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The purpose of this vignette is to demonstrate that the software in vsn actually does what it is
supposed to do according to the mathematical theory. And to see how fast (or slow, depending on
your point of view) and how accurately it does that.

There are two functions sagmbSimulateData and sagmbAssess that can be used to generate
simulated data and assess the difference between the ’true’ and ’estimated’ data calibration and
transformation by vsn. This vignette demonstrates some examples. Reference [1] describes in
more detail (i) the simulation model, (ii) the assessment strategy, and (iii) a comprehensive suite
of assessments with respect to the number of probes n, the number of arrays d, the fraction of
differentially expressed genes de, and the fraction of up-regulated genes up.

> library(vsn)

> set.seed(1)

> sim <- function(..., nrrep = 16) {

+ callpar <- list(...)

+ ll <- sapply(callpar, length)

+ stopifnot(ll[1] > 1, all(ll[-1] == 1))

+ res <- matrix(NA, nrow = nrrep, ncol = ll[1])

+ simpar <- append(callpar, list(n = 4096, d = 2, de = 0, up = 0.5,

+ nrstrata = 1))

+ simpar <- simpar[!duplicated(names(simpar))]

+ for (i in 1:ll[1]) {

+ simpar[[1]] <- callpar[[1]][i]

+ for (r in 1:nrrep) {

+ sim <- do.call("sagmbSimulateData", simpar)

+ ny <- vsn(sim$y, strata = sim$strata, verbose = FALSE)

+ res[r, i] <- sagmbAssess(exprs(ny), sim)

+ }

+ }

+ return(res)

+ }

The following plot shows the estimation error for the transformation (i. e. the root mean squared
difference between true and estimated transformed data) as a function of the number of genes n. If
vsn works correctly, the estimation error should decrease roughly as n−1/2.

> n <- 1000 * 2^seq(-2, 5)

> res <- sim(n = n)

> matplot(n, t(res), pch = 20, log = "xy", col = "#909090", main = "n")

> lines(n, colMeans(res), col = "blue")
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The same with 8 strata:

> n <- 1000 * 2^seq(1, 5)

> res <- sim(n = n, nrstrata = 8)

> matplot(n, t(res), pch = 20, log = "xy", col = "#909090", main = "n (8 strata)")

> lines(n, colMeans(res), col = "blue")
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The following plot shows the estimation error as a function of the number of samples d. Initially,
it also decreases slightly with d, but eventually reaches a plateau. This is because the number of
parameters that need to be estimated is proportional to d, so the ”number of data points per
parameter” is constant in this plot (above, it was increasing proportionally to n).

> d <- 2^seq(1, 5)

> res <- sim(d = d)

> matplot(d, t(res), pch = 20, log = "xy", col = "#909090", main = "d")

> lines(d, colMeans(res), col = "blue")
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Here, we see the estimation error as a function of the number of strata. It should increase, since
for each stratum, we need to estimate separate parameters, and if the overall number of probes does
not change, more strata means less and less data per parameters.

> nrstrata <- 2^seq(0, 4)

> res <- sim(nrstrata = nrstrata)

> matplot(nrstrata, t(res), pch = 20, log = "xy", col = "#909090",

+ main = "nrstrata")

> lines(nrstrata, colMeans(res), col = "blue")
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de is the fraction of differentially expressed genes.

> de <- (0:6)/10

> res <- sim(de = de)

> matplot(de, t(res), pch = 20, col = "#909090", main = "de")

> lines(de, colMeans(res), col = "blue")
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up is the fraction of up-regulated genes among the differentially expressed genes. The best
results are obtained for up≈ 0.5, while the estimation goes up the more unbalanced the situation
becomes.

> up <- (0:8)/8

> res <- sim(up = up, de = 0.2)

> matplot(up, t(res), pch = 20, col = "#909090", main = "up")

> lines(up, colMeans(res), col = "blue")
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