
Codelink

Diego Dı́ez Ruiz

January 29, 2007

1 Introduction

Codelinktm is a platform for the analysis of gene expression on biological samples
using short (30 base long) oligonucleotide probes. There is a proprietary software
for reading scanned images, spot intensity quantization and some diagnostics.
Quality flags (Table 1) are assigned to the spot based on signal to noise ratio
(SNR) computation (Eq: 1) and other morphological characteristics as irregular
shape of the spots, saturation of the signal or manufacturer spots removed. The
results can be exported in many formats as XML, Excel, plain text, etc. This
library allows to read Codelink plain text exported data into R [3] for analysis
of gene expression with any of the available tools in R+Bioconductor[1]. A new
class is defined for convenient storing Codelink data as exprSet class is not
convenient for this purpose.

Flag Meaning
G Good signal (SNR >= 1)
L Limit signal (SNR < 1)
I Irregular shape
S Saturated signal
M MSR spot
C Background contaminated
X User excluded spots

Table 1: Quality Flag description. SNR: Signal to Noise Ratio.

SNR =
Smean

(Bmedian + 1.5 ∗Bstdev)
(1)

2 Reading data

Currently only data exported as plain text from Codelink software can be used.
The Codelink text format can have arbitrary columns and header fields so de-
pending of what you have exported you can read it or not. The suggestion

1

Probe type Meaning
DISCOVERY Gene expression testing probes

POSITIVE Positive control probes
NEGATIVE Negative control probes
FIDUCIAL Grid alignment probes

OTHER Other controls and housekeeping gene probes

Table 2: Probe types for Codelink arrays.

is that you put on the files Spot mean and Bkgd median values so you can
do background correction and normalization in R. If you put Raw intensity or
Normalized intensity columns then you can also read it directly and avoid back-
ground correction and/or normalization but this is not recommended. To read
some Codelink files you do:

> library(codelink)

> data <- readCodelink()

This suppose that your files have the extension “TXT” (uppercase) and they
are in your working directory. If this is not the case you can specify files to be
read with the ’file’ argument. The function readCodelink returns and object
of Codelink:

> library(codelink)

> data(codelink.example)

> codelink.example

An object of class "Codelink"
$product
[1] "UniSet Human 20K I"

$sample
[1] "Sample 1" "Sample 2"

$file
[1] "T001-2006-12-25_Sample 1.TXT" "T002-2006-12-25_Sample 2.TXT"

$name
[1] "NM_012429.1_PROBE1" "NM_003980.2_PROBE1" "AY044449_PROBE1"
[4] "NM_005015.1_PROBE1" "AB037823_PROBE1"
20464 more elements ...

$type

2

[1] "DISCOVERY" "DISCOVERY" "DISCOVERY" "DISCOVERY" "DISCOVERY"
20464 more elements ...

$flag
1 2

1 "L" "L"
2 "L" "L"
3 "G" "L"
4 "G" "M"
5 "G" "G"
20464 more rows ...

$method
$background
[1] "NONE"

$normalization
[1] "NONE"

$merge
[1] "NONE"

$log
[1] FALSE

$snr
1 2

1 0.7920656 0.7856675
2 0.8160216 0.7862189
3 1.0744066 0.9331916
4 3.8865153 NA
5 4.6647164 1.7993536
20464 more rows ...

$logical
row col

1 1 9
2 1 10
3 1 11
4 1 12
5 1 13
20464 more rows ...

$Smean
1 2

3

1 49.0588 46.7304
2 48.6395 45.8333
3 65.0781 52.4917
4 243.3116 NA
5 267.6458 102.0803
20464 more rows ...

$Bmedian
1 2

1 43 42
2 42 42
3 42 40
4 44 NA
5 42 42
20464 more rows ...

Slot Description
product Chip name description
sample Sample names vector

file File names vector
name Probe names vector
type Probe types vector

method Methods applied to data
method$background Background correction method used

method$normalization Normalization method used
method$merge Merge method used

method$log Logical: If data is in log scale
flag Quality flag matrix

Smean Mean signal intensity matrix
Bmedian Median background intensity matrix

Ri Raw intensity matrix
Ni Normalized intensity matrix
snr Signal to Noise Ratio matrix
cv Coefficient of Variation matrix

Table 3: Description of Codelink object slots.

The chip type (product slot) is read from the PRODUCT field in the header
of Codelink files. If it is not found then a warning message is shown and product
slot is set to ”Unknown”. If one product type disagree with the others an error
message is shown and reading of files is terminated.

By default, all spots flagged with M, I, and S flags are set to NA. This can
be changed with the flag argument in readCodelink. The flag argument is a list
that can contain a valid flag identifier and a value for that flag. For example,

4

if you want to set all M flagged spots to 0.01 and let other spot untouched you
do:

> data <- readCodelink(flag=list(M=0.01))

It is possible to find probes wit more that one flag assigned, i.e. CL for a
probe labeled as C and L, CLI for a probe labeled as C, L and I, and so on. As
a regular expression is used to find flag types it is possible to manage all this
situations. When two user modified flags fall in the same probe the smallest (or
NA if applicable) is assigned.

3 Background correction

Smean intensity values can be processed into Ri through background correction:

> data <- bkgdCorrect(data, method="half")

The default method used is based on the half method from limma [4] pack-
age. Median background intensity (Bmedian) is subtracted from mean spot
intensity (Smean) and if the result is less than 0.5 then it is set to 0.5 to ensure
no negative numbers are obtained.

4 Normalization

Normalization of Ri values are done with the wrapper function normalize().
The default method is quantile normalization that in fact call normalizeQuan-
tiles() from limma package (that allows for NAs). There is also the possibility
to use a modified version of cyclic loess from affy [2] package that also allows
NA values.

> data <- normalize(data, method="quantile")

By default, normalize return log2 intensity values. This could be changed
setting the parameter log.it to FALSE.

5 Plotting

There are some plotting functions available that can use directly the Codelink
objects. These are functions for producing MA plots (plotMA), scatterplots

5

(plotCorrelation) and density plots (plotDensities). All functions use the
available intensity value (i.e. Smean, Ri or Ni) to make the plot.

The function plotMA can highlight spots based on type values (by default) or
SNR values setting the argument label. It requires array1 and array2 arguments
and compute M and A values based on equations 2 and 3.

> plotMA(codelink.example, legend.x = "topright")

6 8 10 12 14

−
8

−
6

−
4

−
2

0
2

4
6

A

M

●
●
●●●●●●●●●

●
●●

●●● ●●●●●●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●●● ●●●●● ●
●

●●●●●●●●●●●●
●●●●● ●●

●
●●

●●
●●●●●●●

●●●●
●

●●●●●●
●
●

●●
●

●●●●●●●●●●●●
●●●●●●

●●
●●

●
●

●●●●
●
●●

●

●●●● ●
●●●●●
●●●
●
●●
●●●
●

●

●●
●●●

●
●
●
●●●
●●●●●●●●●●●

●●●●
●

●

●● ●●●●● ●●
●

●●
●●●
●
●●●●●●

●●●●●
●
●●●●

●
●●●●●●●●●

●●●
●●●
●
●● ●●●●●●●● ●

●●●●●●●●●●
●●●●●

●●●●●●
●●●● ●●

●●
●●●●
●●●
●
●

●
●●●● ●●●●●●●●

●
● ●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●●
● ●●

●
●
●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●
●

●●
●

● ●●

●
●

●
●●

●● ●
●●

●
●

●
●

●

●
●

●

●
●

● ●
●

●
●

●
●●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●● ● ●

●

●

●

● ●●

●

●

●●
●
●●●●

● ●● ●
●

●
● ●●

●●
●

●
●

●
●

●●● ●●
●●

●
●

●
● ●

●●
●

●●
●

●●●●●●

●

●●
●

● ●●
●●●●●●●

●
●

●
●● ●●

●●

●

●
●●●

●

Sample 2−Sample 1 MA Plot of Smean

DISCOVERY
NEGATIVE
POSITIVE
FIDUCIAL
OTHER

M = Array2−Array1 (2)

A =
Array2 + Array1

2
(3)

The function plotDensities plot the density of intensity values of all arrays.
If the subset argument is supplied it can use only a subset of the arrays in the
Codelink object.

> plotDensities(codelink.example)

6

6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

N = 20210 Bandwidth = 0.1323

D
en

si
ty

Density Plot of Smean

Sample 1
Sample 2

6 Miscellaneus

There are also some miscellaneous functions used in some analysis that could
be useful for someone.

6.1 Using weights

The createWeights function creates a matrix of weights based on probe type
labels to be used, for example, in fitting a linear model with limma [4].

> w <- createWeights(codelink.example, type = list(FIDUCIAL = 0.01,

+ NEGATIVE = 0.1))

> w[1:10,]

[,1] [,2]
[1,] 1 1
[2,] 1 1
[3,] 1 1
[4,] 1 1
[5,] 1 1
[6,] 1 1
[7,] 1 1

7

[8,] 1 1
[9,] 1 1
[10,] 1 1

6.2 Merging arrays

In case you want to merge array intensities the mergeArray function help on
this task. It computes the mean of Ni values on arrays of the same class.
The grouping is done by means of the ’class’ argument (numerical vector of
classes). New sample names should be assigned to sample slot with the ’names’
argument. The function also returns the coefficient of variation in the ’cv’ slot.
The distribution of coefficients of variations can be checked with the function
plotCV.

> data <- mergeArray(data, group=c(1,1,2,2),

+ names=c("A","B"))

> plotCV(data)

References

[1] Robert C Gentleman, Vincent J. Carey, Douglas M. Bates, Ben Bolstad,
Marcel Dettling, Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao
Ge, Jeff Gentry, Kurt Hornik, Torsten Hothorn, Wolfgang Huber, Stefano Ia-
cus, Rafael Irizarry, Friedrich Leisch Cheng Li, Martin Maechler, Anthony J.
Rossini, Gunther Sawitzki, Colin Smith, Gordon Smyth, Luke Tierney, Jean
Y. H. Yang, and Jianhua Zhang. Bioconductor: Open software development
for computational biology and bioinformatics. Genome Biology, 5:R80, 2004.

[2] Rafael A. Irizarry, Laurent Gautier, Benjamin Milo Bolstad, ,
Crispin Miller with contributions from Magnus Astrand <Mag-
nus.Astrand@astrazeneca.com>, Leslie M. Cope, Robert Gentleman,
Jeff Gentry, Conrad Halling, Wolfgang Huber, James MacDonald, Benjamin
I. P. Rubinstein, Christopher Workman, and John Zhang. affy: Methods
for Affymetrix Oligonucleotide Arrays, 2005. R package version 1.8.1.

[3] R Development Core Team. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria, 2005.
ISBN 3-900051-07-0.

[4] Gordon K Smyth. Limma: linear models for microarray data, pages 397–420.
Springer, New York, 2005.

8

