
Alternative CDF environments

Laurent Gautier

April 25, 2007

Introduction

On short oligonuleotide arrays, several probes are designed to match a target transcript,
and probes matching the same target transcript can be grouped in a probe set. Between
the time the probes for a given short oligonucleotide chip were designed, and the time
an analysis is made, the knowledge of expected transcripts for a given organism might
have changed. Unless one includes the latest development in transcripts into an analysis,
the analysis could suffer from what we like to call a Dorian Gray1 effect. The chip itself
does not change, which means that the probes and their respective sequences remain
the same, while the knowledge of the transcripts, and eventually their sequence, might
evolve, and in time the immobility of the probe and probe sets give an uglier picture of
the biological phenomena to study. Being able to easily modify or replace the grouping
of probes in probe sets gives the opportunity to minimize this effect.

The package is directly usable with Affymetrix GeneChip short oligonucleotide arrays,
and can be adapted or extended to other platforms.

The bibliographic reference associated with the package is:
Alternative mapping of probes to genes for Affymetrix chips Laurent Gautier, Morten
Mooller, Lennart Friis-Hansen, Steen Knudsen BMC Bioinformatics 2004, 5:111 (14ăAu-
gustă2004)2.

Let’s start by loading the package:

> library(altcdfenvs)

The class CdfEnvAffy

Each instance of this class contains a way to group probes in probe sets. Different
instances, describing different ways to group probes in probe sets, can co-exist for a
given chip type.

1From the novel ‘The Picture of Dorian Gray’ by Oscar Wilde.
2An other research team mapped probes to NCBI’s RefSeq at about the same time that we were

doing it independantly. For details, see: Mecham et al., 2004, Nucl. Acids Research, vol. 32, no. 9, pp.
e74-e74.

1

When experimenting, it is highly recommended to use the functions validCdfEn-

vAffy and validAffyBatch to make sure that the instance fullfils basic requirements
for consistency.

Reading sequence information in FASTA connections

The package contains simple functions to read R connections in the FASTA format.
Typically, collections of sequences are stored in FASTA files, which can be significantly
large, one can wish to read and process sequences one after the other. This can be done
by opening the file in ‘r’ mode:

> fasta.filename <- system.file("exampleData", "sample.fasta",

+ package = "altcdfenvs")

> con <- file(fasta.filename, open = "r")

Reading the sequences one after another, and printing information about them in
turn goes like:

> fasta.seq <- read.FASTA.entry(con)

> while (!is.null(fasta.seq$header)) {

+ print(fasta.seq)

+ fasta.seq <- read.FASTA.entry(con)

+ }

FASTA sequence:

>gnl|UG|Hs#S1730546 membrane-spanning 4-domains, subfamily A ...

AACCCATTTCAACTGCCTATTCAGAGCATGCAGTAAGAGGAAATCCACCAAGTCTCAATA ...

FASTA sequence:

>gi|28626515|ref|NM_007257.3| Homo sapiens paraneoplastic an ...

GGTCATTTGTCCAGAAAACTTTGTGACTGTCTTTGAGTGACCTAGTCTGGGACCCATTCA ...

FASTA sequence:

>gi|31377729|ref|NM_020143.2| Homo sapiens putatative 28 kDa ...

TGGCTTCTGCGTGGTGCAGCTGCGCACGTGTTTCAGCCGGCAGCGCTTTAAGATTTCCGG ...

> close(con)

One can foresee that the matching of a set of reference sequences against all the
probes can be parallelized easily: the reference sequences can simply be distributed
across different processors/machines. When working with all the reference sequences in
a single large FASTA file, the option skip can let one implement a poor man’s parallel
sequence matching very easily.

2

Creating an alternative mapping from sequences in a

FASTA file

Select the constituting elements

� Chip type: For this tutorial we decide to work with the Affymetrix chip HG-U133A.

� Target sequences: The set of target sequences we use for this tutorial is in the
exemplar FASTA file:

> con <- file(fasta.filename, open = "r")

> n <- countskip.FASTA.entries(con)

> close(con)

> con <- file(fasta.filename, open = "r")

> my.entries <- read.n.FASTA.entries.split(con, n)

> close(con)

matching the probes

The package matchprobes and the probe data package for HG-U133A are required to
perform the matching. The first step is to load them:

> library(matchprobes)

> library(hgu133aprobe)

The matching is done simply (one can refer to the documentation for the package
matchprobes for further details):

> m <- matchprobes(my.entries$sequences, hgu133aprobe$sequence,

+ probepos = TRUE)

If one wishes to have a graphical view on the matches, the package splicegear provides
utilities to do so:

> library(splicegear)

> probes.length <- nchar(hgu133aprobe$sequence[[1]])

> p <- matchprobes2Probes(m, probes.length)

> plot(p[[1]])

3

500 1000 1500 2000 2500 3000 3500

0
5

10
15

20

sequence

pr
ob

es

The package contains a function to create a CdfEnv from the matches:

> get.RNA.IDs <- function(x) {

+ reg <- regexpr("(Hs#|NM)[^[:blank:]|]+", x)

+ r <- substr(my.entries$headers, reg, reg + attr(reg, "match.length") -

+ 1)

+ return(r)

+ }

> ids <- get.RNA.IDs(my.entries$headers)

> alt.cdf <- buildCdfEnv.matchprobes(m, ids, nrow.chip = 712, ncol.chip = 712,

+ chiptype = "HG-U133A", probes.pack = "hgu133aprobe")

Note that the size for chip must be specified. This is currently a problem with cdfenvs
as they are created by the package makecdfenv . The class CdfEnv suggests a way to
solve this (hopefully this will be integrated in makecdfenv in the near future). When
this happens, the section below will be replaced by something more intuitive. But in the
meanwhile, here is the current way to use our shiny brand new CdfEnv:

4

say we have an AffyBatch of HG-U133A chips called 'abatch'

summary checks to avoid silly mistakes

validAffyBatch(abatch, alt.cdf)

it is ok, so we proceed...

get the environment out of it class

alt.cdfenv <- alt.cdf@envir

abatch@cdfName <- "alt.cdfenv"

From now on, the object abatch will use our ‘alternative mapping’ rather than the
one provided by the manufacturer of the chip:

print(abatch)

5

