
Bioconductor’s nnNorm package

Laurentiu A. Tarca1

May 31, 2006

Wayne State University, Medicine - Perinatology Research Branch, Detroit, Michigan, 48201.
http://vortex.cs.wayne.edu/tarca

1 Overview

The nnNorm package contains mainly a function for intensity and spatial normalization of cDNA
two color data, or paired single channel data, based on neural networks fitting. Functionality to
compare the distributions of the normalized log ratios is also provided. For the simpler case when
only intensity normalization is desired (univariate distortion color model), we provide functionality
to plot the bias estimate against the level of intensity for every print tip group.

Introduction to intensity and spatial normalization. This document provides a tutorial
for using the nnNorm package. For a detailed description of the principles and algorithmic imple-
mented by this package consult Tarca et al. (2005).

Spatial and intensity normalization implemented in nnNorm. The nnNorm package im-
plements intensity and spatial normalization of cDNA data based on neural networks. In this
approach the log average intensity A as well as the spatial coordinates X and Y (obtained by bin-
ning the print tip group space) are used as regressors into a neural network model. Resistance to
outliers is enhanced by assigning to each spot a weight which is dependent on how extreme its log
ratio, M, is with respect to that of the spots having about the same A level belonging to the same
print tip group. A 5-fold crossvalidation procedure is used to obtain the bias estimate for every spot.

2 Changes with respect to previous versions

The first version of nnNorm was 1.4.0 and released within bioC 1.7. Thank to the users’ feed-back,
nnNorm continued to improve through the subsequent versions. We would like to thank especially to:
Ken Kompass (Wash Univ, St Louis, MO, USA) for pointing out the need of a verbose argument
to the maNormNN function; Elizabeth Thomas (CHR, Harvard University) and Philippe Hupé
(Institut Curie, Paris France) who provided us with data sets on which we could test new methods
to detect convergence problems in neural networks training in the first version of nnNorm, 1.4.0.
The changes in the actual nnNorm version with respect to the previous ones include: a) avoiding
convergence problems in neural networks fitting, b) using a 5-fold cross-validation method instead
of 4-fold used previously, c) taking an average over the predictions of several models trained on the
same data but starting with different initial weights d) adding a verbose parameter and e) slightly
different parameter values of the algorithm to increase even more the robustness.

1

http://vortex.cs.wayne.edu/tarca�

Help files. As with any R package, detailed information on functions, their arguments and
value, can be obtained in the help files. For instance, to view the help file for the function maNormNN
in a browser, use help.start() followed by ? maNormNN.

3 Case study: Apo AI dataset, Callow et al.

We demonstrate the functionality of this package using gene expression data from the Apo AI study
of Callow et al. (2000). To load the Apo dataset in a object called Apo of type marrayRaw, we use
the following lines:

> library(marray)

> dataweb <- "http://www.stat.berkeley.edu/users/terry/zarray/Data/ApoA1/rg_a1ko_morph.txt"

> data <- read.table(dataweb, header = TRUE, sep = ",", dec = ".")

> ApoLayout <- new("marrayLayout", maNgr = 4, maNgc = 4, maNsr = 19,

+ maNsc = 21)

> spots <- 4 * 4 * 19 * 21

> Gb <- Rb <- array(c(0), c(spots, 16))

> Gf <- as.matrix(data[, seq(2, 33, 2)])

> Rf <- as.matrix(data[, seq(3, 33, 2)])

> labs <- c(paste(c("c"), 1:8, sep = ""), paste(c("k"), 1:8, sep = ""))

> maInfo <- new("marrayInfo", maLabels = labs, maInfo = data.frame(Names = labs))

> Apo <- new("marrayRaw", maRf = Rf, maGf = Gf, maRb = Rb, maGb = Gb,

+ maLayout = ApoLayout, maTargets = maInfo)

Note that the background values were set to zero as the data file contains background corrected
red and green intensities.
Due to several factors, the bias in the microarray experiments may depend not only on the average
log intensity level but also on the spatial coordinates Yang et al. (2002). Figure 1 shows the
reconstructed image of log ratios M, for slide No. 16 in the Apo AI data set. This image is obtained
using the maImage function of marray package.

> RGcol <- maPalette(low = "green", high = "red", k = 20)

> maImage(Apo[, 16], x = "maM", col = RGcol, zlim = c(-2, 2))

Observe the uneven distribution of M values in the print tip groups situated at the bottom of
the figure.

Now we perform normalization with the method of the nnNorm package called maNormNN. This
function returns a marrayNorm type object (containing the normalized log ratios). The maNormNN
function is a print-tip oriented normalization method.

> library(nnNorm)

> ApNN2DA <- maNormNN(Apo)

Figure 2 shows the log ratios, for the same data as in Figure 1 after intensity and spatial
normalization. Observe a rather uniform distribution of red and green colored spots.

> maImage(ApNN2DA[, 16], x = "maM", col = RGcol, zlim = c(-2, 2))

2

k8: image of M
1 2 3 4

4

3

2

1

−2

−1.6

−1.1

−0.67

−0.22

0.22

0.67

1.1

1.6

2

Figure 1: Image of raw M values for Apo data set, slide No. 16.

k8: image of M
1 2 3 4

4

3

2

1

−2

−1.6

−1.1

−0.67

−0.22

0.22

0.67

1.1

1.6

2

Figure 2: Image of M values after nnNorm normalization, for Apo data set, slide No. 16.

3

We may compare the robust neural networks normalization method with other existing ap-
proaches that takes into account intensity and spatial bias fluctuations, like for e.g. a composite
normalization method available in marray package.

> AcPLo2D <- maNormMain(Apo, f.loc = list(maNorm2D(), maNormLoess(x = "maA",

+ y = "maM", z = "maPrintTip")), a.loc = maCompNormEq())

We define a function able to compute the Westfall and Young (1993) adjusted p-values for
different normalizations of the same Apo batch. For this we use functionality of the multtest
package (Dudoit et al. (2002)).

> library(multtest)

Loading required package: Biobase
Loading required package: tools

Welcome to Bioconductor

Vignettes contain introductory material.
To view, simply type 'openVignette()' or start with 'help(Biobase)'.
For details on reading vignettes, see the openVignette help page.

Loading required package: survival
Loading required package: splines

> getP <- function(maObj) {

+ X <- maM(maObj)

+ class <- c(rep(0, 8), rep(1, 8))

+ resT <- mt.maxT(X, class, B = 15000)

+ ord <- order(resT$index)

+ resT$adjp[ord]

+ }

Now we get the adjusted p-values for the three situations: raw data (Anone), composite normal-
ization (cpLo2DA) and robust neural networks based (pNN2DA).

> pAnone <- log10(getP(Apo))

> pAcPLo2D <- log10(getP(AcPLo2D))

> pApNN2DA <- log10(getP(ApNN2DA))

We plot the log of adjusted p-values obtained using the normalized data. Results are shown in
Figure 3.

> kout <- c(2149, 4139, 5356, 540, 1739, 1496, 2537, 4941)

> methods <- c("none", "cPLo2D", "pNN2DA")

> plot(rep(1, length(pAnone)), pAnone, xlim = c(1, 3), ylim = c(-4,

+ 0), xlab = "Method", ylab = "log10(p)", axes = FALSE)

> points(rep(1, 8), pAnone[kout], col = "red", pch = 20)

> points(rep(2, length(pAcPLo2D)), pAcPLo2D)

4

Method

lo
g1

0(
p)

none cPLo2D pNN2DA

−4
−3

−2
−1

0

Figure 3: Adjusted p values for raw data (none), composite normalization (cpLo2D), and robust
neural networks (pNN2DA)

> points(rep(2, 8), pAcPLo2D[kout], col = "red", pch = 20)

> points(rep(3, length(pApNN2DA)), pApNN2DA)

> points(rep(3, 8), pApNN2DA[kout], col = "red", pch = 20)

> axis(1, 1:3, methods)

> axis(2)

> box()

The spots with the indices kout above are those with smallest t-statistics after loess print tip
normalization as in Yang et al. (2001).

Observe in Figure 3 that the 8 genes (represented by filled red circles) may be confidently
distinguished from the bulk of non-differentially expressed genes at a threshold of p=0.01. As some
of the genes may have received about the same adjusted p-value, less that 8 filled circles may be
observed for a particular method.

Now we may want to compare the ability of this new normalization method to reduce the
variability of log ratios within slides. A easy way to do that is to look at the distributions of the
normalized M values. The method compNorm of nnNorm package will do this (see Figure 4).

> compNorm(maM(Apo), maM(AcPLo2D), maM(ApNN2DA), bw = 0.9, xlim = c(-2,

+ 2), titles = methods, type = "d")

The same distributions may be inspected using the box plot in Figure 5.

> compNorm(maM(Apo), maM(AcPLo2D), maM(ApNN2DA), bw = 0.9, xlim = c(-2,

+ 2), titles = methods, type = "b")

5

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

M

D
en

si
ty

none
cPLo2D
pNN2DA

Figure 4: Density plots of normalized log ratios. The highest density curve corresponds to the
robust neural networks normalization.

none cPLo2D pNN2DA

−4
−2

0
2

4

Figure 5: Box plot of normalized log ratios

6

The maNormNN function in nnNorm package offers flexibility in choosing the type of dependence
of the bias to be accounted for. For e.g. setting binHeight parameter as equal with the number of
spot rows in a print tip group, will discard the variable Y in the bias model.

> ApoNNy <- maNormNN(Apo[, 1], binWidth = 3, binHeight = maNsr(Apo))

In this case only A and X will be used as regressors for the bias. Similarly by setting bin-
Width=maNsc(Apo) in the same function will suppress the contribution of the X variable form the
bias estimation. The M-A plots may be shown before and after the normalization for each slide if
the parameter maplots is set to "TRUE".

For the case when only intensity normalization is desired (X, and Y regressors discarded) we
provide the facility to plot the bias estimates against the intensity level. For e.g. lets perform
intensity normalization only for the 13th slide of the Apo batch:

> par(mfrow = c(2, 1))

> par(mar = c(2, 4, 2, 2))

> ApoNr <- maNormNN(Apo[, 13], binWidth = maNsc(Apo), binHeight = maNsr(Apo),

+ robust = TRUE, maplots = TRUE)

References

M. J. Callow, S. Dudoit, E. L. Gong, T. P. Speed, and E. M. Rubin. Microarray expression profiling
identifies genes with altered expression in hdl-deficient mice. Genome Research, 10:2022–2029,
2000.

S. Dudoit, J. P. Shaffer, and J. C. Boldrick. Multiple hypothesis testing in microarray experiments.
Statistical Science, to appear, preprint available at UC Berkeley, Division Biostatistics working
paper series: 2002-110, http://www.bepress.com/ucbbiostat/paper110, 2002.

A. L. Tarca, J. E. K. Cooke, and J. Mackay. A robust neural networks approach for spatial and
intensity-dependent normalization of cdna microarray data. Bioinformatics, 21(11):2674–2683,
2005.

P. H. Westfall and S. S. Young. Resampling-based multiple testing: Examples and methods for
p-value adjustment. John Wiley & Sons, 1993.

Y. Yang, S. Dudoit, P. Luu, and T. Speed. Normalization for cdna microarray data. SPIE BiOS,
2001.

Y. Yang, S. Dudoit, P. Luu, D. Lin, V. Peng, J. Ngai, and T. Speed. Normalization for cdna
microarray data: a robust composite method addressing single and multiple slide systematic
variation. Nucleic Acids Res., 30:e15, 2002.

7

8 9 10 11 12 13 14 15

−
4

−
2

0
1

2

MA−plot before ANN normalization. Slide #1

M

Pt.1
Pt.2

Pt.3
Pt.4

Pt.5
Pt.6

Pt.7
Pt.8

Pt.9
Pt.10

Pt.11
Pt.12

Pt.13
Pt.14

Pt.15
Pt.16

8 9 10 11 12 13 14 15

−
3

−
1

0
1

2
3

MA−plot after ANN normalization. Slide #1

M

Figure 6: M-A plots before and after normalization for the whole slide.

8

