

4



where σ2 is the variance of the random error component in an ANOVA model.
For a completely randomized treatment-control design, the ANOVA model for any

single gene is
yij = µ+ τj + εij, i = 1, . . . , n, j = 1, 2 (6)

where yij is the expression level of the i-th biological sample in the j-th group, µ is
the overall mean, τj is the j-th treatment effect, and εij is the random error component
and is normally distributed with mean 0 and variance σ2. Note that θt = µ + τ1 and
θc = µ+ τ2 where τ1 + τ2 = 0.

For a matched-pairs design, the ANOVA model for any single gene is

yij = µ+ τj + βi + εij, i = 1, . . . , n, j = 1, 2 (7)

where yij is the expression level of the i-th biological sample in the j-th group, µ is the
overall mean, τj is the j-th treatment effect, βi is the i-th block effect, and εij is the
random error component and is normally distributed with mean 0 and variance σ2. Note
that θt = µ+ τ1 and θc = µ+ τ2.

To calculate the sample size in formula (4), we have to anticipate the values of G0

and σd. The investigator must also specify the desired values of E(R0), µ1 and the
power b. Typically, a high percentage of the genes are not differentially expressed in a
microarray study. In this case, the total number of genes G might be substituted for G0

in the calculation α0 = E(R0)/G0, giving the approximation α0 ' E(R0)/G.
We let αF denote the probability that one or more false positives will be produced

in testing the family of G0 genes that are not differentially expressed. The probability
of the type I error for an individual test α0, the probability of the type I error for the
family of tests αF , and the false positive rate E(R0) are interrelated. Under the S̆idák
approach to type I error control, we have the following approximation (Lee, 2004, page
202):

E(R0) = α0G0 ' −ln (1− αF ) . (8)

Under the Bonferroni approach to type I error control, we have the following approxi-
mation (Lee, 2004, page 203):

E(R0) = α0G0 ' αF . (9)

A subject matter expert can estimate G0. Similarly, a pilot study or closely related
study can be used to estimate the value of σ2 and, hence, σ2

d. For example, we can
calculate an ANOVA table for each gene from pilot study data and estimate σ2. (In an
ANOVA test, σ2 is estimated by the mean square error [MSE]). We can then average
these estimates to obtain a pooled estimate of σ2.

The user may wish to explore the sensitivity of the sample size to a range of specifi-
cations for E(R0), µ1 and the power b. For the power b, for example, the user may try
a series of probabilities, such as 0.7, 0.8, 0.9 and 0.95, to get a series of sample sizes.

To remind the user that completely randomized treatment-control designs and matched-
pairs designs are different, we provide one function for each design to implement the
sample-size calculation.

5



4 Power Calculation

In this section, we present a unified methodology for computing power for all four de-
signs, namely, completely randomized treatment-control designs, matched-pairs designs,
multiple-treatment designs having an isolated treatment effect, and randomized block
designs. In this methodology, we obtain the power value by solving the following equa-
tion system for (c, b):

α0 = Pr(χ2 > c|H0 true)

b = Pr(χ2 > c|H1 true).
(10)

Here χ2 is the test statistic. The value c is a cutoff that determines whether to reject H0

or not. We reject H0 if χ2 > c and do not reject it otherwise. The value b is the power
of the test and α0 = E(R0)/G0 is the probability of the type I error for an individual
test.

For all four designs we discussed (i.e., completely randomized treatment-control de-
signs, matched-pairs designs, multiple-treatment designs having an isolated treatment
effect, and randomized block designs), the test statistic χ2 is chi-square distributed with
T − 1 degrees of freedom under the null hypothesis H0, where T is the number of treat-
ments. Under H1, the test statistic χ2 has a non-central chi-square distribution with
non-centrality parameter

ψ1 =
n(T − 1)

T

(
|µ1|
σ

)2

, (11)

where the notation is that defined earlier. Recall, specifically, that µ1 denotes the dif-
ference θt− θc for the treatment-control designs and the magnitude of the isolated effect
for the multiple treatments designs. The parameter σ2 in each design is the variance of
the ANOVA error term.

We obtain estimates of σ and G0 by the same method discussed in the previous
section. Also, the specifications for |µ1|, E(R0) and power level b are required from the
investigator in the same manner as described previously.

We provide one function to calculate the power for completely randomized treatment-
control design, one function for matched-pairs designs, and one function for multiple-
treatment designs having an isolated treatment effect and randomized block designs.

5 Examples

To call the functions in the R package sizepower, we first need to load it into R:
Consider a completely randomized treatment-control design with an equal number of

biological samples in the treatment and control groups. It is anticipated that G0 = 2000
genes will not be differentially expressed. The mean number of false positives is to be
controlled at E(R0) = 1 and power is to be controlled at |µ1| = 1.00. From similar
studies done previously, it is anticipated that σ = 0.40 (i.e., σd =

√
2(0.40) = 0.566). If
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we wish the power level to be b = 0.9, we can use the following command to calculate
the number of samples needed for each group:

> sampleSize.randomized(ER0 = 1, G0 = 2000, power = 0.9, absMu1 = 1,

+ sigmad = 0.566)

$n

[1] 8

$d

[1] 1.766784

That is, 8 samples are needed for each group. This sample size is the smallest n that
will provide the required power. The returned value d is the statistical distance between
treatment and control conditions specified under H1, i.e., d = |µ1|/σd.

If we want to see what the exact power is if n = 8, we can use the command:

> power.randomized(ER0 = 1, G0 = 2000, absMu1 = 1, sigmad = 0.566,

+ n = 8)

$power

[1] 0.935299

$psi1

[1] 24.97222

That is, the exact power is 0.935 and the non-centrality parameter of the associated
non-central chi-square statistic is 24.97.

Consider a matched-pairs design. Suppose a pilot study shows that σ = 0.35 (i.e.,
σd =

√
2(0.35) = 0.495). We wish E(R0) = 1, |µ1| = 1.00, and the power b = 0.90. We

also expect that G0 = 2000. Then we can use the command:

> sampleSize.matched(ER0 = 1, G0 = 2000, power = 0.9, absMu1 = 1,

+ sigmad = 0.495)

$n

[1] 6

$d

[1] 2.020202

If we want to see what the exact power is if n = 6, we can use the command:

> power.matched(ER0 = 1, G0 = 2000, absMu1 = 1, sigmad = 0.495,

+ n = 6)
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$power

[1] 0.9289082

$psi1

[1] 24.48730

That is, the exact power is 0.929 and the non-centrality parameter is 24.487.
Consider a multiple-treatment design involving T = 5 treatments and G0 = 2000

undifferentially expressed genes. Suppose we wish to control E(R0) = 1.0 and to detect
an isolated effect of |µ1| = 1.00 between one distinguished treatment and all other
treatments. We anticipate an experimental error standard deviation of σ = 0.40. To
calculate the power for n = 6, we can use the following command:

> power.multi(ER0 = 1, G0 = 2000, numTrt = 5, absMu1 = 1, sigma = 0.4,

+ n = 6)

$power

[1] 0.9049313

$psi1

[1] 30

That is, the power is 0.904 and the non-centrality parameter is 30.
Consider a randomized block design with T = 6 treatments, n = 9 blocks, and

G0 = 5000. We wish E(R0) = 1 and |µ1| = 0.9. From a pilot study, we anticipate that
σ = 0.5. Then the power is

> power.multi(ER0 = 1, G0 = 5000, numTrt = 6, absMu1 = 0.9, sigma = 0.5,

+ n = 9)

$power

[1] 0.662967

$psi1

[1] 24.3
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