Sparse Linear Method(SLIM) predicts ratings and top-n recommendations suited for sparse implicit positive feedback systems. SLIM is decomposed into multiple elasticnet optimization problems which are solved in parallel over multiple cores. The package is based on "SLIM: Sparse Linear Methods for Top-N Recommender Systems" by Xia Ning and George Karypis <doi:10.1109/ICDM.2011.134>.
Version: | 0.1.0 |
Depends: | R (≥ 3.3.3), stats (≥ 3.3.3) |
Imports: | assertthat (≥ 0.1), parallel (≥ 3.3.3), Matrix (≥ 1.2.8), glmnet (≥ 2.0.5), bigmemory (≥ 4.5.19), pbapply (≥ 1.3.2) |
Published: | 2017-03-25 |
DOI: | 10.32614/CRAN.package.slimrec |
Author: | Srikanth KS [aut, cre] |
Maintainer: | Srikanth KS <sri.teach at gmail.com> |
License: | GPL-3 |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | slimrec results |
Reference manual: | slimrec.pdf |
Package source: | slimrec_0.1.0.tar.gz |
Windows binaries: | r-devel: slimrec_0.1.0.zip, r-release: slimrec_0.1.0.zip, r-oldrel: slimrec_0.1.0.zip |
macOS binaries: | r-release (arm64): slimrec_0.1.0.tgz, r-oldrel (arm64): slimrec_0.1.0.tgz, r-release (x86_64): slimrec_0.1.0.tgz, r-oldrel (x86_64): slimrec_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=slimrec to link to this page.