Using lumi, a package processing Illumina Microarray

Pan $\mathrm{Du}^{\ddagger *}$, Warren A. Kibbe ${ }^{\ddagger \dagger}$ Simon Lin $^{\ddagger \ddagger}$
April 25, 2007
${ }^{\ddagger}$ Robert H. Lurie Comprehensive Cancer Center Northwestern University, Chicago, IL, 60611, USA

Contents

1 Overview of lumi 2
2 Object models of major classes 2
3 Data preprocessing 2
3.1 Input data with "intelligent-load" technology 4
3.2 Quality control of the raw data 6
3.3 Background correction 15
3.4 Variance stabilizing transform 15
3.5 Data normalization 15
3.6 Quality control after normalization 18
3.7 Encapsulate the processing steps 18
4 Gene annotation 25
4.1 Examples of nuID 26
4.2 Illumina microarray annotation package 27
4.3 Transfer Illumina identifier annotated data into nuID annotated 27
5 A use case: from raw data to functional analysis 28
5.1 Preprocess the Illumina data 29
5.2 Identify differentiate genes 29
5.3 Gene Ontology analysis 30
6 Reference 31
*dupan@northwestern.edu
†wakibbe@northwestern.edu${ }^{\ddagger}$ s-lin2@northwestern.edu

1 Overview of lumi

Illumina microarray is becoming a popular microarray platform. The BeadArray technology from Illumina makes its preprocessing and quality control different from other microarray technologies. Unfortunately, until now, most analyses have not taken advantage of the unique properties of the BeadArray system. The lumi Bioconductor package especially designed to process the Illumina microarray data. The lumi package provides an integrated solution for the beadlevel Illumina microarray data analysis. The package covers data input, quality control, variance stabilization, normalization and gene annotation.

The lumi package includes a new variance-stabilizing transformation (VST) algorithm that takes advantage of the technical replicates available on every Illumina microarray. A new robust spline normalization (RSN) algorithm, which combines the features of the quantile and loess normalization, is also implemented in this package. Options available in other popular normalization methods are also provided. Multiple quality control plots are provided in the package. To better annotate the Illumina data, a new, vendor independent nucleotide universal identifier (nuID) was devised to identify the probes of Illumina microarray. The nuID indexed Illumina annotation packages is compatible with other Bioconductor annotation packages. Mappings from Illumina Target Id or Probe Id to nuID are also included in the annotation packages. The output of lumi processed results can be easily integrated with other microarray data analysis, like differentially expressed gene identification, gene ontology analysis or clustering analysis.

2 Object models of major classes

The lumi package has one major class: LumiBatch. LumiBatch is inherited from ExpressionSet class in Bioconductor for better compatibility. Their relations are shown in Figure 1. LumiBatch class includes se.exprs, beadNum and detection in assayData slot for additional informations unique to Illumina microarrays. A controlData slot is used to keep the control probe information, and a QC slot is added for keeping the quality control information. The S4 function plot supports different kinds of plots by specifying the specific plot type of LumiBatch object. See help of plot-methods function for details. The history slot records all the operations made on the LumiBatch object. This provides data provenance. Function getHistory is to retrieve the history slot. Please see the help files of LumiBatch class for more details. A series of functions: lumir, lumiB, lumit, lumiN and lumiQ were designed for data input, preprocessing and quality control. Function lumiExpresso encapsulates the preprocessing methods for easier usability.

3 Data preprocessing

The first thing is to load the lumi package.

```
> library(lumi)
```

This is mgcv 1.3-23

Figure 1: Object models in lumi package

3.1 Input data with "intelligent-load" technology

The lumiR function supports directly reading the Illumina raw data output of the Illumina Bead Studio toolkit from version 1 to version 3. It can automatically detect the BeadStudio output version and format and create a new LumiBatch object for it. An example of the input data format is shown in in Figure 2 For simplicity, only part of the data of first sample is shown. The data in the highlighted columns are kept in the corresponding slots of LumiBatch object, as shown in Figure 2. The lumiR function will automatically determine the starting line of the data. The columns with header including AVG_Signal and BEAD_STD are required for the LumiBatch object. The sample IDs and sample labels are extracted from the column names of the data file. For example, based on the column name: AVG_Signal-1304401001_A, we will extract "1304401001" as the sample ID and "A" as the sample label (The function assumes the separation of the sample ID and the sample label is "_" if it exists in the column name.). The algorithm will check the uniqueness of sample IDs. If the sample ID is not unique, the entire portion after removing "AVG_Signal" will be used as a sample ID. A file format error will be reported if the uniqueness still cannot be satisfied in this way. The lumiR will automatically initialize the QC slot of the LumiBatch object by calling lumiQ.

If BeadStudio outputted the control probe data, their information will be kept in the controlData slot of the LumiBatch object. If BeadStudio outputted the sample summary information, which is called [Samples Table] in the output text file, the information will be kept in BeadStudioSummay within the QC slot of the LumiBatch object.

The BeadStudio can output the gene profile or the probe profile. As the probe profile provides unique mapping from the probe Id to the expression profile, outputting probe profile is preferred. When the probe profile is outputted, as show in Figure 2(B), the ProbeId column will be used as the identifier of LumiBatch object.

We strongly suggest outputting the header information when using BeadStudio, as shown in Figure 2 .

If a lumi annotation library is provided, the lumiR function will automatically mapping the ProbeId or TargetID as nuID (see annotation section for more details), and keep the mapping information in the featureData of the $\mathbf{L u}$ miBatch object.

```
> ## specify the file name
> # fileName <- 'Barnes_gene_profile.txt' # Not Run
> ## load the data
> # x.lumi <- lumiR(fileName, lib='lumiHuamnV1') # Not Run
```

Here, we just load the pre-saved example data, example.lumi, which is a subset of the experiment data package lumiBarnes in the Bioconductor. The example data includes four samples "A01", "A02", "B01" and "B02". "A" and "B" represent different Illumina slides (8 microarrays on each slide), and " 01 " and " 02 " represent different samples. That means "A01" and "B01" are technique replicates at different slides, the same for "A02" and "B02".

```
## load example data
> data(example.lumi)
```


(A) BeadStudio version 1

(B) BeadStudio version 3

Figure 2: An example of the input data format

```
> ## summary of the example data
> example.lumi
Summary of BeadStudio output:
    Illumina Inc. BeadStudio version 1.4.0.1
    Normalization = none
    Array Content = 11188230_100CP_MAGE-ML.XML
    Error Model = none
    DateTime = 2/3/2005 3:21 PM
    Local Settings = en-US
Major Operation History:
                submitted finished
1 2007-04-22 00:08:36 2007-04-22 00:10:36
2 2007-04-22 00:10:36 2007-04-22 00:10:38
3 2007-04-22 00:13:06 2007-04-22 00:13:10
4 2007-04-22 00:59:20 2007-04-22 00:59:36
                                    command lumiVersion
1 lumiR("../data/Barnes_gene_profile.txt") 1.1.6
2 lumiQ(x.lumi = x.lumi) 1.1.6
3 addNuId2lumi(x.lumi = x.lumi, lib = "lumiHumanV1") 1.1.6
4 Subsetting 8000 features and 4 samples. 1.1.6
Object Information:
LumiBatch (storageMode: lockedEnvironment)
assayData: 8000 features, 4 samples
    element names: beadNum, detection, exprs, se.exprs
phenoData
    rowNames: A01, A02, B01, B02
    varLabels and varMetadata:
            sampleID: The unique Illumina microarray Id
            label: The label of the sample
featureData
    rowNames: oZsQEQXp9ccVIlwoQo, 9qedFRd_5Cul.ueZeQ, ..., 33KnLHy.RFaieogAF4 (8000 total)
    varLabels and varMetadata:
            TargetID: The Illumina microarray identifier
            presentCount: The number of detectable measurements of the gene
experimentData: use 'experimentData(object)'
Annotation character(0)
```


3.2 Quality control of the raw data

The quality control of a LumiBatch object includes a data summary (the mean and standard deviation, sample correlation, detectable probe ratio of each sample (microarray)) and different quality control plots.

In the featureData, it also records the presentCount of each probe, which measures the number of detectable measurements (the detection p-value less than the user provided threshold (0.01 by default)) of each probe.

LumiQ function will produce the data summary of a LumiBatch object and organize the results in a QC slot of LumiBatch object. When creating the

LumiBatch object, the LumiQ function will be called to initialize the QC slot of the LumiBatch object.

Summary of the quality control information of example.lumi data. If the QC slot of the LumiBatch object is empty, function lumiQ will be automatically called to estimate the quality control information.

```
> summary(example.lumi, "QC")
```

Data dimension: 8000 genes x 4 samples
Summary of Samples:

		A01	A02	B01	B02
	an	8.3240	8.568	8.2580	8.3470
	tandard deviation	iation 1.5580	1.686	1.7230	1.6690
	tection rate(0.01)	(0.01) 0.5432	0.564	0.5774	0.5758
distance to sample mean 76.950065 .28088 .320049 .1100					
Major Operation History:					
1 2007-04-22 00:08:36 2007-04-22 00:10:36					
2 2007-04-22 00:10:36 2007-04-22 00:10:38					
			comm	and lumi	Version
1 lumiR("../data/Barnes_gene_profile.txt") 1.1.6					
lumiQ(x.lumi = x.lumi) 1.1.					

The S4 method plot can produce the quality control plots of LumiBatch object. The quality control plots includes: the density plot (Figure 3), box plot (Figure 4), pairwise correlation between microarrays (Figure 5), pairwise MAplot between microarrays (Figure 6), density plot of coefficient of varience, (Figure 7), and the sample relations (Figure 8). More details are in the help of plot,LumiBatch-method function. Most of these plots can also be plotted by the extended general functions: hist (for density plot), boxplot, MAplot, pairs.

Plot the density plot of the LumiBatch object. See Figure 3

```
> ## plot the density
> plot(example.lumi, what='density')
> ## or
> hist(example.lumi)
```

Plot the box plot of the LumiBatch object. See Figure 4

```
> ## plot the box plot
> plot(example.lumi, what='boxplot')
> ## or
> boxplot(example.lumi)
```

Plot the pairwise sample correlation of the LumiBatch object. See Figure 5

```
## plot the pair plot
> plot(example.lumi, what='pair')
> ## or
> pairs(example.lumi)
```


Figure 3: Density plot of Illumina microarrays before normalization

Boxplot of microarray intensity

Figure 4: Density plot of Illumina microarrays before normalization

Figure 5: Pairwise plot with microarray correlation before normalization

Figure 6: Pairwise MAplot before normalization

The MA plot of the LumiBatch object. See Figure 6 .

```
> ## plot the MAplot
> plot(example.lumi, what='MAplot')
> ## or
> MAplot(example.lumi)
```

The density plot of the coefficient of variance of the LumiBatch object. See Figure 7.

Plot sample relations using hierarchical clustering, see Figure 8
Plot the sampleRelation using MDS, see Figure 9. The color of the sample is based on the sample type, which is "01", "02", "01", "02" for the sample data. Please see the help of getSampleRelation and plot-methods for more details.

```
> ## plot the sample relations
> plot(example.lumi, what='sampleRelation', method='mds', color=c("01", "02", "01", "02"))
> ## or
> plotSampleRelation(example.lumi, method='mds', color=c("01", "02", "01", "02"))
```

> plot(example.lumi, what = "cv")

Figure 7: Density Plot of Coefficient of Varience
> plot(example.lumi, what = "sampleRelation")

Clusters of the samples based on $\mathbf{8 6 0}$ genes with sd/mean >0.1

Figure 8: Sample relations before normalization

Clusters of the samples based on $\mathbf{8 6 0}$ genes with sd/mean $\mathbf{> 0 . 1}$

Figure 9: Sample relations before normalization

3.3 Background correction

The lumi package provides lumiB function for background correction. As both vst and log2 transforms require the expression value to be positive. The default background correction method ('forcePositive') will force all expression values to be positive by adding an offset (minus minimum value plus one). It does nothing if all expression values are positive. Other options of lumiB include 'none' and 'bg.adjust'. 'bg.adjust' method is based on the bg.adjust function in affy package. User can also provide their own background correction function with a LumiBatch Object as the first argument and return a LumiBatch Object with background corrected. See lumiB help document for more details.

3.4 Variance stabilizing transform

Variance stabilization is critical for subsequent statistical inference to identify differential genes from microarray data. We devised a variance-stabilizing transformation (VST) by taking advantages of larger number of technical replicates available on the Illumina microarray. Please see [1] for details of the algorithm.

Function lumiT performs variance stabilizing transform with both input and output being LumiBatch object.

Do default VST variance stabilizing transform

```
> lumi.T <- lumiT(example.lumi)
```

```
2007-04-25 02:39:16 , processing array 1
2007-04-25 02:39:16 , processing array 2
2007-04-25 02:39:16 , processing array 3
2007-04-25 02:39:16 , processing array 4
```

The plotVST can plot the transformation function of VST, see Figure 10 , which is close to $\log 2$ at high expression values, see Figure 11. Function lumit also provides options to do "log2" or "cubicRoot" transform. See help of lumit for details.

```
> ## plot VST transformation
> trans <- plotVST(lumi.T)
> ## compare the log2 and VST transform
matplot(log2(trans$untransformed), trans$transformed, main='compare VST and log2 transfo
```


3.5 Data normalization

We proposed a robust spline normalization (RSN) algorithm, which combines the features of quanitle and loess nor-malization, is designed to normalize the variance-stabilized data. Please see [1] for details of the algorithm.

Function lumiN performs robust spline normalization (RSN) algorithm with both input and output being LumiBatch object. lumiN also provides options to do "loess", "quantile", "vsn" normalization. See help of lumiN for details.

Do default RSN between microarray normaliazation
> lumi.N <- lumiN(lumi.T)

Figure 10: VST transformation

Figure 11: Compare VST and $\log 2$ transform

```
2007-04-25 02:39:16 , processing array 1
2007-04-25 02:39:16 , processing array 2
2007-04-25 02:39:16 , processing array 3
2007-04-25 02:39:17 , processing array 4
```

User can also easily select other normalization method. For example, the following command will run quantile between microarray normaliazation.

```
> lumi.N <- lumiN(lumi.T, method = "quantile")
```


3.6 Quality control after normalization

To make sure the data quality meets our requirement, we do a second round of quality control of normalized data with different QC plots. Compare the plots before and after normalization, we can clearly see the improvements.

```
> lumi.N.Q <- lumiQ(lumi.N)
> summary(lumi.N.Q, "QC")
Data dimension: }8000\mathrm{ genes x 4 samples
Summary of Samples:
\begin{tabular}{lrrrr} 
& A01 & A02 & B01 & B02 \\
mean & 8.9840 & 8.984 & 8.9840 & 8.9830 \\
standard deviation & 1.2200 & 1.221 & 1.2210 & 1.2200 \\
detection rate \((0.01)\) & 0.5432 & 0.564 & 0.5774 & 0.5758 \\
distance to sample mean & 13.8300 & 13.580 & 13.8300 & 13.9800
\end{tabular}
```

Major Operation History:
submitted finished
1 2007-04-22 00:08:36 2007-04-22 00:10:36
2 2007-04-22 00:10:36 2007-04-22 00:10:38
3 2007-04-22 00:13:06 2007-04-22 00:13:10
4 2007-04-22 00:59:20 2007-04-22 00:59:36
5 2007-04-25 02:39:16 2007-04-25 02:39:16
6 2007-04-25 02:39:16 2007-04-25 02:39:17
7 2007-04-25 02:39:17 2007-04-25 02:39:17
command lumiVersion
lumiR("../data/Barnes_gene_profile.txt") 1.1.6 lumiQ(x.lumi $=x . l u m i) \quad 1.1 .6$ addNuId2lumi(x.lumi $=x . l u m i, ~ l i b=" l u m i H u m a n V 1 ") \quad 1.1 .6$ Subsetting 8000 features and 4 samples. 1.1 .6 lumiT(x.lumi = example.lumi) 1.2.0 lumiN(x.lumi $=$ lumi.T) 1.2.0 lumiQ(x.lumi $=$ lumi.N) 1.2.0

3.7 Encapsulate the processing steps

The lumiExpresso function is to encapsulate the major functions of Illumina preprocessing. It is organized in a similar way as the expresso function in affy
> plot(lumi.N.Q, what = "density")

Figure 12: Density plot of Illumina microarrays after normalization
> plot(lumi.N.Q, what = "boxplot")

Boxplot of microarray intensity

Figure 13: Density plot of Illumina microarrays after normalization
> plot(lumi.N.Q, what = "pair")

Figure 14: Pairwise plot with microarray correlation after normalization
> plot(lumi.N.Q, what = "MAplot")

Figure 15: Pairwise MAplot after normalization
> plot(lumi.N.Q, what = "sampleRelation")

Clusters of the samples based on 1191 genes with sd/mean >0.1

Figure 16: Sample relations after normalization
> plot(lumi.N.Q, what = "sampleRelation", method = "mds", color = c("01", + "02", "01", "02"))

Figure 17: Sample relations after normalization
package. The following code basically did the same processing as the previous multi-steps and produced the same results lumi.N.Q.

```
> lumi.N.Q <- lumiExpresso(example.lumi)
Variance Stabilizing Transform: vst
normalization: rsn
Variance stabilizing ...
2007-04-25 02:39:26 , processing array 1
2007-04-25 02:39:26 , processing array 2
2007-04-25 02:39:26 , processing array 3
2007-04-25 02:39:26 , processing array 4
done.
Normalizing ...
2007-04-25 02:39:26 , processing array 1
2007-04-25 02:39:26 , processing array 2
2007-04-25 02:39:26 , processing array 3
2007-04-25 02:39:27 , processing array 4
done.
Quality control after preprocessing ...
done.
```

Users can easily customize the processing parameters. For example, if the user want to do "quantile" normalization instead of "rsn" normalization, the user can run the following code. For more details, please read the help document of lumiExpresso function.

```
> lumi.N.Q <- lumiExpresso(example.lumi, normalize.param = list(method = "quantile"))
Variance Stabilizing Transform: vst
normalization: quantile
Variance stabilizing ...
2007-04-25 02:39:27 , processing array 1
2007-04-25 02:39:27 , processing array 2
2007-04-25 02:39:27 , processing array 3
2007-04-25 02:39:27 , processing array 4
done.
Normalizing ...
done.
Quality control after preprocessing ...
done.
```


4 Gene annotation

Illumina microarray provides the TargetID or the ProbeID to identify the measurements. The TargetID is used as a public identifier by Illumina and is supposed to be stable. The problem of the TargetID is that it can correspond to several different probes, which are supposed to match the same gene. Due to the
binding affinity difference or alternative splicing, the probes corresponding the the sample TargetID may have quite different expression levels and patterns. If we use TargetID to identify the measurements, then we cannot differentiate the difference between these probes. Another problem of using the TargetID is that the mapping between the TargetID and probes could be changed with our better understanding of the gene. Moreover, the TargetID used by Illumina microarray is not consistent among different versions of arrays. For instance, the same 50 mer sequence has two different TargetIDs used by Illumina: "GI_21070949S" in the Mouse_Ref-8_V1 chip and "scl022190.1_154-S" in the Mouse-6_V1 chip. This causes difficulties when combining clinical microarray data collected over time using different versions of the chips.

In order to get unique mapping between microarray measurements and probes, using ProbeID is preferred. However, the ProbeID of Illumina is not stable. It is changing between different versions, even between different batches of Illumina microarrays. To solve these problems, we designed a nucleotide universal identifier (nuID), which encodes the 50 mer oligonucleotide sequence and contains error checking and self-identification code. By using nuID, all the problems mentioned above can be easily solved. For details, please read [2].

4.1 Examples of nuID

```
> ## provide an arbitrary nucleotide sequence as an example
> seq <- 'ACGTAAATTTCAGTTTAAAACCCCCCG'
> ## create a nuID for it
> id <- seq2id(seq)
> print(id)
```

[1] "YGwPOvwBVW"
The original nucleotide sequence can be easily recovered by id2seq
> id2seq(id)
[1] "ACGTAAATTTCAGTTTTAAAACCCCCCG"
The nuID is self-identifiable. is.nuID can check the sequence is nuID or not. A real nuID
> is.nuID(id)
[1] TRUE
An random sequence
> is.nuID("adfqeqe")

[1] FALSE

4.2 Illumina microarray annotation package

Because all the Illumina microarrays use 50 -mers, by using the nuID universal identifier, we are able to build one annotation database for different versions of the human (or other species) chips. Moreover, the nuID can be directly converted to the probe sequence, and used to get the most updated refSeq matches and annotations. Annotation packages indexed by nuID for different Illumina expression chips can be downloaded from Bioconductor.

The Illumina annotation packages are produced by using AnnBuilder with small modification. As a result, the format of the package is the same as Affymetrix annotation package, lots of packages designed for Affymetrix can also be used for Illumina annotation package. The mappings between TargetID to nuID and ProbeID to nuID are also included in the Illumina annotation packages. Thus, we can easily mapping between the nuID and TargetID or ProbeID.

Here is some examples:

```
> ## load lumi annotation package
> lib <- 'example.lumi' # Huamn lumi annotation package
> if(require(GO) & require(annotate) & require(lib, character.only=TRUE)) {
+ GOId <- 'GO:0004816' # asparagine-tRNA ligase activity
+ probe <- lookUp(GOId, lib, 'GO2ALLPROBES')
+ # probes under 'GO:0004816' category
+ print(probe)
+ }
> # specify a nuID
> nuId <- 'WVUU7XyNw3ucXzwdEk'
> if (require(annotate) & require(lib, character.only=TRUE)) {
+ # get the gene symbol of nuId
+ getSYMBOL(nuId, lib)
+ }
Mapping from nuID to TargetID
```

```
> nuId <- "WVUU7XyNw3ucXzwdEk"
```

> nuId <- "WVUU7XyNw3ucXzwdEk"
> nuID2targetID(nuId, lib = "IumiHumanV1")
[1] "lumiHumanV1 annotation library is required!"
Mapping from TargetID to nuID
> targetID <- "GI_7262387-S"
> targetID2nuID(targetID, lib = "lumiHumanV1")
[1] "lumiHumanV1 annotation library is required!"

```

\subsection*{4.3 Transfer Illumina identifier annotated data into nuID annotated}

As the annotation packages include the mappings between TargetID to nuID and ProbeID to nuID. We can easily map the targetID (or Probe Id) to nuID. The function can automatically check whether targetID or Probe Id was used


Figure 18: Flow chart of the use case
in the text data file, and convert them as nuID. Function addNuId2lumi can transfer a TargetID or Probe Id indexed LumiBatch object as an nuID indexed LumiBatch object. And the mapping between the nuID and TargetID is kept in the featureData of the LumiBatch object. If a LumiBatch object has already been nuID indexed, the function will do nothing.
```

> if (require(lumiHumanV1)) {

+ lumi.N <- addNuId2lumi(lumi.N, lib = "lumiHumanV1")
+ }

```

The LumiBatch object can also be directly transferred as nuID indexed at the very beginning of inputting data using lumiR. For example:
```

> \#\# load the data
> example.lumi <- lumiR(fileName, lib='lumiHumanV1') \# Not run

```

\section*{5 A use case: from raw data to functional analysis}

Figure 18 shows the data processing flow chart of the use case. Since the classes in lumi package are inherited from class ExpressionSet, packages and functions compatible with class ExpressionSet or accepting matrix as input all can be used for lumi results. Here we just give two examples: using limma to identify differentiated genes and using GOstats to annotate the significant genes.

We use the Barnes data set [3] as an example, which has be created as a Bioconductor experiment data package lumiBarnes. The Barnes data set measured a dilution series of two human tis-sues, blood and placenta. It includes six samples with the titration ratio of blood and placenta as 100:0, 95:5, 75:25, 50:50, 25:75 and 0:100. The samples were hybridized on HumanRef-8 BeadChip (Illumina, Inc) in duplicate. We select samples with titration ratio, 100:0 and 95:5 (each has two technique replicates) in this data set to evaluate the detection of differential expressions.

\subsection*{5.1 Preprocess the Illumina data}
```

> library(lumi)
> \#\# specify the file name
> \# fileName <- 'Barnes_gene_profile.txt' \# Not run
> \#\# load the data
> \# example.lumi <- lumiR(fileName, lib='lumiHumanV1') \# Not run
> \#\# load saved data
> load(example.lumi)

sumary of the daa

example.lumi

summary of quality control information

> summary(example.lumi, 'QC')

preprocessing and quality control after normalization

lumi.N.Q <- lumiExpresso(example.lumi, QC.evaluation=TRUE)

summary of quality control information after preprocessing

summary(lumi.N.Q, 'QC')

```

\subsection*{5.2 Identify differentiate genes}

Identify the differentiated genes based on moderated t-test using limma. Retrieve the normalized data
```

> dataMatrix <- exprs(lumi.N)

```

To speed up the processing and reduce false positives, remove the unexpressed genes
```

presentCount <- pData(featureData(lumi.N))\$presentCount
> selDataMatrix <- dataMatrix[presentCount > 0,]
> selProbe <- rownames(selDataMatrix)

Specify the sample type

> sampleType <- c('100:0', '95:5', '100:0', '95:5')
> if (require(limma)) {

+
compare '95:5' and '100:0'

+ design <- model.matrix(~ factor(sampleType))
+ colnames(design) <- c('100:0', '95:5-100:0')
+ fit <- lmFit(selDataMatrix, design)
+ fit <- eBayes(fit)
+
Add gene symbols to gene properties

+ if (require(lumiHumanV1) \& require(annotate)) {
+ geneSymbol <- getSYMBOL(fit$genes$ID, 'lumiHumanV1')
+ fit$genes <- data.frame(fit$genes, geneSymbol=geneSymbol)
+ }
+
print the top }10\mathrm{ genes

+ topTable(fit, coef='95:5-100:0', adjust='fdr', number=10)
+
+
get significant gene list with FDR adjusted p.values less than 0.01


```
```

+ p.adj <- p.adjust(fit\$p.value[,2])
+ sigGene.adj <- selProbe[p.adj < 0.01]
+
without FDR adjustment

+ sigGene <- selProbe[fit\$p.value[,2] < 0.001]
+
+ }

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & ID & \(\operatorname{logFC}\) & & P.Value & adj.P.Val & \\
\hline 1315 & ol_iQkR.siio.kvH6k & F66 & 81 & 4.760969e-16 & 26 & \\
\hline 3666 & E & 630769 & 80.45131 & \(5.541115 \mathrm{e}-16\) & 1.726889e-12 & 26.78272 \\
\hline 484 & WlCoF7taz2MeYf3l6I & 4.335803 & 73.99741 & 1.330196 & 2.763703 & \\
\hline 59 & NSjRKdq2 & 0903 & 67.96571 & 3.239722e-15 & 3.533437e & 856 \\
\hline 02 & QaYYojcJJvVElV3I98 & 882748 & 67.81947 & 13596e & 33437 & 5.29911 \\
\hline 666 & 6QNThLQ & 074785 & . 6503 & \(3.401351 \mathrm{e}-15\) & \(3.533437 \mathrm{e}-12\) & 25.27655 \\
\hline 4553 & TueuSaiCheWBxB6B18 & 217038 & 66.42233 & 024 & . 668 & 25.11031 \\
\hline 1207 & uioiKiIlzFXx8k5EC4 & 3.95 & 64.305 & \(5.782757 \mathrm{e}-15\) & 505 & 38 \\
\hline 3884 & rSU1F9I7txuZ31PQdo & 3.725620 & 62.14171 & 8.273318e-15 & 5.329142 e & 4 \\
\hline 85 & Q.oCSr1315wQ1RuhS & 3.843102 & 61.946 & . 549882 e & 329142 & 24.46618 \\
\hline
\end{tabular}

Based on the significant genes identified using limma or t-test, we can do further analysis, like GO analysis (GOstats package) and machine learning (MLInterface package). Next, we will use GO analysis as an example.

\subsection*{5.3 Gene Ontology analysis}

Based on the significant genes identified using limma or t-test, we can further do Gene Ontology annotation. We can use package GOstats to do the analysis.

Do Hypergeometric test of Gene Ontology based on the significant gene list (for e. Table 1 shows the significant GO terms of Molecular Function with pvalue less than 0.01. Here only show the significant GO terms of BP (Biological Process). For other GO categories MF(Molecular Function) and CC (Cellular Component), it just follows the same procedure.
```

> if (require(GOstats) \& require(lumiHumanV1)) {
+

+
Get the locuslink Id of the gene

+ sigLL <- unique(unlist(mget(sigGene, env=lumiHumanV1LOCUSID, ifnotfound=NA)))
+ sigLL <- as.character(sigLL[!is.na(sigLL)])
+ params <- new("GOHyperGParams",
+ geneIds= sigLL,
+ annotation="lumiHumanV1",
+ ontology="BP",
+ pvalueCutoff= 0.01,
+ conditional=FALSE,
+ testDirection="over")
+
+ hgOver <- hyperGTest(params)
+
+
Get the p-values of the test

+ gGhyp.pv <- pvalues(hgOver)
+

```
```

+
select the Go terms with p-value less than 0.001

+ sigGO.ID <- names(gGhyp.pv[gGhyp.pv < 0.001])
+
+
Here only show the significant GO terms of BP (Molecular Function)

+
For other categories, just follow the same procedure.

+ sigGO.Term <- getGOTerm(sigGO.ID)[["BP"]]
+ }

```
\begin{tabular}{rlllll}
\hline & GO ID & Term & p-value & Significant Genes No. & Total Genes No. \\
\hline 1 & GO:0009611 & response to wound... & \(8.4244 \mathrm{e}-06\) & 42 & 443 \\
2 & GO:0006955 & immune response & \(8.8296 \mathrm{e}-06\) & 68 & 859 \\
3 & GO:0006952 & defense response & \(1.7525 \mathrm{e}-05\) & 72 & 945 \\
4 & GO:0006950 & response to stres... & \(1.9132 \mathrm{e}-05\) & 81 & 1103 \\
5 & GO:0009607 & response to bioti... & \(5.0811 \mathrm{e}-05\) & 72 & 976 \\
6 & GO:0009613 & response to pest,... & \(7.2813 \mathrm{e}-05\) & 45 & 533 \\
7 & GO:0006954 & inflammatory resp... & 0.00025402 & 25 & 250 \\
8 & GO:0009605 & response to exter... & 0.00026005 & 46 & 580 \\
9 & GO:0051707 & response to other... & 0.00040553 & 45 & 575 \\
10 & GO:0051674 & localization of c... & 0.00082563 & 30 & 348 \\
11 & GO:0006928 & cell motility & 0.00082563 & 30 & 348 \\
12 & GO:0040011 & locomotion & 0.00099205 & 30 & 352 \\
\hline
\end{tabular}

Table 1: GO terms, p-values and counts.

\section*{6 Reference}
1. Lin, S.M., Du, P., Kibbe, W.A., "Model-based Variance-stabilizing Transformation for Illumina Mi-croarray Data", submitted
2. Du, P., Kibbe, W.A. and Lin, S.M., "nuID: A universal naming schema of oligonucleotides for Illumina, Affymetrix, and other microarrays", submitted.
3. Barnes, M., Freudenberg, J., Thompson, S., Aronow, B. and Pav-lidis, P. (2005) "Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms", Nucleic Acids Res, 33, 5914-5923.```

