31 BaseOutputFields::initOutputModule(out);
36 using FluidSystem =
typename OutputModule::VolumeVariables::FluidSystem;
37 for (
int j = 0; j < FluidSystem::numComponents; ++j)
39 out.addVolumeVariable([j](
const auto& v){
return v.massFraction(j); }, IOName::massFraction<FluidSystem>(0, j));
40 out.addVolumeVariable([j](
const auto& v){
return v.moleFraction(j); }, IOName::moleFraction<FluidSystem>(0, j));
42 if (j != FluidSystem::getMainComponent(0))
44 out.addVolumeVariable([j](
const auto& v){
return v.diffusionCoefficient(0,0, j); },
"D^" + FluidSystem::componentName(j) +
"_" + FluidSystem::phaseName(0));
48 out.addVolumeVariable([j](
const auto& v){
return getEffectiveDiffusionCoefficient_(v, 0, j) - v.diffusionCoefficient(0,0, j); },
"D_t^" + FluidSystem::componentName(j) +
"_" + FluidSystem::phaseName(0));
58 if (pvIdx > ModelTraits::dim() && pvIdx < ModelTraits::dim() + ModelTraits::numFluidComponents())
59 return ModelTraits::useMoles() ? IOName::moleFraction<FluidSystem>(0, pvIdx - ModelTraits::dim())
60 : IOName::massFraction<FluidSystem>(0, pvIdx - ModelTraits::dim());
62 return BaseOutputFields::template primaryVariableName<ModelTraits, FluidSystem>(pvIdx, state);