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Abstract

This compendium serves as a supplementary source of materials
for the analysis presented in Coverage and Error Models of Protein-
Protein Interaction Data by Directed Graph Analysis. We provide all
necessary materials, methods, and code to reproduce the analysis, and
present additional results.

1 Introduction

This technical report accompanies the paper Coverage and Error Models
of Protein-Protein Interaction Data by Directed Graph Analysis by Chiang
et al. It explains all the steps taken to perform the analysis of protein
interaction data described in that paper. This report has been produced
as a reproducible document: it contains all the computer instructions to
reproduce the analysis and to create the figures, tables and numeric results
of the paper. In addition, further analyses are produced that extend and
support the main results described in the paper.

The production of the reproducible document employs the computational
system and language R and the packages ppiStats, ppiData, and yeastExp-
Data. You will need R version 2.4.1 or greater together with recent versions
of the three packages and some other add-on packages that they depend
upon and which can be obtain from CRAN or Bioconductor. To reproduce
the computations shown here, you do not need to type them or copy-paste
them from the PDF file; rather, you can take the file supp.Rnw in the doc
directory of the ppiStats package, open it in a text editor, run it using the R
command Sweave; and if you wish, modify the program it to your needs. Al-
ternatively, if you would simply like the code without the surrounding text,
you can call Rtangle on the supp.Rnw file to generate a script file called
supp.R.
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Figure 1: The graph shows the interaction data between four selected pro-
teins from Krogan et al.’s experiment [10]. The bi-directional edge between
the ATPase SSA1 and the translational elongation factor TEF2 indicates
that either one as a bait pulled down the other one as a prey. The directed
edge from RPCS82, a subunit of RNA polymerase III, to SSA1 indicates that
RPC82 as a bait pulled down SSA1, but not vice versa. Another unrecip-
rocated edge goes from the phosphatase PHOS to TEF2. An investigation
of the dataset shows that PHOS3, which localizes in the periplasmatic space,
was not reported in any interaction as a prey, while RPC82C was. In the
interpretation of the data, we would have most confidence that there is a
real interaction between SSA1 and TEF2. We can differentiate between the
two unreciprocated interactions: the one between RPC82C and SSA1 has
been bi-directionally tested, but only found once, while the other one has
only been uni-directionally tested and found.

2 Obtaining the PPI Data

We begin by detailing the methods by which we obtained the 12 protein
interaction datasets. We wanted data that had two properties: 1. infor-
mation on the bait/prey data is preserved and 2. the prey population is
documented as genome-wide. We downloaded the protein interaction data
of [7, 14, 15, 1, 13, 5, 4] from the IntAct repository. We obtained [3, 6, 9, 10]
from their primary sources. Having obtained the bait/prey protein inter-
action data, we created an R data-package ppiData where we stored this
data. Each dataset is stored in ppiData as a directed graph object. As an
example, we have selected 4 proteins from the dataset of [10] and rendered
the vertex induced subgraph in Figure 1.



To make the dialogue clear, we first define some terms that will be used
throughout this document:

Bait: A protein sampled for the purposes of ascertaining the proteins
with which it interacts. The set of baits used in an experiment is the
bait population.

Cloned Bait: A bait that was successfully cloned in a yeast cell with
either a binding domain (Y2H) or a specified tag (AP-MS).

Viable Bait: A cloned bait that was observed to detect one or more
proteins (prey).

Prey: A protein that is tested against the bait proteins. The set of
prey used in an experiment is the prey population.

Cloned Prey: For Y2H, any prey that was successfully cloned in a
yeast cell with an activation domain.

Viable Prey: A prey that was found to interact with a viable bait.
Sometimes referred to as a hit.

Viable bait-prey: A protein that is both a viable bait and a viable
prey.

The vector bpExperimentNames contains the names to each of the di-
graph objects. In addition, two list objects (called viableBaits and vi-
ablePrey) contain the viable baits and viable prey for each experimental
dataset respectively. To represent all the data uniformly, the identifier for
each protein is given by its corresponding Open Reading Frame (ORF). If the
ORF is unavailable, either the protein common name or another identifier
(IntAct accession code, SwissProt ID, etc) is used. We give some example
code to show how to access this data.

> data("bpExperimentNames")
> bpExperimentNames

[1]
(3]
(5]
[7]
(9]
[11]

"Ito2001BPGraph" "Cagney2001BPGraph"
"Tong2002BPGraph" "Hazbun2003BPGraph"
"Zhao2005BPGraph" "Uetz2000BPGraphl"
"Uetz2000BPGraph2" "Gavin2002BPGraph"
"Ho2002BPGraph" "Krogan2004BPGraph"

"Gavin2006BPGraph" "Krogan2006BPGraph"



> gavin02 <- get(bpExperimentNames [8])
> gavin02

A graphNEL graph with directed edges
Number of Nodes 1362
Number of Edges = 3418

> gavin0O2@nodes[1:4]
[1] "YBR236C" "YNRO16C" "YLR359W" "YMR300C"

In addition to ppiData, another R-data package, yeastExpData, and the
R package ppiStats were generated. yeastExrpData contains R objects that
contains published data on protein abundance. yeast GFP fusion data, and
a R dataframe consisting of 33 other yeast protein properties obtained from
SGD (the dataframe is called proteinProperties). The ppiStats package
contains all the statistical methods we have developed for the analysis of the
directed protein interaction data.

3 Sampling and Coverage of the Interactome

3.1 Analysis on the Bait/Prey Interactions

We addressed the issue of coverage initially by the viable bait and viable
prey population observed in the experimental datasets. From the directed
graphs, we created the two lists viableBaits and viablePrey by asking if
each protein as a vertex had non-zero out- and in-degree respectively modulo
self-loops (i.e homomers). From these two lists, we were able to find the set
theoretic intersections of the viable baits (VB) and viable prey (VP) per
experiment to ascertain the viable bait/prey (VBP) populations.

> getVBP <- function() {

+ vbp <- 1list()

+ for (g in bpExperimentNames) {

+ m = as(get(g), "matrix")

+ diag(m) = 0

+ stopifnot (identical (rownames(m), colnames(m)))
+ vbpEach = rownames (m) [(rowSums(m) > 0) &

+ (colSums(m) > 0)]

+ vbp[[g]] <- vbpEach

+
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Figure 2: This bar chart shows the proportion of proteins sampled either as
a viable bait (VB), a viable prey (VP), or as both (VBP). With the exception
of the Krogan et al. [10]’s data, the other eleven show large portions of the
yeast genome which did not participate in any positive interactions. Without
additional information, there is little we can do to elucidate whether these
proteins were tested but inactive for all tests, or whether these proteins were
not tested.

+ return (vbp)
+ }
> vbp <- getVBP()

From SGD, we used 6466 as the number of known and characterized
yeast ORFs. This allowed us to build bar charts (cf Figure 2) to gauge the
proportion of the yeast interactome tested by each experimental dataset.

In addition to the bar chart, we were able to generate a number of cov-
erage statistics on the Y2H and APMS datasets on a per experiment setting
(cf Table 6), as well as between experiments of the same type, i.e. those
which used the same system to test interactions (cf Table 7 and Table 8).

Before we conduct any other statistical tests on the protein interaction
data, we list the definitions of some standard statistical terms in Table 1.
Any of these terms used throughout this document (as well as the article
Coverage and Error Models in Protein Interaction Data by Directed Graph
Analysis) correspond to the given definitions.



Error Statistics

True Positives

True Negatives

False Positives

False Negatives

True Tested
Interactions

True Tested
Non-interactions
False Positive Rate
False Negative Rate

Sensitivity

Specificity

False Discovery Rate

Positive Predictive
Value

Negative Predictive
Value

TP

TN

FP

FN

PrpP

PFEN

FDR

PPV

NPV

Number of cases in which a true interac-
tion is experimentally observed.

Number of cases in which two proteins
do not interact, their interaction is tested,
but not observed.

Number of cases in which two proteins do
not interact, but an interaction is reported
by the experiment.

Number of cases in which a true inter-
action is experimentally tested and not
found.

TP+FN

TN+FP

Probability that a truely absent interac-
tion is detected. It can be estimated by
FP / N.

Probability that a true interaction is not
detected. It can be estimated by FN / P.
Probability that a true interaction is de-
tected. It can be estimated by TP / P.
Probability that a truely absent interac-
tion is not detected, estimated by TN /
N.

Informally, the
FP/(TP+FP) [12].
Probability that an observed interaction
is indeed true. It can be estimated by TP

expected value of

/ (TP+FP).
Probability that an observed non-
interaction is truely absent. It can be

estimated by TN / (TN+FN).

Table 1: Standard definitions of various error terms [8].

The probabilities

are conditional on that the interaction is tested.



3.2 Hypergeometric Testing

We wanted to ascertain if the viably tested proteins showed signs of being
affected by a coverage bias in the experimental assay. To investigate, we used
the conditional hypergeometric tests described by [2] to test for over/under
representation in GO categories. Using the R software packages Category
and GOstats, we were able to asses these questions. For our purposes, we
used a p-value cutoff at the 1072 threshold. We were only interested in GO
categories which contained at least 50 unique annotations as well. Both
these parameters can be set by the user, and those familiar with the R
programming language are free to manipulate these parameters within the
R scripts.

The code written to conduct these hypergeometric tests has been sup-
plied with the main article as an additional file. It can also be found in the
Scripts directory of the ppiStats package. The file hgGO.R is a script file
which computes the conditional hypergeometric testing on the GO directed
acyclic graph (DAG). The file hgPfam.R computes the hypergeometric test-
ing on Pfam domains.

4 Systematic Bias

4.1 Probability model

For a protein p from VBP, we want to construct a probability model for the
joint distribution of Ng, the number of reciprocated edges, N, the number
of unreciprocated in-edges, and Np, the number of unreciprocated out-edges,
given the true degree ¢* and the parameters pg,, pm and N is the number
of interesting proteins.

We will use the shortcut Ny = Ny + N for the total number of unre-
ciprocated edges, and © = (0, pgy, pm, IV) for the parameters.

We consider

P(NR:nmNI =n;, No =n,; O)
= P(N;=mni,No =ny —ni| Ny =ny, Ng =n,;0)
XP(NU :nu,NR = Ny ; @) (1)

The decomposition of P in the right hand side will be useful.

For convenience, we suppress the index p in our notation, but please keep
in mind that the parameter 6* = ¢7 depends on p, and that Ng, Ni, No
and Ny are random variables that depend on p. N is an experiment-wide



parameter, and we also consider pg, and pg, to be experiment-wide; although
some of what follows might also apply to a model where pg, and pg, depend
on p, if there were data to estimate them.

We will now make some modeling assumptions. If we find that the data
for a particular protein does not concur well with these assumptions, we will
consider it subject to systematic error.

4.1.1 Symmetry

The first assumption is that of symmetry, that is, equality of the distribu-
tions of Ny and Np.
Nr =4 No (2)

and in particular

1
=). 3

;) 3)
This gives us the first term on the RHS of (1). The remarkable thing is that
it depends on n,, but not on any of the parameters! Now for the second

term:

(N7|Ny = ny) ~ B(ny,

4.1.2 Decomposition

We can decompose Ng and Ny into those counts that originate from real
interactions (i.e. that are true) and those that originate from false positive
measurements.
Np = Nj+NJ (4)
Ny = N§+N} (5)
The false positives are easy:
* 2
N, ~ B(N -0 —1,p})
Nf o~ BV =6 — 1, 2p5p(1 = ) (6)
The ones that originate from a real interaction follow a multinomial
distribution

P(N§ = nt, N = nt| ©)

v v v 0*!
— 1— 2ng | 29(1 — Ny . 2Mhone . > 7
(L=p)** - (2p(L = p))™ - p TR (7)

where for notational convenience I used the abbreviations ny. . = 6*—ny—n?,

none
and p = pgy-



The density function of the second term on the RHS of (1) can then be
obtained by convolution of (6) and (7). For each value of the parameters
© = (N, 6", pp, P, this is a 2D matrix with infinite numbers of rows and
columns, corresponding to n, and n,,. Most of the probability mass, however,
is concentrated within a bounded range. Furthermore, we will restrict our
attention to values of §* between 0 and 6}, depending on the data set.

This is implemented in the function nullDistDoublyTestedEdges in the
package ppiStats.

4.1.3 Using in/out asymmetry to identify baits that are likely to
be subject to systematic errors

We now use Equation (3) to assign a p-value to each protein. For a protein
with unreciprocated degrees (n;,n,), the p-value is

p(ni,no) = P(min{Ny, No} < min{n;,n,})
= max{2P(N; < min{n;,n,}), 1} (8)

This is computed by the following function assessSymmetry which is
also contained in the R package ppiStats. In addition, the function also
calculates the contours of the function p in the (n;,n,)-plane. These will be
used in the plots.

Now we are ready to apply the symmetry p-values, and we will create an
environment, bpRed containing the reduced set of data with only proteins
with p-values larger than or equal to p-value threshold of 1072,

For a more illuminating visual effect, we have perturbed the data on each
point of the figures. This perturbation shows the relative concentration of
data for each point in each of the figures.

10
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4.2 Logistic Regressions

For a protein with n; unreciprocated in-edges and n, unreciprocated out-

1
ni|ny, ~DB <nu,2>

if false positive and false negative errors are independent of a protein’s prop-
erties. Let p be the true probability (Hy:p = %) for any particular protein.
We will

edges, we expect

e Perform binomial tests for Hy : p < % and Hy : p > % for each protein
(in each experiment)

e Use test outcomes as responses to fit logistic regressions with abun-
dance and CAI as predictor .

Regression is restricted to the subgraph of proteins that are VBP.

1We actually use logarithm (base 2) of abundance and CAT as predictor since that has
a much more symmetric distribution.

22



4.3 Results: log(abundance) as predictor

Systematic :=

Estimate
Ito2001BPGraph -0.0965484
Cagney2001BPGraph 0.0000000
Tong2002BPGraph 0.0000000
Hazbun2003BPGraph 0.0000000
Uetz2000BPGraphl  0.0000000
Uetz2000BPGraph2  0.0000000
Gavin2002BPGraph -0.0455738
Ho2002BPGraph 0.6177581
Krogan2004BPGraph 0.3048115
Gavin2006BPGraph  0.2470921
Krogan2006BPGraph 0.1747114

Systematic :=

Estimate
Ito02001BPGraph -0.0673062
Cagney2001BPGraph 0.0000000
Tong2002BPGraph 0.0000000
Hazbun2003BPGraph 0.0000000
Uetz2000BPGraphl  0.0000000
Uetz2000BPGraph2 -0.1741740
Gavin2002BPGraph  0.0612910
Ho2002BPGraph -0.0355630
Krogan2004BPGraph 0.4262939
Gavin2006BPGraph  0.0317204
Krogan2006BPGraph 0.0205081

N & WOFRLDNDNPEDNDMNDNDW =

unusually large in-degree

Std. Error

1.568464e-01
6.277441e+04
3.100286e+04
2.857672e+04
2.693089e+04
1.
2
2
2
5
2

858329e+04

.071982e-01
.172607e-01
.155429e-01
.727970e-02
.817510e-02

unusually large out-degree

Std. Error

.272444e-01
.277441e+04
.100286e+04
.857672e+04
.693089e+04
.273137e-01
.069047e-01
.760731e-01
.195259e-01
.039910e-02
.025180e-02

23

Pr(>lzl)
.5381848
.0000000
.0000000
.0000000
.0000000
.0000000
.8259080
.0044636
.1573158
.0000160
.0000000

el ol ololeolN S N I o]

Pr(>|zl)
.5968387
.0000000
.0000000
.0000000
.0000000
.6835658
. 7670560
.8399333
.1821563
.4323495
.3112261

O O O O OO K K= =, O



4.4 Results: log(YEPD-abundance) as predictor

Systematic := unusually large in-degree
Estimate  Std. Error
Ito2001BPGraph -0.2034193 2.539516e-01 O
Cagney2001BPGraph 0.0000000 4.015988e+04 1
Tong2002BPGraph 0.0000000 3.141114e+04 1
Hazbun2003BPGraph 0.0000000 5.718971e+04 1
Uetz2000BPGraphl  0.0000000 2.382507e+04 1
Uetz2000BPGraph2  0.0000000 4.779005e+04 1
Gavin2002BPGraph  0.0314538 2.138131e-01 0O
Ho2002BPGraph 0.6995187 2.623436e-01 O
Krogan2004BPGraph 0.7332109 3.110509e-01 0
Gavin2006BPGraph  0.3310486 6.616190e-02 0O
Krogan2006BPGraph 0.3342046 3.750350e-02 0
Systematic := unusually large out-degree
Estimate  Std. Error
Ito02001BPGraph 0.0639316 1.714852e-01
Cagney2001BPGraph 0.0000000 4.015988e+04
Tong2002BPGraph 0.0000000 3.141114e+04
Hazbun2003BPGraph 0.0000000 5.718971e+04
Uetz2000BPGraphl 0.0000000 2.382507e+04
Uetz2000BPGraph2 -172.3940519 3.625785e+05
Gavin2002BPGraph -0.2873317 2.926935e-01
Ho2002BPGraph -0.0839760 2.566496e-01
Krogan2004BPGraph 0.1809569 4.022975e-01
Gavin2006BPGraph 0.0040555 5.339530e-02
Krogan2006BPGraph  -0.0341308 2.937090e-02

24

Pr(>lzl)
.4231223
.0000000
.0000000
.0000000
.0000000
.0000000
.8830462
.0076663
.0184130
.0000006
.0000000

Pr(>|zl)
.7092889
.0000000
.0000000
.0000000
.0000000
.9996206
.3262569
. 7435160
.6528484
.9394565
.2452114



4.5 Results: log(SD-abundance) as predictor

Systematic :=

It02001BPGraph
Cagney2001BPGraph
Tong2002BPGraph
Hazbun2003BPGraph
Uetz2000BPGraphl
Uetz2000BPGraph2
Gavin2002BPGraph
Ho2002BPGraph
Krogan2004BPGraph
Gavin2006BPGraph
Krogan2006BPGraph

Systematic :=

It02001BPGraph
Cagney2001BPGraph
Tong2002BPGraph
Hazbun2003BPGraph
Uetz2000BPGraphl
Uetz2000BPGraph2
Gavin2002BPGraph
Ho2002BPGraph
Krogan2004BPGraph
Gavin2006BPGraph
Krogan2006BPGraph

Estimate
-0.0371755
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
-0.0065802
0.7473637
0.7137744
0.3000127
0.3312490

Estimate
.2229019
.0000000
.0000000
.0000000
.0000000
.0000000

-0.4646590

-0.0817470

-0.2072876

-0.0367753
-0.0662342

O O O O O O

W O NDWOOONOO Wb

unusually large in-degree

Std. Error

2.534341e-01
4.652810e+04
3.249386e+04
5.032356e+04
2.639200e+04
6.
2
2
3
6
3

453553e+04

.286774e-01
.624720e-01
.118868e-01
.650650e-02
.870910e-02

unusually large out-degree

Std. Error

.574997e-01
.652810e+04
.249386e+04
.032356e+04
.639200e+04
.4535563e+04
.950941e-01
.732001e-01
.624194e-01
.514980e-02
.091590e-02
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4.6 Results: log(CAI) as predictor

Systematic := unusually large in-degree

Estimate Std. Error Pr(>|zl)

Ito2001BPGraph 0.1324551 4.233209e-01 0.7543603
Cagney2001BPGraph 0.0000000 2.212620e+05 1.0000000
Tong2002BPGraph 0.0000000 2.902217e+05 1.0000000
Hazbun2003BPGraph 0.0000000 1.279461e+05 1.0000000
Uetz2000BPGraphl  0.0000000 8.274419e+04 1.0000000
Uetz2000BPGraph2  0.0000000 6.164974e+04 1.0000000
Gavin2002BPGraph -0.6442715 7.577149e-01 0.3951682
Ho2002BPGraph 1.4918111 4.683387e-01 0.0014459
Krogan2004BPGraph 2.0058012 7.165575e-01 0.0051226
Gavin2006BPGraph  1.0523019 1.623679e-01 0.0000000
Krogan2006BPGraph 0.9233587 8.326850e-02 0.0000000

Systematic := unusually large out-degree

Estimate Std. Error Pr(>lzl)

Ito2001BPGraph -0.1525036 4.013274e-01 0.7039470
Cagney2001BPGraph 0.0000000 2.212620e+05 1.0000000
Tong2002BPGraph 0.0000000 2.902217e+05 1.0000000
Hazbun2003BPGraph 0.0000000 1.279461e+05 1.0000000
Uetz2000BPGraphl  0.0000000 8.274419e+04 1.0000000
Uetz2000BPGraph2 -0.2867229 2.038068e+00 0.8881199
Gavin2002BPGraph -1.5156465 9.808245e-01 0.1222791
Ho2002BPGraph -1.3921662 8.686472e-01 0.1090046
Krogan2004BPGraph 0.6392686 1.114364e+00 0.5661964
Gavin2006BPGraph -0.0393550 1.425905e-01 0.7825482
Krogan2006BPGraph -0.1703917 7.103590e-02 0.0164547

In addition to the Logistic Regressions, we plotted the adjacency matrix
diagram of the bait/prey interactions in two different ways: 1. the rows
and columns randomly ordered and 2. the rows and columns ordered by
ascending CAI (cf Figure 14 and Figure 15). This readily gives a visual
method of identifying the association between CAI and proteins rejecting
the 2-sided Binomial test.

There has been a number of research articles that point to the relation-
ship between CAI and protein abundance. To verify this fact, we computed
both the Pearson and Spearman correlation coefficients between CAI and
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a. Random Order b. Ordered By Ascending CAIl
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Figure 14: These plots present a view of the adjacency matrix for the VBP
derived from the Gavin et al’s. [4] experimental data set. An interaction
between bait b and prey p is recorded by a dark pixel in (b, p)!" position of
the matrix. The left panel has the rows and columns randomly ordered while
the right panel has the rows and columns ordered by ascending values of each
protein’s condon adaptation index (CAI). Contrasting these two figures, we
can ascertain that there is a relationship between bait/prey interactions and
CAI. The relationship is based on proteins with large un-reciprocated in-
degree since the right panel shows a dark vertical band. Had unreciprocated
out-degree also been associated with CAI then there would be a similar
horizontal band reflected across the main diagonal of the matrix.
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Figure 15: Same adjacency matrix plots for the Krogan et al’s [10] data.

three sets of abundance data: 1. a general measure of abundance in the yeast
cell, 2. the mean measure of abundance of a yeast cell in YEPD medium,
and 3. the mean measure of abundance of a yeast cell in a SD medium (Ta-~
ble 2). The Spearman correlation seems to be the more accurate measure,
not simply because it is larger, but because the relationship between CAI
and abundance is not linear [11] (cf Figures 16 and 17).

General Abundance YEPD SD
Pearson 0.48 0.53 0.55
Spearman 0.54 0.65 0.66

Table 2: This table gives both the Pearson and Spearman correlation be-
tween CAI against three distinct protein abundance datasets: 1. General
Abundance, 2. Abundance in the YEPD medium, 3. Abundance in the SD
medium. An interesting observation is that the highest correlation found is
between CAI and protein abundance in the SD medium.

We plotted the values of each protein’s CAI value against (log) the three
sets of measured abundance data to visualize this association (cf Figures 77?).
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Those proteins which are likely affected by a systematic bias in the Gavin
et al’s [4] data are colored red in Figure 16; proteins affected in Krogan et
al’s [10] are colored red in Figure 16. The most interesting fact is that the
measured protein abundances in SD medium have the highest correlation
with CAI. This seems to suggest that the reference set of genes used to com-
pute all CAI might be highly expressed under SD medium. In addition, the
relationship between the systematic bias with CAI and protein abundance
becomes much more apparent (more so with [10]).

4.7 Fisher’s Exact Test Across Experiment

Next we wanted to ascertain if the protein subset (S7) that was affected by
a systematic bias in one experiment is related to the protein subset (S2)
affected by a systematic bias of another experiment. There are two ways to
generate the subsets S1 and So. The first methods generates these sets in an
independent manner; the Binomial model is applied to each experimental
dataset generating a subset S; per experiment i. Then these subsets can be
compared by restricting to the set of common V BP of the two experiments.
The second method generates S; and So by first restricting to the common
V BP (denoted by X) of experiment 1 and experiment 2. Then the subset S}
is generated by applying the Binomial model to the dataset of Experiment
1 restricted only to X, or to use graph theoretic terms, using the node
induced subgraph generated by X. S5 is generated in the same manner with
the dataset of experiment 2. We compare the protein subsets S; and So
using both methods.

To investigate this relationship, we created three 2 x 2 tables. Only two
datasets [4, 10] contained sufficient data points for this analysis. The 2 x 2
tables were created where the overall universe is restricted to X = VBP[4] N
VBP(1¢;- [4] index the rows; [10], the columns. In the (2,2)-entry of each
table, we count the number of common proteins affected by a bias in both
experiments (|51 N S2|); in (1, 2)-entry, we count the number affected in [4]
only (]S1\ S2|); in (2,1), the number in [10] only (|S2 \ Si|); and in (1,1),
the number not affected in both (|S{ N S5|). We can create three separate
2 x 2 tables based on which Binomial test we use:

e Number of proteins identified by the two-sided Binomial test.

e Number of proteins identified by the one-sided Binomial test where
in-degree is much larger than out-degree.
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Spearman Correlation Coefficient = 0.54
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Figure 16: Plots of CAI against 10@ of the three measured abundance
datasets. We colored those proteins found to be affected by a systematic
bias in the Gavin et al.’s [4] data red and all other proteins blue.



Spearman Correlation Coefficient = 0.54
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Figure 17: Plots of CAI against loi> of the three measured abundance
datasets. We colored those proteins found to be affected by a systematic
bias in the Krogan et al.’s [10] data red and all other proteins blue.



e Number of proteins identified by the one-sided Binomial test where
out-degree is much larger than in-degree.

> tab2Way

o 1
0 391 228
1 57 57

> tablWayIN

0 1
0 625 63
1 33 12

> tablWayOUT

o 1
0 483 181
1 40 29

We can use these three tables as the parameters for Fisher’s Exact test
(again a hypergeometric test), and see the results:

> fisher.test (tab2Way)

Fisher's Exact Test for Count Data

data: tab2Way
p—value = 0.009
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.123257 2.614963
sample estimates:
odds ratio
1.713527

> fisher.test (tablWayIN)

Fisher's Exact Test for Count Data

data: tablWayIN
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p-value = 0.0009893
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.608501 7.593418
sample estimates:
odds ratio
3.597664

> fisher.test (tab1WayOUT)

Fisher's Exact Test for Count Data

data: tablWayQUT
p-value = 0.01189
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.119609 3.304052
sample estimates:
odds ratio
1.932813

The previous table used each individual dataset’s V BP population to
generate the sets S; and Sy. We then restricted to X to calculate two way
tables based on these protein subsets. In the following tables, we first restrict
to the node induced subgraph of X for each experiment, and then generate
the sets S1 and Ss. We then create two way tables based on these protein
subsets to determine the level of independence.

> ta2lWay
o 1
0 519 115
1 70 29
> tallWayIN
o 1
0 652 46
1 27 8

> talWayOUT
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0 1
0 590 79
1 53 11

> fisher.test (ta2Way)

Fisher's Exact Test for Count Data

data: ta2Way
p-value = 0.01379
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.114654 3.073070
sample estimates:
odds ratio
1.867942

> fisher.test(talWayIN)

Fisher's Exact Test for Count Data

data: talWayIN
p-value = 0.002547
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.554209 10.167306
sample estimates:
odds ratio
4.185891

> fisher.test (talWay0OUT)

Fisher's Exact Test for Count Data

data: talWayQOUT
p-value = 0.2297
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.699581 3.161824
sample estimates:
odds ratio
1.548972
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Because we are looking for reproducibility across experiments, the two-
way tables tab2Way and (ta2Way) as well as the results from their corre-
sponding Fisher’s exact test are not particularly relevant. Indeed, we should
only focus on the one-sided Binomial tests and see if we such artifacts are
reproducible across experiments. For those proteins which in-degree dom-
inates out-degree, i.e. proteins tested in tabilWayIN and talWayIN, we see
an exceptionally small p-value for the former and a reasonably significant
p-value for the latter, and so we should probably reject the null hypothesis
that these Sp is independent of S5. For those proteins which out-degree
dominates in-degree, tab1WayOUT and talWayOUT, we see a less significant
p-value in the former but an incredibly small p-value in the latter, and so
again we should reject independent null hypothesis. For the sake of com-
pleteness we present all the two way tables and note that all the tests show
relatively small p-values as well as substantial odds ratios.

4.8 Unreciprocated Degree Statistics

Our Binomial model allows us to determine proteins that might be subject to
a systematic bias of the experiment where each statistical test is conducted
on a per protein level. In addition to these series of statistical test, we can
describe experiment-wide artifacts by using the same binomial model for
each protein.

For each protein p with directed degree (i,,0,) and n, =i, + 0,, we can
standardize the in-degree and compute the corresponding z-score for each
protein:

1
5Ny, — 0
Z, = 2P 7P (9)
(3)° n
2 p
- _lp —0p_ (10)

Vip+0p

After calculating the z-score for each protein within an experiment, we
were able to estimate the distributions within each dataset. Using the R
hist and density functions, we were able to render the histograms for
eleven of the datasets and the smooth density distribution for the three
largest datasets.

Histograms are plotted to determine the standard out-degree distribu-
tions (Figure 18). We can see that for datasets such as [1, 13, 5], there are
relatively few data points which yield little statistical power. Overall, Only
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Figure 18: Histograms of the out-degree z-scores.
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the [7, 4, 10] plots showed distinct and approximately unimodal distribu-
tions.

Thesethree plots have either a strong positive or negative concentration
of data points in the distributions based on their densities (Figure 19). We
have discussed the possible reasons for these concentrations in the main
article.

In addition to the density plots, we wanted to compare z-scores across
experimental datasets. Currently, there are only two datasets [4, 10] for
which this comparison is insightful. Again we can calculate the z-score for
a protein in two ways: either within the original V BP population of each
individual dataset or by first restricting to the common VBP population
X in each dataset. We have computed the z-score in both manners. Once
the z-scores have been computed, we can plot the scores of [4] against [10]
restricted to protein set X (See Figure ?77). From the plots, we were also able
to generate correlation coefficients between the z-scores [4] and the z-scores
from [10] restricted to X.

Pearson Kendall Spearman
Calculations from the Original Data 0.18 0.042 0.062
Calculations Restricted to X 0.17 0.046 0.071

Table 3: This table gives both the Pearson, Kendall, and Spearman corre-
lation between the z-scores from the data of Gavin et al. and the z-scores
from the data of Krogan et al. (both 2006). The correlation is computed
with the restriction to those VBP in both datasets.
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Figure 19: Density plots for the three largest bait/prey datasets with the
zero-line.
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z-score Plot for Common VBP of Gavin2006 against Krogan2006

30

z-score for Krogan 2006 Data

T T T
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Figure 20: This figure shows the z-score for the common VBP of Gavin et
al.’s [4] data against Krogan et al.’s [10] data. We can see from the figure
that the highest concentration of z-scores is off the origin. There is also
evidence that proteins which have relatively large z-scores in absolute value
in one experiment will also have relatively large z-scores in the other.
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z-score Plot for Common VBP of Gavin2006 against Krogan2006
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Figure 21: This figure shows the z-score for the common VBP of Gavin et
al.’s [4] data against Krogan et al.’s [10] data when we restrict first and then
find the systematic proteins.
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5 Stochastic Error Analysis: Estimation of p;, and
Pm by the method of moments

5.1 Derivation

(gf ) The total number of possible interactions (exclud-
ing homomers)
n the true number of interactions
m = (];[ ) -n the true number of non-interactions
X observed number of reciprocated edges
Xo observed number of non-edges
X3 =n+m—X;— Xy observed number of unreciprocated eges
we have
E[X;] = n(1 —pfn)2+mp%p (11)
E[Xs] = npg+m(l—pg)° (12)
E[X3] = 2npfn(1 — pfn) + 2mpfp(1 — pfp) (13)

Only two of the three equations (11)-(13) are independent, any two of
them imply the third. Our goal is to estimate pg,, pm. We can replace the
expectation values on the left side of Equations (11)-(13) by the observed
sample values 1, T2, x3. Since we do not know n, the above system of two
independent equations for three variables defines a one-dimensional solution
manifold.

We will parameterize that manifold by n (0 < n < (g )) in (P, P )-
space. Relevant solutions are those for which 0 < pgy, pea < 1.

Consider that n is given. Let us solve Equations (11)-(13) for pg, and
pm. First, subtracting (14) = (11) — (12), we have

x1—x2 = n(l—2pm)—m(1l—2pg) (14)
1
S P = o ((xg —m) — (z1 —n) + 2mpyp)
1
P = 5 (A4 2mpyg,), (15)

2n

where we have defined A := (z2 — m) — (z1 — n) for convenience. We can
plug this expression for pg, into Equation (12) and obtain
AQ

4dm

n

(n—i—m)p%p—i- (A —2n)pg +n+ - a2 = 0. (16)

=:a =:b —c
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The equation a(pg,)? + b(pgp) + ¢ = 0 is solved by

—b+ Vb2 —4ac
2a '

(Pp)12 = (17)
Hence, the problem is solved: for data N, z1, 2 (from these, x3 is implied)
and for all possible (unknown) n = 0,1,..., (];) we can calculate pg, via
Equation (17), then pg, via Equation (15). Only some of the theoretically
possible values of n will lead to admissible solutions for pg, and pg,. This is
exemplified in the following section.

5.2 Computation

The function estErrProbMethodOfMoments in the ppiStats package imple-
ments the computations described in the previous section.

5.2.1 Test on simulated data

First, we want to gain confidence in the algorithm and its software imple-
mentation by looking at simulated data. The function sim calculates E[X/],
E[X5] and E[X3] according to Equations (11)—(13). Its arguments pfp (pgp),
pfn (pg), ntot (N) need to be scalars, nl (n) can be a vector.

sim = function(nl, pfp, pfn, ntot) {

nEdges = ntot * (ntot - 1)/2

stopifnot (length(pfp) == 1, length(pfn) == 1,
length(ntot) == 1, all(nl <= nEdges))

n2 = nEdges - nl

cbind(x1 = n1 * (1 - pfn)~2 + n2 * pfp~2, x2 = nl *
pfn~2 + n2 * (1 - pfp)~2, x3 = 2 * nl *
pfn * (1 - pfn) + 2 * n2 * pfp * (1 - pfp))

+ + + + + 4+ + +V

[

We consider the following example.

> ntot = 2000

> nl = 12000

> pfp = 0.001

> pfn = 0.1

> s = sim(nl = n1, pfp = pfp, pfn = pfn, ntot = ntot)
> s
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Figure 22: The solution manifold. The numbers in blue are the correspond-
ing values of ny, the corresponding (unknown) true number of interactions.

x1 x2 x3
[1,] 9721.987 1983148 6130.026

Now pretend we found data with z; =9722, zo =1983148 and x3 =6130,
and we try out many possible values of n1. The plot is shown in Figure 22.

> niltry = seq(1, 3 * n1, by = 12)
> r = estErrProbMethodOfMoments (nltry, nrec = round(s[1,

+ "x1"]), nunr = round(s[1, "x3"]), ntot = ntot)
> plotpfppfn(r, main = sprintf("Sim. data (ntot=Jd, pfp=/g, pfn=/g)",
+ ntot, pfp, pfn), gmax = 0.35)

We can also verify that if we provide the correct value n1=12000, we
recover the original probabilities:

> res = estErrProbMethodOfMoments(nl, nrec = s[1,
+ "x1"], nunr = s[1, "x3"], ntot = ntot)
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nint pfpl pfnl pfp2 pfn2
[1,] 12000 0.01179340 1.887207 0.001 0.1

5.3 Application to the PPI datasets

We now take the experimental datasets obtained from [7, 14, 1, 5, 13, 3, 6,

9, 4, 10] to obtain the 1-dimensional manifolds.
We plot each dataset individually to ascertain the range for pg, and for
. The result of this is plotted in Figure 23 for the unfiltered data and in

Figure 24 for the filtered data.
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Next we wanted to superimpose all experiments of the same type (i.e.
the same system was used to determine the interactions) so that we can
compare the solutions curves across experiments. We do this first on the
set of VBP for each dataset, and these are rendered in the top two plots.
After, we filtered out the proteins likely to be affected by a systematic bias
and recalibrated the solution curves. These are rendered in the bottom two
plots. The result of this is plotted in Figure 25.

6 Stochastic Error Analysis: Estimation of Un-
reciprocated and Reciprocated FP/FN Errors
within the Measured Data

Using the Multinomial error model, we can estimate the expected number
unreciprocated and reciprocated number of false positive as well as false neg-
ative interactions. For these estimates, we use only the filtered set of data on
the protein interactions (let N be the number of proteins in the filtered set).
We begin by estimating the FP errors. To calculate the expected number
of FP observations, we need estimates for pg, as well as m (since FP is a
property on [¢). To obtain these estimates, we assume that pg, = 0 so that
all errors will be strictly FP. This makes the estimate for pp, maximal, and
the number of expected FP observations that we calculate will all be for the
worst case scenairo. Using the Multinomial error model, we generate pg,’s
for all the datasets. We can also generate the value for m by assuming that
pm = 0, but for the sake of convenience, we will approximate m by (g )
Unreciprocated FP errors can be estimated by pg, (1 — pg,)m; reciprocated,
by p%pm. Lastly we provide the number of observed unreciprcated and recip-
rocated interactions to serve as a reference. These estimates can be found
in Table 4

Similarly, we also use the Multinomial error model to estimate the ex-
pected number of unreciprocated and reciprocated FN observations. We
estimate pg, and n by assuming that pg, = 0, and so, again we presume
that all errors are strictly FN. This makes pg, maximal, and this also makes
these estimates for FN errors in the worst case scenario. Similar to the FP
estimates, unreciprocated FN errors are estimated by pg, (1 — pg, )n; recipro-
cated by p?nn. We also provide the number of observed unreciprcated and
reciprocated non-interacting protein pairs found within the datasets. These
estimates can be found in Table 5
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Figure 24: The solution manifolds (one plot per dataset, filtered data)
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a. APMS - Unfiltered Data

b. Y2H - Unfiltered Data
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Figure 25: These figures detail the error statistics for each of the datasets.
Plot a generates the 1-dimensional solution curves for (pg,, pm) parametrized
by n for the AP-MS datasets. Plot b generates similar 1-dimensional curves
but for the Y2H datasets. Plots ¢ and d recalculates these solution curves for
the AP-MS and Y2H respectively. These recalculations are done by setting
aside those interactions which appear to be affected by a systeamtic bias of
the experimental assay. Having set aside those interactions, the range for
Psp is substantially constrained for the solution curves characterizing [4, 10]
implying that systematic errors may potentially have large effects on pg,.
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N m pfp E[Z] E[Z2] z 72
Ito2001 720 258840 0.0008 207 0.17 435 68

Cagney2001 11 55 0.04 2 0.09 4 3
Tong2002 ) 10 0.07 1 0.05 1 1
Hazbun2003 26 325  0.016 5 0.08 10 4
Uetz2000-1 108 5778  0.003 17 0.05 36 10
Uetz2000-2 34 561  0.015 8 0.13 17 7

Gavin2002 268 35778 0.004 143  0.57 287 187
Ho2002 226 25425 0.005 126 0.64 249 66
Krogan2004 95 4465  0.012 53  0.64 104 89
Gavin2006 852 362526 0.0017 615 1.1 1201 743
Krogan2006 1458 1062153 0.0019 2014 3.8 3945 538

Table 4: Estimates of FP unreciprocated and reciprocated errors via the
Multinomial error Model. Z is the random variable associated with unre-
ciprocated FP errors; Z2 corresponds with reciprocated FP errors. z and z2
denote the observed number of unreciprocated and reciprocated interactions
found in the data.

7 Cross Data Integration and Analysis

We have shown that protein interaction analysis can be measured by three
quality metrics: 1. coverage, 2. proteins that might be affected by system-
atic bias due to the experiment, and 3. general stochastic variation. It is
necessary to consider each of these three metrics if one would like to begin
cross experimental analysis.

As an example we show how coverage (and sampling) is fundamental for
inter-experimental analysis.

The possible pitfalls of naive comparisons between two experimental
datasets are depicted in Figure 26. The interactions in the intersection
of the rectangles (red) were tested by both; the interactions in the green
and purple areas were tested by one experiment but not the other; and
the interactions in the light grey areas were tested by neither experiment.
A data analysis that does not keep track of these different coverage char-
acteristics risks being misleading. Therefore, coverage must be taken into
consideration when integrating and comparing multiple datasets. Addition-
ally, discrepancies will arise due to the set conditions of each experiment,
and these discrepancies should be isolated from the variability across the
experiments so the error rates have a more meaningful interpretation. Ul-
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Prey of Experiment 1 Prey of Experiment 2

Baits of Experiment 1

Baits of Experiment 2

Figure 26: A schematic representation of the interactome coverage of two
protein interaction experiments. The adjacency matrix of the complete in-
teractome is represented by the large square. Experiment 1 covers a certain
set of proteins as baits (rows covered by the green vertical line) and as prey
(columns covered by the green horizontal line). The tested interactions for
Experiment 1 are contained within the green rectangle. Similarly, Exper-
iment 2 covers another set of proteins and tests for a set of interactions
contained in the purple rectangle. The intersection of the rectangles, the
red area, are the bait to prey interactions tested by both experiments, and
the union are the interactions tested by at least one of the experiments. Note
that the interactions in the light gray area were tested by neither experiment
either because there are missing tested prey (upper right corner) or missing
tested baits (lower left corner). The interactions in the white region are also

tested by neither experiment because both the baits and the prey were not
tested. 50



N n pfn E[W] E[W2] w w2
Ito2001 720 1200 0.76 219 693 435 259132

Cagney2001 11 8 0.39 2 1 4 57
Tong2002 5} 2 0.30 0 0 1 11
Hazbun2003 26 20 0.55 5 6 10 334
Uetz2000-1 108 78 0.65 18 33 36 5822
Uetz2000-2 34 34 0.55 8 10 17 571

Gavin2002 268 584 0.44 144 113 287 35725
Ho2002 226 649 0.68 141 300 249 25472
Krogan2004 95 223 0.37 52 31 104 4423
Gavin2006 852 2429 0.44 599 470 1201 362209
Krogan2006 1458 11744 0.80 1879 7516 3945 1062344

Table 5: Estimates of FN unreciprocated and reciprocated errors via the
Multinomial error Model. W is the random variable associated with unre-
ciprocated FP errors; W2 corresponds with reciprocated FP errors. w and
w2 denote the observed number of unreciprocated and reciprocated interac-
tions found in the data.

timately, there are still many more steps needed to integrate datasets, and
we discuss a few necessary components.
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