61 static Scalar
flux(
const Problem& problem,
62 const Element& element,
63 const FVElementGeometry& fvGeometry,
64 const ElementVolumeVariables& elemVolVars,
65 const SubControlVolumeFace &scvf)
70 if (scvf.boundary() && problem.boundaryTypes(element, scvf).isOutflow(Indices::energyEqIdx))
73 const auto& insideScv = fvGeometry.scv(scvf.insideScvIdx());
74 const auto& insideVolVars = elemVolVars[scvf.insideScvIdx()];
75 const auto& outsideVolVars = elemVolVars[scvf.outsideScvIdx()];
77 const Scalar insideTemperature = insideVolVars.temperature();
78 const Scalar outsideTemperature = outsideVolVars.temperature();
80 const Scalar insideLambda = insideVolVars.effectiveThermalConductivity() * insideVolVars.extrusionFactor();
81 const Scalar insideDistance = (insideScv.dofPosition() - scvf.ipGlobal()).two_norm();
85 flux = insideLambda * (insideTemperature - outsideTemperature) / insideDistance;
89 const auto& outsideScv = fvGeometry.scv(scvf.outsideScvIdx());
90 const Scalar outsideLambda = outsideVolVars.effectiveThermalConductivity() * outsideVolVars.extrusionFactor();
91 const Scalar outsideDistance = (outsideScv.dofPosition() - scvf.ipGlobal()).two_norm();
92 const Scalar avgLambda =
harmonicMean(insideLambda, outsideLambda, insideDistance, outsideDistance);
94 flux = avgLambda * (insideTemperature - outsideTemperature) / (insideDistance + outsideDistance);
97 flux *= Extrusion::area(fvGeometry, scvf);