
Description of BeadExplorer

Gareth Elvidge

01 May 2006

1. Introduction

BeadExplorer if a R software package for quality control, exploration and normalisation of
Illumina BeadChip expression data. The software is especially useful for lab-bench
biologists due to its ease of use however the software provides easy data import/export
analysis methods for more experienced bioinformaticians which can be used as a basis for
more in-depth analyses.
The current standard BeadChip analysis workflow involves the importation of scanned .tiff
image files into the Illumina BeadStudio software tool which displays basic quality control
parameters and enables normalisation of the data. It is this summarised data that is used by
BeadExplorer.
BeadExplorer uses the normalisation functions within the affy package and also requires
the R2HTML and widgetTools packages. The affy and widgetTools packages are
available from the bioconductor repository (www.bioconductor.org) and the R2HTML
package is available from the R-project website (www.R-project.org). The most useful
chapters for the inexperienced user are Chapter 3 (Quick start) and Chapter 5 (Additional
data exploration methods).

1.1 Background and terminology
The Illumina BeadChip platform allows the simultaneous hybridisation of 6-16 samples
(depending on the chip type) onto a single chip. Within this vignette we use ‘chip’ to
describe the hybridisation and data of all samples and ‘array’ to describe a single sample
within the entire chip.

2. R basics

Download the latest version of R from www.R-project.org. For windows users, download
the pre-compiled binary version. Ensure that the required libraries (R2HTML,
widgetTools and affy) have been installed. Windows users can download these
automatically from within the R GUI. Set the appropriate repository (bioconductor or
CRAN) by selecting ‘Select repositories…’ from the ‘Packages’ dropdown menu. The
required packages can then be installed by selecting ‘Install Package(s)…’ from the

‘Packages’ drop down menu.
In addition to installing the required packages, we recommend creating a new folder where
all the input files (and subsequent output files) will be stored. This folder then needs to be
selected as the working directory by selecting the ‘File’ dropdown and ‘Change dir…’.
In addition to this package vignette, further information on individual functions and
general R usage can be gained by typing- ?function name or selecting the help dropdown
menu.

3. Quick start
BeadExplorer provides a wrapper function to automate standard analysis of BeadChip data.
This can be used in conjunction with a GUI widget for easy data importation. Two
BeadStudio output files are used as an input to BeadExplorer and these need to be placed in
the working directory. The first contains the expression intensities of the BeadChip data
and contains the suffix ‘_gene_profile’. The second contains quality control values that are
based on the control sequences within the arrays. This file contains the suffix ‘_qcinfo’.
Both files can be found within the BeadStudio output folder that are produced for each
experimental analysis and are .csv files.

Launch the GUI by typing:

data<-beadAnalysis()

An example of the BeadExplorer input widget

A number of analysis parameters can be set from the GUI interface.

Data File Name:- Use ‘Browse’ to select the ‘_gene_profile.csv’ file. Once this is selected

the QCfile name, QC Log file Name and Analysis Name are selected by default based on
the name of the Data File. These however can be changed manually although this is not
recommended for most purposes. Note that multiple files can be selected – in this case the
data are combined into one analysis – useful if an experiment is spread over 2 or more
BeadChips.

QC File Name:- The accompanying ‘_qcinfo.csv’ file.

QC Log File Name:- A file where QC data from all previous BeadChip analyses is stored.

Analysis Name:- A unique identifier for the analysis. By default, the analysis name will be
the same as the import file name, however, multiple analyses may be performed for a
particular input file (e.g. using different normalisation and background correction options)
and these can be saved separately by using unique analysis names.

Background adjustment:- see section 4.3 for further details. If offset is selected the
default value is the absolute minimum value on the array. This can be changed by entering
an alternative in the adjacent text box.

Select Normalisation Method:- see section 4.3 for further details.

Select output type:- format for graph outputs.

Return Data:- Select the type of BeadData object to return. For example, if no further
analyses will be performed select ‘None’. If further analyses will be performed (e.g. as
described in Chapter 5) use the following command and select the option to return a
normalised BeadData object:-

n<-beadAnalysis()

‘n’ will then hold a normalised beadData set and can be used in the further analyses.

Manifest File Name:- Optionally select an Illumina manifest (transcript annotation) .csv
file to be included in the output data file. These can be found on the Illumina mapping
CDs.

Select output files:- See below.

Output files
Four output files can be created in the working directory:

1. Normalised intensities
(with ‘_results’ suffix) contains the normalised intensity values in tab delimited format.

2. Sample QC plots

A ‘jpeg, png or bmp’ image file with a ‘_samples’ suffix containing quality control
information for each sample on the array thus providing a method for assessing intra-array
variability. The top row of images show the quality control parameters (as determined in
the BeadStudio software). The bottom row (from left to right) shows a boxplot of raw
expression intensities, boxplot of normalised expression intensities, a principal component
plot of the first and second principal components (together with the proportion of the total
variation that is captured by each principal component) and a hierarchical clustering plot
using Euclidean distance of the samples on the arrays.

Example of a sample QC plot

3. Array QC plot
A ‘jpeg, png or bmp’ image file with a ‘_arrays’ suffix containing quality control
information for the entire chip. As each analysis is performed, quality control parameters
for the entire chip are logged into a file in the working directory called ‘ArrayQuality.txt’.
The images in the Array QC plot uses this file to compare the current analysis QC values
against previous values and provides a method for assessing inter-array variability.

In addition, if the html output option is selected a html report file will be produced and
displayed which show the array quality control values, analysis parameters and provide
links to the files described above.

An example of an array QC plot

An example of part of the HTML summary report

4. Description of standard workflow

A typical workflow for an analysis in BeadExplorer is automated by the wrapper function
described above in the quick start chapter. This provides a mechanism for the automated
analysis of BeadChip data. The functions within the wrapper are now described in greater
detail and can be performed separately using a command based input for greater flexibility
and customisation:

4.1 Import BeadChip data file

data<-readBead(“Example_gene_profile.csv”)

The intensity data is read into a beadData object which inherits from an Exprs object (see
chapter 7 for a description of classes used in BeadExplorer). Note that by passing multiple
file names to this function, data from different chips can be combined into one analysis.

4.2 Import the QC data file
The default file to import is the same name as the data file expect that instead of a
‘_gene_profile.csv’ suffix, the software looks for a ‘_qcinfo.csv suffix’.

qcdata<-getQC(data)

The QC data is read into a beadQC object (see chapter 7 for a description of classes used in
BeadExplorer).

4.3 Normalise the raw data
A number of normalisation methods are provided that use algorithms within the affy
package. Alternatively, if the normalisation has already been performed within
BeadStudio and no further analysis is required then the method can be set to ‘none’.
In addition to the normalisation options, adjustments are made to remove negative values.
Negative intensities create problems for many downstream applications that require logged
values or fold change calculations. They arise when the background intensity, based on the
negative control values are subtracted from the raw intensities within BeadStudio. Two
methods are available to remove negative values:

1. All measurements less than 0.1 are set to 0.1 (called ‘Floor’ in BeadExplorer).
2. A small constant, (equal to the lowest intensity on the chip by default) is added

to each intensity value. This effect removes negative values and also reduces
the variability of the data at low expression values (called ‘Offset’ in
BeadExplorer).

normdata<-normalise (data)

4.4 Write normalised data
Normalised data is written to a tab delimited text results file within the working directory
called analysisname_results.txt.

write.beadData(data)

4.5 Write the QC data.
The QC data for the analysis is written to the log file, ‘ArrayQuality.txt’. If the log file is
not found within the working directory then a new file is created. Only QC data with a
unique analysis name will be written to the log file. If the analysis name is already found
within the log file then no data is written.

writeQC(qcdata)

4.6 Read QC log file
The QC log file, containing QC data from previous analyses is loaded into a data frame.
This data is required for plotting graphs to assess inter-chip variability.

qc<-readQC()

4.7 Generate sample (array) quality control plots
The sample quality control plots are plotted to assess sample-sample variation (or
intra-chip variability). The allows the detection of problematic samples or hybridisations.

plotSamples(data, normdata, qcdata)

4.8 Generate chip quality control plots
The chip quality control plots enable the assessment of chip-chip variability (or inter-chip
variability). This allows the detection of a problematic chip.

dotPlotArrays(qcdata,qc)

If a large number of chips are present within the log file that a dot plot can become cluttered.
Another option is to plot the data as a boxplot instead:

boxPlotArrays(qcdata,qc)

4.9 Generate an HTML report
The generation of an HTML report can be useful to keep track of analysis parameters used

within a particular analysis. Links are also provided to all output files that are produced.
We routinely use the file as a starting point for the exploration of all other output files.

htmlOutput (normdata, data, qcdata)

5. Additional data exploration methods

Most of the subsequent methods require a normalised beadData object (called ‘data’ in the
examples below). This can be obtained by using the wrapper function:

data<-beadAnalysis()

(and selecting Normalised data as the return type)

5.1 Filter data
Removes data that are not expressed (using a given detection threshold) in any of the
samples on the chip

data<-filter(data, 0.99)

5.2 Pair wise scatter plots
Explore the overall differences in expression between different samples on the chip. This
can be useful to gain an overall impression of the variability in the data.

pairs(data)

An example of the output from pairs()

5.3 Identify up/down transcripts
Reports the pairwise number of transcripts up and down regulated using a predetermined
fold cutoff.

cutoff (data,2)

5.4 Plot a two sample scatterplot comparison
Produces a scatterplot of two samples on the chip. Specific points (determined by a vector
of transcript IDs) can be coloured differently or the plot can be coloured by detection value
(see function description for more details). In addition, if identify is TRUE (default) then
individual points on the graph can be clicked. When all points have been identified, values
are printed to the console that identify each point and give fold change and intensity values.
To include annotation data in the output to the console specify a manifest data.frame in the

input. This can be produced by read Manifest().

man<-readManifest("d:\\Bead_Set_Manifest\\Human_WG-6.csv")
scatterPlot(data, 1, 2, man)

5.5 Plot multiple density distributions of data
This is a similar function to boxplots expect that density distributions are plotted instead.

e.g. to plot a distribution of expression values:

multihists(exprs(data))

bead standard deviations:

multihists(se.exprs(data))

detection scores:

multihists(detExprs(data))

5.6 Plot individual QC plots
Many of the separate plots that are produced using plotSamples() and dotplotArrays() can
be produced individually. These functions allow for greater customisation of plotting
parameters (e.g. colours, plotted data) and also analysis parameters.
Functions that can be used include:-

pc()
boxplot()
dotplotQC()
boxplotQC()
clusterplot()

5.7 Further data exploration and manipulation

Obtain sample names: sampleNames (data)
Obtain summary of the data: summary (data)
Obtain the percentage of probes that pass a predefined detection cutoff:

detectionCalls (data,0.99)
Obtain the number of transcripts: ngenes (data)
Obtain analysis parameters: param (data)
Obtain QC parameters: getArraysStats (data)
Create a beadData object using a subset of the samples on the chip: data<-data[,c(1,2,3)]

6. Batch Analysis
Multiple files can be analysed in an automated fashion. Using the batchanalysis () function
all files within the working directory that possess the suffix ‘_gene_profile.csv’ will be
analysed by the wrapper function, beadAnalysis(). Note that the corresponding
‘_qcinfo.csv’ files will also be required within the working directory.

7. Description of classes
Two custom classes, ‘beadData’ and ‘beadQC’ are used within BeadExplorer to hold the
expression data and qc data respectively. The classes are described below with more
specific information within the corresponding html help file for the class.

7.1 BeadData
The BeadData class is an extension of the Exprs class and thus contains all the slots and
methods of the Exprs class. Additional slots are :

fileOrigin- the filenames of the data used to create the object
detExprs- a matrix of detection scores for each transcript and sample
param – various analysis parameters
normmethod- the normalisation method used (if any)

The class holds the analysis name within the annotation slot, intensity data (raw or
normalised) within the exprs slot, bead standard deviations (within the se.exprs slot) and
detection scores (within the detExprs) slot.
Most of the slots can be accessed (and replaced) using the name of the slot e.g.

exprs(data)

- to access the intensity values

7.2 BeadQC
The beadQC class holds the quality control information for each chip, mainly determined
from the corresponding ‘_qc_info.csv’ file.
The slots are:

fileOrigin – as above
annotation – analysis name (as above)
sampleQC – various QC parameters for each sample on the chip.

