
Package ‘tidync’
August 17, 2024

Title A Tidy Approach to 'NetCDF' Data Exploration and Extraction

Version 0.4.0

Description Tidy tools for 'NetCDF' data sources. Explore the contents of a
'NetCDF' source (file or URL) presented as variables organized by grid with a
database-like interface. The hyper_filter() interactive function translates the
filter value or index expressions to array-slicing form. No data is read until
explicitly requested, as a data frame or list of arrays via hyper_tibble() or
hyper_array().

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

ByteCompile true

Imports dplyr (>= 0.7.0), forcats, magrittr, ncdf4, ncmeta (>= 0.2.0),
purrr, RNetCDF (>= 1.9-1), rlang, tibble, tidyr, CFtime (>=
1.4.0)

RoxygenNote 7.3.2

Suggests ggplot2, knitr, rmarkdown, testthat, covr, cubelyr

SystemRequirements netcdf udunits-2

URL https://docs.ropensci.org/tidync/

BugReports https://github.com/ropensci/tidync/issues

VignetteBuilder knitr

NeedsCompilation no

Author Michael Sumner [aut, cre],
Simon Wotherspoon [ctb],
Tomas Remenyi [ctb],
Ben Raymond [ctb],
Jakub Nowosad [ctb],
Tim Lucas [ctb],
Hadley Wickham [ctb],
Adrian Odenweller [ctb],
Patrick Van Laake [ctb],
Fabian Bernhard [ctb]

1

https://docs.ropensci.org/tidync/
https://github.com/ropensci/tidync/issues

2 activate

Maintainer Michael Sumner <mdsumner@gmail.com>

Repository CRAN

Date/Publication 2024-08-17 08:00:02 UTC

Contents
activate . 2
hyper_array . 4
hyper_filter . 6
hyper_tbl_cube . 7
hyper_tibble . 8
hyper_transforms . 10
hyper_vars . 11
nc_get . 12
print.tidync . 12
print.tidync_data . 13
tidync . 14

Index 17

activate Activate a NetCDF grid

Description

A grid in NetCDF is a particular shape and size available for array variables, and consists of sets
of dimensions. To activate a grid is to set the context for downstream operations, for querying,
summarizing and reading data. There’s no sense in performing these operations on more than one
grid at a time, but multiple variables may exist in a single grid. There may be only one significant
grid in a source or many, individual dimensions are themselves grids.

Usage

activate(.data, what, ..., select_var = NULL)

S3 method for class 'tidync'
activate(.data, what, ..., select_var = NULL)

S3 method for class 'tidync'
active(x)

active(x)

Default S3 method:
active(x)

activate 3

active(x) <- value

Default S3 replacement method:
active(x) <- value

Arguments

.data NetCDF object
what name of a grid or variable
... reserved, currently ignored
select_var optional argument to set selected state of variable/s by name
x NetCDF object
value name of grid or variable to be active

Details

There may be more than one grid and one is always activated by default. A grid may be activated
by name in the form of ’D1,D0’ where one or more numbered dimensions indicates the grid. The
grid definition names are printed as part of the summary of in the tidync object and may be obtained
directly with hyper_grids() on the tidync object.

Activation of a grid sets the context for downstream operations (slicing and reading data) from
NetCDF, and as there may be several grids in a single source activation allows a different choice of
available variables. By default the largest grid is activated. Once activated, all downstream tasks
apply to the set of variables that exist on that grid.

If activate() is called with a variable name, it puts the variable first. The function active()
gets and sets the active grid. To restrict ultimate read to particular variables use the select_var
argument to hyper_filter(), hyper_tibble() and hyper_tbl_cube().

Scalar variables are not currently available to tidync, and it’s not obvious how activation would
occur for scalars, but in future perhaps activate("S") could be the right way forward.

Value

NetCDF object

See Also

hyper_filter hyper_tibble hyper_tbl_cube

Examples

if (!tolower(Sys.info()[["sysname"]]) == "sunos") {
l3file <- "S20080012008031.L3m_MO_CHL_chlor_a_9km.nc"
rnc <- tidync(system.file("extdata", "oceandata", l3file,
package = "tidync"))
activate(rnc, "palette")

extract available grid names
hyper_grids(rnc)

}

4 hyper_array

hyper_array Extract NetCDF data as an array

Description

Extract the raw array data as a list of one or more arrays. This can be the entire variable/s or
after dimension-slicing using hyper_filter() expressions. This is a delay-breaking function and
causes data to be read from the source into R native arrays. This list of arrays is lightly classed as
tidync_data, with methods for print() and tidync().

Usage

hyper_array(
x,
select_var = NULL,
...,
raw_datavals = FALSE,
force = FALSE,
drop = TRUE

)

hyper_slice(
x,
select_var = NULL,
...,
raw_datavals = FALSE,
force = FALSE,
drop = TRUE

)

S3 method for class 'tidync'
hyper_array(
x,
select_var = NULL,
...,
raw_datavals = FALSE,
force = FALSE,
drop = TRUE

)

S3 method for class 'character'
hyper_array(
x,
select_var = NULL,
...,
raw_datavals = FALSE,
force = FALSE,

hyper_array 5

drop = TRUE
)

Arguments

x NetCDF file, connection object, or tidync object

select_var optional vector of variable names to select

... passed to hyper_filter()

raw_datavals logical to control whether scaling in the NetCDF is applied or not

force ignore caveats about large extraction and just do it

drop collapse degenerate dimensions, defaults to TRUE

Details

The function hyper_array() is used by hyper_tibble() and hyper_tbl_cube() to actually ex-
tract data arrays from NetCDF, if a result would be particularly large there is a check made and user-
opportunity to cancel. This is controllable as an option getOption('tidync.large.data.check'),
and can be set to never check with options(tidync.large.data.check = FALSE).

The function hyper_array() will act on an existing tidync object or a source string.

By default all variables in the active grid are returned, use select_var to specify one or more
desired variables.

The transforms are stored as a list of tables in an attribute ‘transforms“, access these with hyper_transforms().

See Also

print.tidync_data for a description of the print summary, hyper_tbl_cube() and hyper_tibble()
which are also delay-breaking functions that cause data to be read

Examples

f <- "S20080012008031.L3m_MO_CHL_chlor_a_9km.nc"
l3file <- system.file("extdata/oceandata", f, package= "tidync")

extract a raw list by filtered dimension
library(dplyr)
araw1 <- tidync(l3file) %>%
hyper_filter(lat = between(lat, -78, -75.8),

lon = between(lon, 165, 171)) %>%
hyper_array()

araw <- tidync(l3file) %>%
hyper_filter(lat = abs(lat) < 10,

lon = index < 100) %>%
hyper_array()

hyper_array will pass the expressions to hyper_filter
braw <- tidync(l3file) %>%

hyper_array(lat = abs(lat) < 10, lon = index < 100)

6 hyper_filter

get the transforms tables (the axis coordinates)
lapply(attr(braw, "transforms"),

function(x) nrow(dplyr::filter(x, selected)))
the selected axis coordinates should match in order and in size
lapply(braw, dim)

hyper_filter Subset NetCDF variable by expression

Description

The hyper_filter() acts on a tidync object by matching one or more filtering expressions like with
dplyr::filter. This allows us to lazily specify a subset from a NetCDF array without pulling any
data. The modified object may be printed to see the effects of subsetting, or saved for further use.

Usage

hyper_filter(.x, ...)

S3 method for class 'tidync'
hyper_filter(.x, ...)

Arguments

.x NetCDF file, connection object, or tidync object

... currently ignored

Details

The function hyper_filter() will act on an existing tidync object or a source string.

Filter arguments must be named as per the dimensions in the variable in form dimname = dimname
< 10. This is a restrictive variant of dplyr::filter(), with a syntax more like dplyr::mutate().
This ensures that each element is named, so we know which dimension to apply this to, but also
that the expression evaluated against can do some extra work for a nuanced test.

There are special columns provided with each axis, one is ’index’ so that exact matching can be
done by position, or to ignore the actual value of the coordinate. That means we can use a form
like dimname = index < 10 to subset by position in the array index, without necessarily knowing the
values along that dimension.

Value

data frame

hyper_tbl_cube 7

Examples

f <- "S20080012008031.L3m_MO_CHL_chlor_a_9km.nc"
l3file <- system.file("extdata/oceandata", f, package= "tidync")
filter by value
tidync(l3file) %>% hyper_filter(lon = lon < 100)
filter by index
tidync(l3file) %>% hyper_filter(lon = index < 100)

be careful that multiple comparisons must occur in one expression
tidync(l3file) %>% hyper_filter(lon = lon < 100 & lon > 50)

filter in combination/s
tidync(l3file) %>% hyper_filter(lat = abs(lat) < 10, lon = index < 100)

hyper_tbl_cube A dplyr cube tbl

Description

Produce a tbl_cube from NetCDF. This is a delay-breaking function and causes data to be read from
the source into the tbl cube format defined in the dplyr package.

Usage

hyper_tbl_cube(x, ..., force = FALSE)

S3 method for class 'tidync'
hyper_tbl_cube(x, ..., force = FALSE)

S3 method for class 'character'
hyper_tbl_cube(x, ..., force = FALSE)

Arguments

x tidync object

... arguments for hyper_filter()

force ignore caveats about large extraction and just do it

Details

The size of an extraction is checked and if quite large there is an a user-controlled prompt to proceed
or cancel. This can be disabled with options(tidync.large.data.check = FALSE)

• please see hyper_array() for more details.

The tbl cube is a very general and arbitrarily-sized array that can be used with tidyverse functional-
ity. Dimension coordinates are stored with the tbl cube, derived from the grid transforms.

8 hyper_tibble

Value

tbl_cube

dplyr::tbl_cube

See Also

hyper_array() and hyper_tibble() which are also delay-breaking functions that cause data to
be read

Examples

f <- "S20080012008031.L3m_MO_CHL_chlor_a_9km.nc"
l3file <- system.file("extdata/oceandata", f, package= "tidync")
(cube <- hyper_tbl_cube(tidync(l3file) %>%
activate(chlor_a), lon = lon > 107, lat = abs(lat) < 30))
ufile <- system.file("extdata", "unidata", "test_hgroups.nc",
package = "tidync", mustWork = TRUE)

some versions of NetCDF don't support this file
(4.1.3 tidync/issues/82)
group_nc <- try(tidync(ufile), silent = TRUE)
if (!inherits(group_nc, "try-error")) {
res <- hyper_tbl_cube(tidync(ufile))
print(res)

} else {
the error was
writeLines(c(group_nc))

}

hyper_tibble Extract NetCDF data as an expanded table.

Description

Extract the raw array data as an expanded data frame. This can be the entire variable/s or after
dimension-slicing using hyper_filter() expressions with dimension values expanded appropri-
ately for each element in the arrays (one row per element).

Usage

hyper_tibble(x, ..., na.rm = TRUE, force = FALSE)

S3 method for class 'character'
hyper_tibble(x, ..., na.rm = TRUE, force = FALSE)

S3 method for class 'tidync'
hyper_tibble(x, ..., na.rm = TRUE, force = FALSE)

hyper_tibble 9

Arguments

x NetCDF file, connection object, or tidync object

... arguments to ‘hyper_filter“

na.rm if TRUE these rows are not included in the output when all variables are NA

force ignore caveats about large extraction and just do it

Details

The size of an extraction is checked and if quite large there is an a user-controlled prompt to proceed
or cancel. This can be disabled with options(tidync.large.data.check = FALSE)

• please see hyper_array() for more details.

The function hyper_tibble() will act on an existing tidync object or a source string.

By default all variables in the active grid are returned, use select_var to limit.

Value

a tbl_df

See Also

hyper_array() and hyper_tbl_cube() which are also delay-breaking functions that cause data
to be read

Examples

l3file <- "S20080012008031.L3m_MO_CHL_chlor_a_9km.nc"
f <- system.file("extdata", "oceandata", l3file, package= "tidync")
rnc <- tidync(f)
hyper_filter(rnc)
library(dplyr)
lapply(hyper_array(f, lat = lat > 0, lon = index > 3000), dim)

ht <- hyper_tibble(rnc) %>%
filter(!is.na(chlor_a))

ht
library(ggplot2)
ggplot(ht %>% filter(!is.na(chlor_a)),
aes(x = lon, y = lat, fill = chlor_a)) + geom_tile()

10 hyper_transforms

hyper_transforms Axis transforms

Description

Axis ’transforms’ are data frames of each dimension in a NetCDF source. hyper_transforms
returns a list of the active transforms by default,

Usage

hyper_transforms(x, all = FALSE, ...)

Default S3 method:
hyper_transforms(x, all = FALSE, ...)

Arguments

x tidync object

all set to TRUE to return all transforms, not only active ones

... ignored

Details

Each transform is available by name from a list, and each data frame has the coordinate of the
dimension, its index, and a ’selected’ variable set by the filtering expressions in hyper_filter and
used by the read-functions hyper_array and hyper_tibble.

Use hyper_transforms to interrogate and explore the available dimension manually, or for devel-
opment of custom functions.

Value

list of axis transforms

Examples

l3file <- "S20080012008031.L3m_MO_CHL_chlor_a_9km.nc"
f <- system.file("extdata", "oceandata", l3file, package = "tidync")
ax <- tidync(f) %>% hyper_transforms()
names(ax)
lapply(ax, dim)

this function returns the transforms tidync knows about for this source
str(tidync(f)$transforms)
names(hyper_transforms(tidync(f), all = TRUE))

hyper_vars 11

hyper_vars Grid status

Description

Functions to report on the current status of the active grid. Information on the active dimensions
and variables are listed in a data frame with multiple columns.

Usage

hyper_vars(x, ...)

hyper_dims(x, ...)

hyper_grids(x, ...)

Arguments

x tidync object

... ignored

Details

The dimensions and variables of the active grid are identified in the print method of the tidync
object, these functions exist to provide that information directly.

hyper_vars() will list the ids, data type, name, dimension number, number of attributes and and
coordinate status of the variables on the currently active grid.

hyper_dims() will list the names, lengths, start/count index, ids, and status of dimensions on the
currently active grid. records on the currently active dimensions.

hyper_grids() will list the names, number of dimension, and number of variables and active status
of each grid in the source.

Value

data frame

Examples

f <- "S20080012008031.L3m_MO_CHL_chlor_a_9km.nc"
l3file <- system.file("extdata/oceandata", f, package= "tidync")
tnc <- tidync(l3file)
hyper_vars(tnc)
hyper_dims(tnc)
hyper_dims(tnc %>% hyper_filter(lat = lat < 20))

12 print.tidync

nc_get Helper to get a variable from NetCDF.

Description

This exists so we can (internally) use a file path, uri, or open NetCDF connection (ncdf4 or RNetCDF)
in a simpler way.

Usage

nc_get(x, v, test = FALSE)

Arguments

x file path, uri, or NetCDF connection

v variable name

test if true we make sure the connection can be open, not applied for connections
themselves

Details

This function just reads the whole array. It is equivalent to the angstroms package function ’raw-
data(x, varname)’.

print.tidync Print tidync object

Description

Provide a summary of variables and dimensions, organized by their ’grid’ (or ’shape’) and with a
summary of any slicing operations provided as ’start’ and ’count’ summaries for each dimension in
the active grid.

Usage

S3 method for class 'tidync'
print(x, ...)

Arguments

x NetCDF object

... reserved

print.tidync_data 13

Details

See tidync for detail about the object, and hyper_vars for programmatic access to the active grid’s
variable and dimension information.

The print summary is organized in two sections, the first is available grids (sets of dimensions)
and their associated variables, the second is the dimensions, separated into active and inactive. All
dimensions may be active in some NetCDF sources.

Individual active dimensions include the following components: * ’dim’ - dimension label, D0, D1,
D2, ... * ’name’ - dimension name * ’length’ - size of the dimension * ’min’ - minimum value of the
dimension * ’max’ - maximum value of the dimension * ’start’ - start index of subsetting * ’count’ -
length of subsetting index * ’dmin’ - minimum value of the subset dimension * ’dmax’ - maximum
value of the subset dimension * ’unlim’

• indicates whether dimension is unlimited (spread across other files, usually the time-step) *
’coord_dim’ - indicates whether dimension is a coordinate-dimension (i.e. listed as a 1-D
grid)

The inactive dimension summary does not include ’start’, ’count’, ’dmin’, ’dmax’ as these are
identical to the values of 1, ’length’, ’min’, ’max’ when no array subsetting has been applied.

Examples

argofile <- system.file("extdata/argo/MD5903593_001.nc", package = "tidync")
argo <- tidync(argofile)
print(argo)

the print is modified by choosing a new grid or running filters
argo %>% activate("D7,D9,D11,D8")

argo %>% hyper_filter(N_LEVELS = index > 300)

print.tidync_data Print tidync data

Description

Print method for the ’tidync_data’ list of arrays returned by hyper_array().

Usage

S3 method for class 'tidync_data'
print(x, ...)

Arguments

x ’tidync_data’ object (from hyper_array())

... reserved args

14 tidync

Details

The output lists the variables and their dimensions of an object from a previous call to tidync(),
and possibly hyper_filter(). The available data will differ from the source in terms of variables
(via select_var in hyper_array) and the lengths of each dimension (via named expressions in
hyper_filter()).

Value

the input object invisibly

See Also

tidync_data

Examples

argofile <- system.file("extdata/argo/MD5903593_001.nc", package = "tidync")
argodata <- tidync(argofile) %>% hyper_filter(N_LEVELS = index < 5) %>%

hyper_array(select_var = c("TEMP_ADJUSTED", "PRES"))
print(argodata)

tidync Tidy NetCDF

Description

Connect to a NetCDF source and allow use of hyper_* verbs for slicing with hyper_filter(),
extracting data with hyper_array() and [hyper_tibble() from an activated grid. By default the
largest grid encountered is activated, seeactivate().

Usage

tidync(x, what, ...)

S3 method for class 'character'
tidync(x, what, ...)

S3 method for class 'tidync_data'
tidync(x, what, ...)

Arguments

x path to a NetCDF file

what (optional) character name of grid (see ncmeta::nc_grids) or (bare) name of
variable (see ncmeta::nc_vars) or index of grid to activate

... reserved for arguments to methods, currently ignored

tidync 15

Details

The print method for tidync includes a lot of information about which variables exist on which
dimensions, and if any slicing (hyper_filter()) operations have occurred these are summarized
as ’start’ and ’count’ modifications relative to the dimension lengths. See print for these details, and
hyper_vars for programmatic access to this information

Many NetCDF forms are supported and tidync tries to reduce the interpretation applied to a given
source. The NetCDF system defines a ’grid’ for storing array data, where ’grid’ is the array ’shape’,
or ’set of dimensions’). There may be several grids in a single source and so we introduce the
concept of grid ’activation’. Once activated, all downstream tasks apply to the set of variables that
exist on that grid.

NetCDF sources with numeric types are chosen by default, even if existing ’NC_CHAR’ type vari-
ables are on the largest grid. When read any ’NC_CHAR’ type variables are exploded into single
character elements so that dimensions match the source.

Grids

A grid is an instance of a particular set of dimensions, which can be shared by more than one
variable. This is not the ’rank’ of a variable (the number of dimensions) since a single data set
may have many 3D variables composed of different sets of axes/dimensions. There’s no formality
around the concept of ’shape’, as far as we know.

A dimension may have length zero, but this is a special case for a "measure" dimension, we think.
(It doesn’t mean the product of the dimensions is zero, for example).

Limitations

Files with compound types are not yet supported and should fail gracefully. Groups are not yet
supported.

We haven’t yet explored ’HDF5’ in detail, so any feedback is appreciated. Major use of compound
types is made by https://github.com/sosoc/croc.

Examples

a SeaWiFS (S) Level-3 Mapped (L3m) monthly (MO) chlorophyll-a (CHL)
remote sensing product at 9km resolution (at the equator)
from the NASA ocean colour group in NetCDF4 format (.nc)
for 31 day period January 2008 (S20080012008031)
f <- "S20080012008031.L3m_MO_CHL_chlor_a_9km.nc"
l3file <- system.file("extdata/oceandata", f, package= "tidync")
skip on Solaris
if (!tolower(Sys.info()[["sysname"]]) == "sunos") {
tnc <- tidync(l3file)
print(tnc)
}

very simple Unidata example file, with one dimension
Not run:
uf <- system.file("extdata/unidata", "test_hgroups.nc", package = "tidync")
recNum <- tidync(uf) %>% hyper_tibble()
print(recNum)

https://github.com/sosoc/croc

16 tidync

End(Not run)
a raw grid of Southern Ocean sea ice concentration from IFREMER
it is 12.5km resolution passive microwave concentration values
on a polar stereographic grid, on 2 October 2017, displaying the
"hole in the ice" made famous here:
https://tinyurl.com/ycbchcgn
ifr <- system.file("extdata/ifremer", "20171002.nc", package = "tidync")
ifrnc <- tidync(ifr)
ifrnc %>% hyper_tibble(select_var = "concentration")

Index

activate, 2
activate(), 3, 14
active (activate), 2
active(), 3
active<- (activate), 2

dplyr, 7
dplyr::filter(), 6
dplyr::mutate(), 6

hyper_array, 4, 14
hyper_array(), 5, 7–9, 13, 14
hyper_dims (hyper_vars), 11
hyper_filter, 6
hyper_filter(), 3–8, 14, 15
hyper_grids (hyper_vars), 11
hyper_grids(), 3
hyper_slice (hyper_array), 4
hyper_tbl_cube, 7
hyper_tbl_cube(), 3, 5, 9
hyper_tibble, 8
hyper_tibble(), 3, 5, 8, 9
hyper_transforms, 10
hyper_transforms(), 5
hyper_vars, 11, 13, 15

nc_get, 12

print, 11, 15
print(), 4
print.tidync, 12
print.tidync_data, 5, 13

tbl_cube, 7
tidync, 5, 6, 13, 14
tidync(), 4, 14
tidync_data, 4
tidync_data (hyper_array), 4
transforms, 7

17

	activate
	hyper_array
	hyper_filter
	hyper_tbl_cube
	hyper_tibble
	hyper_transforms
	hyper_vars
	nc_get
	print.tidync
	print.tidync_data
	tidync
	Index

