Analysis of Bead Summary Data using beadarray

March 26, 2007

Introduction

There are two methods for describing the results of a BeadArray experiment. Firstly, we can use
bead-level data whereby the position and intensity of each individual bead on an array is known. The
methods available for processing bead level data are discussed in: Dunning,M.J et al, Quality Control
and Low-level Statistical Analysis of Illumina Beadarrays, Revstat 4, 1-30 and in a separate vignette of
beadarray.

Bead summary data can also be used whereby a summary intensity for each bead type on an array is
given. The summarised values for a particular bead type can then be compared between different arrays
within an experiment. This is the format of the data output by Illumina’s BeadStudio application. The
methods described within this document are for the analysis of bead summary data which can be
obtained using either the BeadChip (6 or 8 arrays on a slide) or SAM (arrays organised in 96 well
plates) technologies.

1 Citing beadarray

If you use beadarray for the analysis or pre-processing of BeadArray data please cite:
Dunning M, Smith M, Thorne NP, Tavaré S, beadarray: An R package to Analyse Illumina BeadAr-
rays, R News, submitted

2 Getting help with beadarray

Wherever possible, please send all queries about beadarray to the Bioconductor mailing list at biocon-
ductor@stat.math.ethz.ch. This will help to maintain a searchable archive of questions and responses
visible to all users of the package.

3 Importing Bead Summary Data

The beadarray package is able to read the output of BeadStudio versions 1 and 2 which comes in the form
of an Excel file. We assume the file to have one row for each probe and a set of columns for each array,
depending on which columns have been exported from BeadStudio. We prefer that the annotation
columns are not exported from BeadStudio. These columns often contain unusual characters which
cannot be easily read into R. Annotation information can be imported easily through Bioconductor.
An example data set is included with the beadarray package and can be found as a zipped folder data
directory of the beadarray download. Inside this folder you will find three Excel data files and two text
files. The Excel files are the raw non-normalised data, a sample sheet and a quality control file for an
example experiment. These data were obtained as part of a pilot study into BeadArray technology and
comprises of 3 Human-6 BeadChips with 6 different samples, I, MC, MD, MT, P and Norm hybridised.

MC, MD, MT and P are all tumours whereas Norm is a normal sample and I is a sample provided by
Illumina.

3.1 Description of Files

Reading bead summary data into beadarray requires the three files as given for this example experiment
and we now describe these in more detail.

e raw_data.csv - This contains the raw, non-normalised bead summary values as output by Bead-
Studio and is readable by Excel. Inside the file are several lines of header information followed
by a data matrix with some 48,000 rows. Each row is a different gene in the experiment and
the columns give different measurements for the gene. For each array, we record the summarised
expression level (AVG_Signal), standard error of the bead replicates (BEADSTDEV), Number of
beads used (Avg_NBEADS) and a Detection score which estimates the probability of a gene being
detected above the background. Note that whilst this data has not been normalised, it has been
subjected to local background correction at the bead level prior to summarising.

e raw_data_sample_sheet - Defines the array IDs and samples placed on each array. In order for this
information to be read into beadarray, we require that the 4th column is a unique identifier for each
array in the experiemnt. This is a file format that Illumina recommend for users of BeadStudio
to specify the contents of each array.

e raw_data_qc_info - Gives the summarised expression values for each of the controls that Illumina
place on arrays and hence extremely useful for diagnostic purposes. The format of the quality
control files differs slightly between BeadStudio versions 1 and 2. Version 1 of the software gives
one averaged value for each control type, whereas version 2 gives suumarised values for each
control of a particular type. The user does not have to know the version of BeadStudio used to
generate the file.

The following code can be used to read the example data into R. We first define the names of the
raw data file, sample sheet and quality control information. If the quality control file and sample sheet
are not available, then the raw data can be read in on it’s own.

The function readBeadSummaryData can be made to read the ouput of either versions 1 and 2 of
BeadStudio. Users may need to change the argument sep, which specifies if the file is comma or tab
delimited and skip which specifies the number of lines of header information at the top of the file.
Equivalent arguments are used to read the quality control file (qc.skip and qc.sep).

The columns argument is used to decide which column headings to read from the file.

dataFile = "raw_data.csv"
sampleSheet = "raw_data_sample_sheet.csv"
qcFile = "raw_data_qgcinfo.csv"

BSData <- readBeadSummaryData(dataFile, qcFile = qcFile, sampleSheet = sampleSheet,
skip = 7, columns = list(exprs = "AVG_Signal", BeadStDev = "BEAD_STDEV",
NoBeads = "Avg_NBEADS"), gc.columns = list(exprs = "AVG.Signal",
BeadStDev = "SeqVAR"), qc.sep = ",", sep = ",", qc.skip = 7)

+ + + VvV Vv vV

4 The BSData object

BSData is an object of type ExpressionSetIllumina which is an extension of the ExpressionSet class
developed by the Biocore team used as a container for high-throughput assays. The data from the
the raw_data file has been written to the assayData slot of the object, whereas the phenoData slot
contains information from sample_sheet and the QC slot contains the quality control information. For
consistency with the definition of other EzpressionSet objects, we now refer to the expression values as

the exprs matrix which can be accessed using exprs and subset in the usual manner. The BeadStDev
matrix can be accessed using se.exprs. The rows of exprs are named according to the row names of

the original raw_data file.

> BSData

ExpressionSetIllumina (storageMode: list)
assayData: 47293 features, 18 samples

element names: exprs, BeadStDev, NoBeads, Detection, Narrays, arrayStDev, DiffScore

phenoData
rowNames: 1, 2, ..., 18 (18 total)
varLabels and varMetadata:
Sample_Name: Sample_Name
Sample_Well: Sample_Well

Sentrix_Position: Sentrix_Position
(7 total)
featureData
rowNames:
varLabels and varMetadata: none
experimentData: use 'experimentData(object)'
Annotation character(0)
QC Information
Available Slots: exprs BeadStDev

featureNames: AVG.Signal.biotin, AVG.Signal.cy3_hyb_high,
sampleNames: 1475542110_F, 1475542113_E, ..., 1475542113_D,

> exprs(BSData)[1:10, 1:2]

IH-1 IC-1
GI_10047089-S 87.8 131.8
GI_10047091-S 161.8 130.8
GI_10047093-S 481.2 401.4
GI_10047099-S 633.7 483.8
GI_10047103-S 1535.6 1186.5
GI_10047105-S 247.5 210.2
GI_10047121-S 113.0 101.3
GI_10047123-S 453.9 306.8
GI_10047133-A 103.6 114.5
GI_10047133-I 118.0 123.1
> se.exprs(BSData) [1:10, 1:2]
IH-1 IC-1
GI_10047089-S 5.1 9.5
GI_10047091-8 12.0 7.9
GI_10047093-8 21.7 24.5
GI_10047099-S 21.6 20.9
GI_10047103-S 42.7 34.5
GI_10047105-S8 12.7 11.8
GI_10047121-8 6.4 8.1
GI_10047123-5 14.0 13.1
GI_10047133-A 6.8 6.0
GI_10047133-I 5.6 7.2

., AVG.Signal.low_stringency_hyb_pm, AVG
1475542113_F

> pData(BSData) [, 1:6]

Sample_Name Sample_Well Sample_Plate Sample_Group Pool_ID Sentrix_ID

1 NA NA NA IH-1 NA 1475542114
2 NA NA NA IC-1 NA 1475542114
3 NA NA NA IH-2 NA 1475542114
4 NA NA NA MC-1 NA 1475542114
5 NA NA NA MD-1 NA 1475542114
6 NA NA NA MT-1 NA 1475542114
7 NA NA NA IC-2 NA 1475542110
8 NA NA NA IH-3 NA 1475542110
9 NA NA NA IC-3 NA 1475542110
10 NA NA NA P-3 NA 1475542110
11 NA NA NA P-3 NA 1475542110
12 NA NA NA Norm-1 NA 1475542110
13 NA NA NA MC-2 NA 1475542113
14 NA NA NA MD-2 NA 1475542113
15 NA NA NA MT-2 NA 1475542113
16 NA NA NA P-1 NA 1475542113
17 NA NA NA Norm-2 NA 1475542113
18 NA NA NA pP-2 NA 1475542113

> (CInfo(BSData)$exprs[1:5, 1:4]

1475542110_F 1475542113_E 1475542114_A 1475542114 _C

AVG.Signal.biotin 7551.0 6137.2 10255.0 9358.7
AVG.Signal.cy3_hyb_high 32436.0 28081.0 41451.7 41116.9
AVG.Signal.cy3_hyb_low 816.6 739.4 1040.9 1100.0
AVG.Signal.cy3_hyb_med 11178.2 9158.1 13176.7 13109.2
AVG.Signal.gene 205.8 176.6 320.3 395.2

Boxplots of expression may be useful for quality control. Below we show the code to produce boxplots
of the log2 intensities of each array in the experiment. Recall that there are 6 arrays per BeadChip
and that differences between chips hybridisations on different days may be expected. In this example
the differences in intensity between arrays on the same chip and different chips do not seem too large.
However, we can see that the first BeadChip seems to be more variable than the others and in particular
the third array on the first BeadChip could be an outlier.

Boxplots of the other slots in BSData can be easily plotted. E]

> par(mfrow = c(1, 2))
> boxplot (log2(exprs(BSData) [1:1000,]), las = 2)
> boxplot (NoBeads (BSData) [1:1000,], las = 2)

I1'We have restricted the number of points plotted in order to keep the size of this vignettee small.

et T e R I SN

N o a sdasl Trar FoTeat

8 o g ° g 60— T T T g

28, s g &g g

12 8 o 8 8 s§ss°§ ;5 T R A

-] 8 [A

L Eaig 8 HE SO L Ay e

At B OHARE i

04 1 0o ‘ o - ‘ 40 7 B BH

A I A A A SR 0 LT

1 IR D o PLEE R

z@g‘ N QQQQ HE I AL A R A A BN+

T T L TE = F°P 8,88 33Tl bg,
64 R i 10 - . 8 o 8 Y

T T 1 1 1T 1T 1T 1T T T 1T T T T T TT T T 1 1 1T 1 1T 1T T° T 1T 1T T T T TT

TrYT T TYYeYTATYYYTYY TrYT T TYYeYTATYYYTTY

TorxookrrozxzoaPeo0onokrEa ga TorxoorrozxzoaPeo0onokEa ega
==E=335==="4d53555 § ==E=335==="4d53555 §

z2 z z2 z

5 Normalisation and Quality Control

In the expression boxplots we notice that there are differences in expression level across a chip and
between chips. Therefore we might want to normalise the arrays in the experiment comparable. We
also see the the 3rd array has significantly different intensity. The sample on this array is replicated
three times on the first chip, so comparing the MA and XY plots for the replicates of this sample can

be informative.

Particular genes of interest may be highlighted on the MA and XY plots by using the genesToLabel
argument which should match up with the row names in BSData. The labelCol argument can be used
to specify a colour for each gene. For simplicity sake we simply highlight the first ten genes in the
expression matrix, a possible application might be to highlight control genes on the plot or particular

genes of interest.

> g = rownames (exprs (BSData)) [1:10]
> g

[1] "GI_10047089-S" "GI_10047091-S" "GI_10047093-S" "GI_10047099-S"
[5] "GI_10047103-S" "GI_10047105-S" "GI_10047121-S" "GI_10047123-3"

[9] "GI_10047133-A" "GI_10047133-I"

> cols = rainbow(start = 0, end = 5/6, n = 10)

> plotMAXY(exprs(BSData)[1:1000,], arrays = 1:3, genesToLabel = g,
+ labelCols = cols, labels = as.character(pData(BSData)[1:3,

+ 4]), pch = 16)

14

12

10

14

12

10

In the top right corner we see the MA plots for all pairwise comparisons involving the 3 arrays. On
an MA plot, for each gene we plot the average of the expression levels on the two arrays on the x axis
and the difference in the measurements on the y axis. For replicate arrays we would expect all genes to
be unchanged between the two samples and hence most points on the plot to lie along the line y=0. In
the lower left corner of the MAXY plot we see the XY plot and for replicate arrays we would expect to
see most points along the diagonal y = x. From this MAXY plot it is obvious that the third array is
significantly different to the other replicates and requires normalisation.

Both XY and MA plots for a particular comparison of arrays are available separately using plotXY
and plotMA

6 Using Quality Control Information

Quality control information from Illumina experiments can be exported from the BeadStudio applica-
tion. This information can be read into beadarray using the readBeadSummaryData function or at a
later time using readQC.

The quality control information which is read in by readBeadSummaryData can be plotted to provide
useful diagnostic information. To retrieve this quality control data we can use the QCInfo function.
Alternatively, quality control information can be read using readQC.QC is a list object and each item
can be accessed using the $ operator to give a matrix. The row names of the matrix gives and indication
of the control types. In the following example we plot the values of the Biotin control across all arrays.

> QC = QCInfo(BSData)
> QC$exprs[1:3,]

1475542110_F 1475542113_E 1475542114_A 1475542114 _C

AVG.Signal.biotin 7551.0 6137.2 10255.0 9358.7
AVG.Signal.cy3_hyb_high 32436.0 28081.0 41451.7 41116.9
AVG.Signal.cy3_hyb_low 816.6 739.4 1040.9 1100.0

1475542110_B 1475542114_B 1475542110_A 1475542110_C

AVG

AVG.

AVG

AVG

AVG.
AVG.

AVG.
AVG.
AVG.

AVG.
AVG.
AVG.

.Signal.biotin 9595.1 10818.4 11483.9 9977.0

Signal.cy3_hyb_high 41957.6 44276.0 47204.4 45043.8

.Signal.cy3_hyb_low 1017.8 1039.5 1037.6 953.8
1475542114 D 1475542113_A 1475542114 _E 1475542113_B

.Signal.biotin 7727 .4 8822.6 7835.9 8588.6

Signal.cy3_hyb_high 34646.3 36889.3 33330.6 40451.8

Signal.cy3_hyb_low 868.5 944 .4 820.0 967.3
1475542114 _F 1475542113_C 1475542110_D 1475542110_E

Signal.biotin 6559.4 8527.5 7908.9 7134.3

Signal.cy3_hyb_high 27580.2 39325.6 33515.9 31132.7

Signal.cy3_hyb_low 697.4 949.6 901.8 797.9
1475542113_D 1475542113_F

Signal.biotin 6706.2 6075.0

Signal.cy3_hyb_high 30452.9 25584.2

Signal.cy3_hyb_low 828.7 730.8

> plot(log2(as.numeric(QC$exprs([1, 1)), type = "1")

log2(as.numeric(QC$exprs[1, 1))

12.8 13.0 13.2 134
| | | |

12.6
|

I I I
5 10 15

Index

The quality control information exported by Version 2 is somewhat different in that a summarised

value is given for each control, rather than one value per control type. In this example, we import a file
with just negative control information.

> @C2 = read@C("BeadStudioV2ControlInfo.txt", sep = "\t", skip = 0,

+

columns = list(exprs = "AVG_Signal", BeadStDev = "BEAD_STDERR",

+ controlType = "TargetID"))
> dim(QC2%exprs)

[1] 1616 6
> unique (QC2$controlTypel, 1])

[1] negative
Levels: negative

It is possible to use the normalisation methods available in the affy such as quantile, gspline or
others.

> library(affy)
> BSData.quantile = assayDataElementReplace(BSData, "exprs", normalize.quantiles(as.matrix(exprs(BSData))))
> BSData.qspline = assayDataElementReplace(BSData, "exprs", normalize.qspline(as.matrix(exprs(BSData))))

7 Differential Expression

Research into the best method for detecting differential expression for BeadArray data is still work in
progress. In the meantime, users are able to use the 1mFit and eBayes functions from limma on the
matrix exprs(BSdata) with a logy transformation applied.

The following code shows how to set up a design matrix for the example experiment combining the
I, MC, MD, MT, P and Normal samples together. We then define contrasts comparing the I samples to
the P samples and I to Normal and perform an empirical bayes shrinkage. In this particular experiment,
the I and P samples are completely different so we would expect to see plenty of differentially expressed
genes.

For more information about 1mFit and eBayes please see the comprehensive limma documentation.

> design = matrix(nrow = 18, ncol = 6, 0)
> colnames(design) = c("I", "MC", "MD", "MT", "P", "Norm")
> design[which(strtrim(colnames (exprs(BSData)), 1) == "I"), 1] =1
> design[which(strtrim(colnames (exprs(BSData)), 2) == "MC"), 2] =1
> design[which(strtrim(colnames (exprs(BSData)), 2) == "MD"), 3] =1
> design([which(strtrim(colnames (exprs(BSData)), 2) == "MT"), 4] =1
> design[which(strtrim(colnames (exprs(BSData)), 1) == "P"), 5] =1
> design[which(strtrim(colnames (exprs(BSData)), 1) == "N"), 6] = 1
> design
I MC MD MT P Norm

[1,]1 0 0 00O 0

[2,]J]1 0 0 00O 0

[3,J1 0 0 00 0

[4,J0 1 0 00 0

[65,J] 0 0 1 00 0

[6,J] O 0 0 10 0

[7,J]1 0 0 00O 0

[6,J1 0 0 00 0

[9,J1 0 0 00 0

[10,J] 0 0 0 01 0

[11,70 0 0 01 0

[12,7J 0 0 0 00O 1

[13,J]0 1 0 00O 0

[14,]0 0 1 00 0
[15,] 0 0 0 10 0
(16,70 0 0 01 0
(17,0 0 0 00 1
[18,] 0 0 0 01 0
> fit = ImFit(log2(exprs(BSData)), design)
> cont.matrix = makeContrasts(IvsP = I - P, IvsNorm = I - Norm,
+ PvsNorm = P - Norm, levels = design)
> fit = contrasts.fit(fit, cont.matrix)
> ebFit = eBayes(fit)
> topTable(ebFit)

ID IvsP IvsNorm PvsNorm F P.Value
9259 GI_28302130-S 7.499572 7.361939 -0.137632534 937.0935 0.000000e+00
9260 GI_28302132-S 7.694362 7.544722 -0.149640427 985.6984 0.000000e+00
9258 GI_28302129-S 6.402578 6.512401 0.109823045 699.3457 1.896739e-304
24442 GI_6633805-S 6.288645 6.355043 0.066398690 671.6779 1.967835e-292
25430 GI_8392890-S 6.512861 5.830264 -0.682596858 669.7313 1.378516e-291
21840 GI_4501988-S 6.067112 5.813525 -0.253586595 604.0850 4.458776e-263
31186 Hs.449602-S 6.605590 1.619840 -4.985750409 598.4842 1.206731e-260
19978 GI_42542384-S 5.726441 5.629671 -0.096770366 546.8308 3.109321e-238
2128 GI_15149480-S -5.669899 -5.671313 -0.001414323 542.2465 3.201302e-236
22143 GI_4503886-S 5.617491 5.751247 0.133756180 540.7956 1.366055e-235

adj.P.Val
9259 0.000000e+00
9260 0.000000e+00

9258 2.990083e-300
24442 2.326621e-288
25430 1.303883e-287
21840 3.514482e-259
31186 8.152844e-257
19978 1.838114e-234
2128 1.682213e-232
22143 6.460483e-232

8 Further Analysis

The clustering functionality available in BeadStudio can be easily performed through R using the hlcust
once a distance matrix has been defined. In this example we see that the clusters correspond well to
the different sample types. The heatmap function could also be used in a similar manner and principal
components analysis is possible using princomp.

> d = dist(t(exprs(BSData)))
> plclust (hclust(d), labels = pData(BSData)[, 4])

[I I I |
00000¢ 0000ST 00OOOT 00005 0

wybieH

hclust (*, "complete”)

10

	Citing beadarray
	Getting help with beadarray
	Importing Bead Summary Data
	Description of Files

	The BSData object
	Normalisation and Quality Control
	Using Quality Control Information
	Differential Expression
	Further Analysis

