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1 Introduction

The package Ringo deals with the analysis of two-color oligonucleotide microarrays used
in ChIP-chip projects. The package was started to facilitate the analysis of two-color
microarrays from the company NimbleGen1, but the package has a modular design, such
that the platform-specific functionality is encapsulated and analogous two-color tiling array
platforms can also be processed. The package employs functions from other packages of the
Bioconductor project (Gentleman et al., 2004) and provides additional ChIP-chip-specific
and NimbleGen-specific functionalities.

> library("Ringo")

2 Reading in the raw data

For each microarray, the scanning output consists of two files, one holding the Cy3 intensi-
ties, the other one the Cy5 intensities. These files are tab-delimited text files.

The package comes with (shortened) example scanner output files, in NimbleGen’s pair
format.

> exDir <- system.file("exData", package = "Ringo")

> list.files(exDir, pattern = "pair.txt")

[1] "55773_532_pair.txt" "55773_635_pair.txt" "56577_532_pair.txt"
[4] "56577_635_pair.txt"

> head(read.delim(file.path(exDir, "56577_532_pair.txt"), skip = 1))[,

+ c(1, 4:8, 10)]

IMAGE_ID PROBE_ID POSITION X Y MATCH_INDEX PM
1 56577_532 CHR11P020230890 20230890 672 600 39853667 36933.89
2 56577_532 CHR11P020231216 20231216 541 603 39867116 30607.78
3 56577_532 CHR11P020231584 20231584 592 812 40048471 23702.22

1for NimbleGen one-color microarrays, we recommend the Bioconductor package oligo
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4 56577_532 CHR2P028894632 28894632 388 48 39974238 10601.33
5 56577_532 CHR4P056640054 56640054 78 838 39726901 8223.00
6 56577_532 CHR4P090182945 90182945 366 280 39939651 14373.11

In addition, there is a file with more details on the samples, including which files belong to
which sample.

> read.delim(file.path(exDir, "example_files.txt"), header = TRUE)

SlideNumber FileNameCy3 FileNameCy5 Set Cell.line Cy3 Cy5
1 56577 56577_532_pair.txt 56577_635_pair.txt 1 HL1 input H3ac
2 55773 55773_532_pair.txt 55773_635_pair.txt 2 HL1 input H3ac

The columns FileNameCy3 and FileNameCy5 hold which of the raw data files belong to
which sample. The immuno-precipitated extract was colored with the Cy5 dye in our
experiment, so the column Cy5 essentially holds which antibody has been used for the
immuno-precipitation, in this case one against H3ac that is acetylated Histone 3 residues.

Furthermore, there is a file describing the probe categories on the array (you might know
these Spot Types files from limma (Smyth, 2005)).

> read.delim(file.path(exDir, "spottypes.txt"), header = TRUE)

SpotType GENE_EXPR_OPTION PROBE_ID Color
1 Probe BLOCK1 * black
2 Negative NGS_CONTROLS * yellow
3 H_Code H_CODE * red
4 V_Code V_CODE * blue
5 Random RANDOM * green

Reading all these files, we can read in the raw probe intensities and obtain an object of
RGList , a class defined in package limma.

> exRG <- readNimblegen("example_files.txt", "spottypes.txt", path = exDir)

This object is essentially a list and contains the raw intensities of the two hybridizations for
the red and green channel plus information on the probes on the array and on the analyzed
samples.

> head(exRG$R)

56577_635_pair 55773_635_pair
[1,] 18994.89 30161.33
[2,] 17016.11 18996.22
[3,] 17485.67 7521.11
[4,] 7915.89 9846.78
[5,] 3795.33 8704.11
[6,] 8212.33 10070.22
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> head(exRG$G)

56577_532_pair 55773_532_pair
[1,] 36933.89 46984.78
[2,] 30607.78 35818.00
[3,] 23702.22 21651.67
[4,] 10601.33 35601.11
[5,] 8223.00 24904.11
[6,] 14373.11 37386.67

> head(exRG$genes)

GENE_EXPR_OPTION PROBE_ID POSITION X Y Status ID
1 BLOCK1 CHR11P020230890 20230890 672 600 Probe CHR11P020230890
2 BLOCK1 CHR11P020231216 20231216 541 603 Probe CHR11P020231216
3 BLOCK1 CHR11P020231584 20231584 592 812 Probe CHR11P020231584
4 BLOCK1 CHR2P028894632 28894632 388 48 Probe CHR2P028894632
5 BLOCK1 CHR4P056640054 56640054 78 838 Probe CHR4P056640054
6 BLOCK1 CHR4P090182945 90182945 366 280 Probe CHR4P090182945

> exRG$targets

SlideNumber FileNameCy3 FileNameCy5 Set Cell.line Cy3 Cy5
1 56577 56577_532_pair.txt 56577_635_pair.txt 1 HL1 input H3ac
2 55773 55773_532_pair.txt 55773_635_pair.txt 2 HL1 input H3ac

The user can alternatively supply raw two-color microarray readouts from other platforms
in RGList format, and the other functions of Ringo can work equally well on that data.

3 Quality assessment

The image function allows us to look at the spatial distribution of the intensities on a chip.
This can be useful to detect obvious artifacts on the array, such as scratches, bright spots,
finger prints etc. that might render parts or all of the readouts useless.

> image(exRG, 1, channel = "green", mycols = c("black", "green4",

+ "springgreen"))

See figure 1 for the image. Since the provided example data set only holds the probe
intensities of probes that could be mapped to chromosome 8, the image only shows the few
green dots of these probes’ positions. We see, however, that these chromosome 8 probes
are well distributed over the whole array surface rather than being bundled together in one
part of the array.

It may also be useful to look at the absolute distribution of the single-channel densities.
Limma’s function plotDensities may be useful for this purpose.
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Figure 1: Spatial distribution of raw probe intensities laid out by the probe position on the
microarray surface.

> plotDensities(exRG)
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A probeAnno environment contains the mapping between probes and genomic positions.

> load(file.path(exDir, "exampleProbeAnno.rda"))

> ls(exProbeAnno)
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[1] "8.end" "8.index" "8.start" "8.unique"

> head(get("8.start", exProbeAnno))

[1] 60209176 60209261 60209346 60209431 60209516 60209601

> head(get("8.index", exProbeAnno))

[1] "CHR8P056101891" "CHR8P056101976" "CHR8P056102061" "CHR8P056102146"
[5] "CHR8P056102231" "CHR8P056102316"

The package’s scripts directory contains a script makeProbeAnno.R that demonstrates
how to generate such a mapping object either from a NimbleGen POS file or from result files
of aligning the probe sequences to the genome.

In addition, the data file loaded above also contains a GFF (General Feature Format) file
of all transcripts on mouse chromosome 8 annotated in the Ensembl database (version 39,
June 2006).

> head(exGFF[, c(2:6, 14, 17)])

name chr strand start end symbol refseq
26696 ENSMUST00000040104 8 1 60213125 60216659 Hand2 NM_010402
26697 ENSMUST00000034023 8 1 60348065 60369727 Scrg1 NM_009136
26698 ENSMUST00000034022 8 -1 60374849 60380004 NM_021788
26699 ENSMUST00000067925 8 1 60404049 60406636 Hmgb2 NM_008252
26700 ENSMUST00000054134 8 -1 60412298 60413030 XR_002441
26701 ENSMUST00000034021 8 -1 60416711 60545145 Galnt7 NM_144731

To assess the impact of the small distance between probes on the data, one can look at the
autocorrelation plot. For each base-pair lag d, it is assessed how strong the intensities of
probes at genomic positions x + d are correlated with the probe intensities at positions x.

The computed correlation is plotted against the lag d.

> exAc <- autocor(exRG, probeAnno = exProbeAnno, chrom = "8", lag.step = 250)

> plot(exAc)

5

http://www.ensembl.org/Mus_musculus/index.html


0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ChIP: Autocorrelation of Intensities

Mean over Chromosome 8
Offset [bp]

A
ut

o−
C

or
re

la
tio

n

We see a high autocorrelation between probes up to 750 base-pairs apart. Since the son-
icated fragments that are hybridized to the array have an average size of 900 bp, such a
high auto-correlation up to this distance is to be expected, but nevertheless has to be taken
into account later on during data analysis.

4 Preprocessing

Following quality assessment of the raw data, we perform normalization of the probe inten-
sities and derive fold changes of probes’ intensities in the enriched sample divided by their
intensities in the non-enriched input sample and take the (generalized) logarithm of this
ratios.

We use the variance-stabilizing normalization (Huber et al., 2002) or probe intensities and
generate an ExpressionSet object of the normalized probe levels.

> exampleX <- preprocess(exRG)

> sampleNames(exampleX) <- paste(exRG$targets$Cell.line, exRG$targets$Cy5,

+ exRG$targets$Set, sep = ".")

> print(exampleX)

ExpressionSet (storageMode: lockedEnvironment)
assayData: 1201 features, 2 samples
element names: exprs

phenoData
sampleNames: HL1.H3ac.1, HL1.H3ac.2
varLabels and varMetadata:
SlideNumber: NULL
FileNameCy3: NULL
...: ...
Cy5: NULL
(7 total)
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featureData
featureNames: 1, 2, ..., 1201 (1201 total)
varLabels and varMetadata: none

experimentData: use 'experimentData(object)'
Annotation [1] ""

5 Correlation between replicates

After preprocessing, we assess the degree of correlation between our two samples, which in
fact are biological replicates of the same experiment.

> corPlot(exampleX, grouping = c("H3Ac Rep1", "H3Ac Rep2"))
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Remember that these are true biological replicates rather than technical replicates, and
thus we do not expect perfect correlation.

6 Visualize intensities along the chromosome

> load(file.path(exDir, "exampleX.rda"))

> chipAlongChrom(exampleX, chrom = "8", xlim = c(60208500, 60216000),

+ ylim = c(-1, 6), colPal = 2:3, probeAnno = exProbeAnno, gff = exGFF)
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Figure 2: Normalized probe intensities around the TSS of the Hand2 gene.

See the result in figure 2.

7 Smoothing of probe intensities

Since the response of probes to the same amount of hybridized genome material varies
greatly, due to probe GC content, melting temperature, secondary structure etc., it is
suggested to do a smoothing over individual probe intensities before looking for peaks.

Here, we slide a window of 800 bp width along the chromosome and replace the intensity at
e genomic position x0 by the median over the intensities of those probes inside the window
that is centered at x0.

> smoothX <- computeRunningMedians(exampleX, probeAnno = exProbeAnno,

+ modColumn = "Cy5", allChr = c("8"), winHalfSize = 400, combineReplicates = TRUE,

+ verbose = TRUE)

> chipAlongChrom(exampleX, chrom = "8", xlim = c(60208500, 60216000),

+ ylim = c(-1, 6), colPal = 2:3, probeAnno = exProbeAnno, gff = exGFF)

> chipAlongChrom(smoothX, chrom = "8", xlim = c(60208000, 60216000),

+ probeAnno = exProbeAnno, itype = "l", ilwd = 3, paletteName = "Spectral",

+ add = TRUE)

See the smoothed probe levels in figure 3.

8 Peak finding

To identify genomic regions, in which the histones are modified, we require the following:
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Figure 3: Smoothed probe intensities around the TSS of the Hand2 gene.

� smoothed intensities of probes mapped to this region are exceed a certain threshold
y0

� the region contains at least three probe match positions

� each affected position is less than a defined maximum distance dmax apart from an-
other affected position in the region (we require a certain probe spacing to have
confidence in detected peaks)

For setting the threshold y0, one has to assess the expected (smoothed) probe levels in
non-enriched genomic regions, i.e. the null distribution of probe levels. In a perfect world,
we could use a log ratio of 0 as definite cut-off. In this case the “enriched” DNA and the
input DNA sample would be present in equal amounts, so no antibody-bound epitope, i.e.
a modified histone residue in our case, could be found at this genomic site. In practice,
there are some reasons why zero may be a too naive cut-off for calling a probe-hit genomic
site enriched in our case. See Bourgon (2006) for an extensive discussion on problematic
issues with ChIP-chip experiments. We will just briefly mention a few issues here. For
once, during the immuno-precipitation, some non-antibody-bound regions may be pulled
down in the assay and consequently enriched or some enriched DNA may cross-hybridize to
other probes. Furthermore, since genomic fragments after sonication are mostly a lot larger
than the genomic distance between two probe-matched genomic positions, auto-correlation
between probes certainly is existent. Importantly, different probes measure the same DNA
amount with a different efficiency even after normalizing the probe levels, due to sequence
properties of the probe, varying quality of the synthesis of probes on the array and other
reasons. To ameliorate this fact, we employ the sliding-window smoothing approach.

Most importantly, in the current setting we are looking for regions enriched for histone mod-
ifications. The frequency and extent of genomic regions with modified histones is expected
to by much larger than, say, regions containing binding sites for a certain transcription fac-
tor. Thus, we cannot assume that the large majority of probes does not show enrichment.

The aforementioned issues make it difficult to come up with a reasonable estimate for the
null distribution of smoothed probe levels in non-enriched genomic regions. We simulate
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such a distribution by permuting the probe match positions on the chromosome. We take
the 99% quantile of these smoothed intensities as the threshold y0

2.

> permProbeAnno <- copyEnv(exProbeAnno)

> sampled.index <- sample(get("8.index", env = exProbeAnno))

> assign("8.index", sampled.index, env = permProbeAnno)

> sampledX <- computeRunningMedians(exampleX, probeAnno = permProbeAnno,

+ modColumn = "Cy5", allChr = c("8"), winHalfSize = 400, verbose = FALSE)

> (y0 <- quantile(exprs(sampledX), 0.99, na.rm = TRUE))

99%
1.035892

Since antibodies vary in their efficiency to bind to their target epitope, we suggest to obtain
a different threshold for each antibody. In the example data, however, we have only one
antibody against histone 3 acetylation.

While this threshold worked well for us, we do not claim this way to be a gold standard for
determining the threshold. In particular, it does not take into account the auto-correlation
between near-by probes.

> peaksX <- findPeaksOnSmoothed(smoothX, probeAnno = exProbeAnno,

+ thresholds = y0, allChr = c("8"), distCutOff = 600, cellType = "HL1")

> peaksX <- relatePeaks(peaksX, exGFF)

> peaksXD <- as.data.frame.peakList(peaksX)

> peaksXD[2, ]

name chr start end cellType modification nUpstream
2 HL1.H3ac.chr8.peak2 8 60210306 60213094 HL1 H3ac 1
nDownstream transcripts maxPeak score

2 0 ENSMUST00000040104 3.132845 47.2402

> plot(peaksX[[2]], smoothX, probeAnno = exProbeAnno, gff = exGFF)

Figure 4 displays the identified peak, which is the one upstream of the HAND2. This peak
was obvious in plots of the normalized data (see figure 3) and it is reassuring that the
algorithm recovers it as well.

2To get a more realistic estimate for such a null distribution, one should shuffle all chromosomes’ positions
and repeat the whole process many times.
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Figure 4: One of the discovered peaks for H3ac antibody enrichment on chromosome 8.

9 Concluding Remarks

The package Ringo aims to facilitate the analysis ChIP-chip readouts. We constructed it
during the analysis of a ChIP-chip experiment for the genome-wide identification of modified
histone sites on data gained from NimbleGen two-color microarrays. Analogous two-color
microarray platforms, however, can also be processed. Key functionalities of Ringo are
data read-in, quality assessment, preprocessing of the raw data, and visualization of the
raw and preprocessed data. The package contains a heuristic algorithm for the detection
of for ChIP-enriched genomic regions, too. While this algorithm worked quite well on our
data, we do not claim it to be the definite algorithm for that task.

This vignette was generated using the following package versions:

� R version 2.5.0 (2007-04-23), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=en_US;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: affy 1.14.0, affyio 1.4.0, annotate 1.14.1, Biobase 1.14.0, geneplot-
ter 1.14.0, lattice 0.15-4, limma 2.10.0, RColorBrewer 0.2-3, Ringo 1.0.0, vsn 2.2.0

11



References

R. W. Bourgon. Chromatin-immunoprecipitation and high-density tiling microarrays: a
generative model, methods for analysis, and methodology assessment in the absence of
a ”gold standard”. PhD thesis, University of California, Berkley, Berkley, California,
USA, 2006. URL http://www.ebi.ac.uk/~bourgon/papers/bourgon_dissertation_
public.pdf.

R. C. Gentleman, V. J. Carey, D. J. Bates, B. M. Bolstad, M. Dettling, S. Dudoit, B. Ellis,
L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry,
F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G. K. Smyth,
L. Tierney, Y. H. Yang, and J. Zhang. Bioconductor: Open software development for
computational biology and bioinformatics. Genome Biology, 5:R80, 2004.
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