Because this is free fall of a particle in one-dimension, for vertical motion, we use Newton’s second law:
\[ m \frac{d^2y} {dt^2} = F \] and we know that the gravitational force is: \[ F = -mg \] Therefore: \[ m \frac{d^2y} {dt^2} = -g \] That expressing as first-order differential equations: \[ \frac {dy}{dt} = v \\ \frac {dv}{dt} = -g \]
(\(y\)), we define the numerical state equations as:
state[1] x
state[2] v
state[3] t
From the equations of motion for a falling particle, the derivatives are: \[ \dot s_1 = s_2 \\ \dot s_2 = -g \\ \dot s_3 = 1 \] which is equivalent of writing this as the rate in the code: \[ r_1 = r_2 \\ r_2 = -g \\ r_3 = 1 \]
We don’t indicate the ODE solver at this time. That is done in the application in the next section.
library(rODE)
# This code can also be found in the `examples` folder under this name:
# FallingParticleODE.R
#
setClass("FallingParticleODE", slots = c(
g = "numeric"
),
prototype = prototype(
g = 9.8
),
contains = c("ODE")
)
setMethod("initialize", "FallingParticleODE", function(.Object, ...) {
.Object@state <- vector("numeric", 3)
return(.Object)
})
setMethod("getState", "FallingParticleODE", function(object, ...) {
# Gets the state variables.
return(object@state)
})
setMethod("getRate", "FallingParticleODE", function(object, state, ...) {
# Gets the rate of change using the argument's state variables.
object@rate[1] <- state[2]
object@rate[2] <- - object@g
object@rate[3] <- 1
object@rate
})
# constructor
FallingParticleODE <- function(y, v) {
.FallingParticleODE <- new("FallingParticleODE")
.FallingParticleODE@state[1] <- y
.FallingParticleODE@state[2] <- v
.FallingParticleODE@state[3] <- 0
.FallingParticleODE
}
## [1] "initialize"
## [1] "getState"
## [1] "getRate"
# This code can also be found in the `examples` folder under this name:
#
# FallingParticleODEApp.R
#
#
FallingParticleODEApp <- function(verbose = FALSE) {
library(ggplot2)
# load the R class that sets up the solver for this application
initial_y <- 10 # initial y position
initial_v <- 0 # initial x position
dt <- 0.01 # delta time for step
ball <- FallingParticleODE(initial_y, initial_v)
solver <- Euler(ball)
solver <- setStepSize(solver, dt)
rowVector <- vector("list")
i <- 1
# stop loop when the ball hits the ground
while (ball@state[1] >= 0) {
rowVector[[i]] <- list(state1 = ball@state[1],
state2 = ball@state[2],
state3 = ball@state[3])
solver <- step(solver)
ball <- solver@ode
if (verbose) {
cat(sprintf("%12f %12f ", ball@state[1], ball@rate[1] ))
cat(sprintf("%12f %12f ", ball@state[2], ball@rate[2] ))
cat(sprintf("%12f %12f\n", ball@state[3], ball@rate[3] ))
}
i <- i + 1
}
DT <- data.table::rbindlist(rowVector)
print(ggplot(DT, aes(x = state3, y = state1)) + geom_line(col = "blue"))
print(ggplot(DT, aes(x = state3, y = state2)) + geom_line(col = "red"))
}
FallingParticleODEApp()