The base class for spatial parameters of single-phase problems.
|
template<class ElementSolution > |
decltype(auto) | permeability (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol) const |
| Function for defining the (intrinsic) permeability \([m^2]\).
|
|
Scalar | beaversJosephCoeffAtPos (const GlobalPosition &globalPos) const |
| Function for defining the Beavers-Joseph coefficient for multidomain problems \(\mathrm{[-]}\).
|
|
Scalar | forchCoeff (const SubControlVolumeFace &scvf) const |
| Apply the Forchheimer coefficient for inertial forces calculation.
|
|
template<class ElementSolution > |
Scalar | porosity (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol) const |
| Function for defining the porosity. That is possibly solution dependent.
|
|
template<class SolidSystem , class ElementSolution , typename std::enable_if_t< SolidSystem::isInert() &&SolidSystem::numInertComponents==1 &&!decltype(isValid(Detail::hasInertVolumeFractionAtPos< GlobalPosition, SolidSystem >())(std::declval< Implementation >()))::value, int > = 0> |
Scalar | inertVolumeFraction (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol, int compIdx) const |
| Function for defining the solid volume fraction. That is possibly solution dependent.
|
|
template<class SolidSystem , class ElementSolution , typename std::enable_if_t< SolidSystem::numInertComponents==0, int > = 0> |
Scalar | inertVolumeFraction (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol, int compIdx) const |
|
template<class SolidSystem , class ElementSolution , typename std::enable_if_t<(SolidSystem::numInertComponents > 1)||((SolidSystem::numInertComponents > 0) &&(!SolidSystem::isInert()||decltype(isValid(Detail::hasInertVolumeFractionAtPos< GlobalPosition, SolidSystem >())(std::declval< Implementation >()))::value)), int > = 0> |
Scalar | inertVolumeFraction (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol, int compIdx) const |
|
template<class ElementSolution > |
Scalar | extrusionFactor (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol) const |
| Return how much the domain is extruded at a given sub-control volume.
|
|
Scalar | extrusionFactorAtPos (const GlobalPosition &globalPos) const |
| Return how much the domain is extruded at a given position.
|
|
template<class ElementSolution > |
Scalar | temperature (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol) const |
| Return the temperature in the given sub-control volume.
|
|
Scalar | temperatureAtPos (const GlobalPosition &globalPos) const |
| Return the temperature in the domain at the given position.
|
|
const GravityVector & | gravity (const GlobalPosition &pos) const |
| Returns the acceleration due to gravity \(\mathrm{[m/s^2]}\).
|
|
const GridGeometry & | gridGeometry () const |
| The finite volume grid geometry.
|
|
template<class GridGeometry , class Scalar , class Implementation >
const GravityVector & Dumux::FVSpatialParams< GridGeometry, Scalar, Implementation >::gravity |
( |
const GlobalPosition & |
pos | ) |
const |
|
inlineinherited |
The default behaviour is a constant gravity vector; if the Problem.EnableGravity
parameter is true, \(\boldsymbol{g} = ( 0,\dots,\ -9.81)^T \), else \(\boldsymbol{g} = ( 0,\dots, 0)^T \).
- Parameters
-
pos | the spatial position at which to evaluate the gravity vector |