This vignette presents a in-depth overview of the
qqplotr
package.
The qqplotr
package extends some ggplot2
functionalities by permitting the drawing of both quantile-quantile
(Q-Q) and probability-probability (P-P) points, lines, and confidence
bands. The functions of this package also allow a detrend adjustment of
the plots, proposed by Thode (2002) to help reduce visual bias when
assessing the results.
If you would like to install the development version of
qqplotr
, you may do so by using, for example,
devtools
:
# install.packages("devtools")
library(devtools)
::install_github("aloy/qqplotr") devtools
If, instead, you wish to install the stable CRAN version, then simply do:
install.packages("qqplotr")
The functions of this package, implemeneted as Stats from
ggplot2
, are divided into two groups: (1) Q-Q and (2) P-P
plots.
Both groups are composed of three functions: point, line, and band. Those Stats complement each other when drawn together, but they may also be plotted independently.
Below we will give an overview of all those Stats and, further in the document, we will present some usage examples.
stat_qq_point
This is a modified version of
ggplot2::stat_qq
with some parameters adjustments and a new
option to detrend the points.stat_qq_line
Draws a reference line based on the data
quantiles, as in stats::qqline
.stat_qq_band
Draws confidence bands based on three
methods: "pointwise"
, "boot"
,
"ks"
, and "ts"
:
"pointwise"
constructs simultaneous confidence bands
based on the normal distribution;"boot"
creates pointwise confidence bands based on a
parametric boostrap;"ks"
constructs simultaneous confidence bands based on
an inversion of the Kolmogorov-Smirnov test;"ts"
constructs tail-sensitive confidence bands, as
proposed by Aldor-Noiman et al. (2013).In order to facilitate the visualization of multiple Q-Q band methods
at the same time, the geom_qq_band
Geom was also
implemented. Its usage will be illustrated further below.
stat_pp_point
Plots cumulative probabilities versus
probability points. The cumulative probability function is constructed
with the sample data, and then evaluated at each probability point.stat_pp_line
Draws a reference identity line (\(x = y\)).stat_pp_band
Draws confidence bands. For now, only the
bootstrap version ("boot"
) is available.Start by loading the qqplotr
package:
require(qqplotr)
Let’s start by simulating from a standard Normal distribution:
set.seed(0)
<- data.frame(norm = rnorm(100)) smp
Then, we use the provided stat_qq_*
functions to
construct a complete Q-Q plot with the points, reference line, and the
confidence bands. As default, the standard Q-Q Normal plot with Normal
confidence bands is constructed:
<- ggplot(data = smp, mapping = aes(sample = norm)) +
gg stat_qq_band() +
stat_qq_line() +
stat_qq_point() +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles")
gg
As we can see, all the points lie within the confidence bands, which is expected for the given distribution.
As previously described in the Details section, three confidence
bands constructs are available, which may be adjusted with the
bandType
parameter. Here, we may use the
geom_qq_band
instead of stat_qq_band
, which
permits a little more flexibility with the graphical parameters when
constructing and visualizing different confidence bands.
<- ggplot(data = smp, mapping = aes(sample = norm)) +
gg geom_qq_band(bandType = "ks", mapping = aes(fill = "KS"), alpha = 0.5) +
geom_qq_band(bandType = "ts", mapping = aes(fill = "TS"), alpha = 0.5) +
geom_qq_band(bandType = "pointwise", mapping = aes(fill = "Normal"), alpha = 0.5) +
geom_qq_band(bandType = "boot", mapping = aes(fill = "Bootstrap"), alpha = 0.5) +
stat_qq_line() +
stat_qq_point() +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles") +
scale_fill_discrete("Bandtype")
gg
To construct Q-Q plots with other theoretical distributions we may
use the distribution
parameter. Specific distributional
parameters may be passed as a list to the dparams
paramater.
Note that distributional parameters have little impact when building Q-Q plots, as changing them will only modify the x-axis range. In contrast, those paramaters will have a higher effect on P-P plots.
Now, let’s use draw the Q-Q plot functions for the mean ozone
levels from the airquality
dataset . Since the data is
non-negative, lets choose the Exponential distribution
(exp
) as the theoretical.
It is important to note that the distribution nomenclature follows that from the
stats
package. So, if you wish to provide a custom distribution, you may do so by creating the density, cumulative, quantile, and random functions following the standard nomenclature from thestats
package, i.e., for the"custom"
distribution, you must define"dcustom"
,"pcustom"
,"qcustom"
, and"rcustom"
functions.
That being said, let’s set distribution = "exp"
and
rate = 2
(the latter one just to exemplify the usage of
dparams
):
<- "exp" # exponential distribution
di <- list(rate = 2) # exponential rate parameter
dp
<- ggplot(data = airquality, mapping = aes(sample = Ozone)) +
gg stat_qq_band(distribution = di, dparams = dp) +
stat_qq_line(distribution = di, dparams = dp) +
stat_qq_point(distribution = di, dparams = dp) +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles")
gg
The qqplotr
package also offers the option to
detrend Q-Q and P-P plots in order to help reducing visual bias
caused by the orthogonal distances from points to the reference lines
(Thode, 2002). That bias may cause wrong conclusions to be drawn via
visual inference of the plot. To do that we must set
detrend = TRUE
:
<- "exp"
di <- list(rate = 2)
dp <- TRUE # enabling the detrend option
de
<- ggplot(data = airquality, mapping = aes(sample = Ozone)) +
gg stat_qq_band(distribution = di, dparams = dp, detrend = de) +
stat_qq_line(distribution = di, dparams = dp, detrend = de) +
stat_qq_point(distribution = di, dparams = dp, detrend = de) +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles")
gg
Note that the detrend option causes to plot to “rotate”, that is, instead of being presented as a diagonal plot, we visualize the data in a horizontal manner.
The Q-Q plot functions are also compatible with many
ggplot2
operators, such as Facets (sub-plots). For
instance, lets consider the barley dataset from the
lattice
package to illustrate how Facets behave when
applied to the Q-Q plot functions:
# install.packages("lattice")
data("barley", package = "lattice")
<- ggplot(data = barley, mapping = aes(sample = yield, color = site, fill = site)) +
gg stat_qq_band(alpha=0.5) +
stat_qq_line() +
stat_qq_point() +
facet_wrap(~ site) +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles")
gg
Let’s start by plotting the previously simulated Normal data versus the standard Normal distribution:
<- ggplot(data = smp, mapping = aes(sample = norm)) +
gg stat_pp_band() +
stat_pp_line() +
stat_pp_point() +
labs(x = "Probability Points", y = "Cumulative Probability")
gg
Notice that the label names are different from those of the Q-Q plots. Here, the cumulative probability points (y-axis) are constructed by evaluating the theoretical CDF on sample quantiles.
As discussed before, in the case of P-P plots the distributional parameters do impact the results. For instance, say we want to evaluate the same standard Normal data with a shifted and rescaled Normal(2,2) distribution:
<- list(mean = 2, sd = 2) # shifted and rescaled Normal parameters
dp
<- ggplot(data = smp, mapping = aes(sample = norm)) +
gg stat_pp_band(dparams = dp) +
stat_pp_line() +
stat_pp_point(dparams = dp) +
labs(x = "Probability Points", y = "Cumulative Probability")
gg
As we already know, the plot shows that the chosen Normal distribution parameters are not appropriate for the input data.
Also notice that the stat_pp_line
function lacks the
dparams
paramater. The reason is that
stat_pp_line
draws by default the identity line and, thus,
it isn’t dependent of the sample data and/or its distribution. However,
if the user wishes to draw another line (different from the identity)
he/she may do so by providing the intercept and slope values,
respectively, as a vector of length two to the ab
parameter:
<- ggplot(data = smp, mapping = aes(sample = norm)) +
gg stat_pp_band() +
stat_pp_line(ab = c(.2, .5)) + # intercept = 0.2, slope = 0.5
stat_pp_point() +
labs(x = "Probability Points", y = "Cumulative Probability")
gg
We may also detrend the P-P plots in the same way as before. Let’s
evaluate again the mean ozone levels from the
airquality
dataset. We had previously seen that the
Exponential distribution was more appropriate than the Normal
distribution, so let’s take that into account:
<- "exp"
di <- list(rate = .022) # value is based on some empirical tests
dp <- TRUE
de
<- ggplot(data = airquality, mapping = aes(sample = Ozone)) +
gg stat_pp_band(distribution = di, detrend = de, dparams = dp) +
stat_pp_line(detrend = de) +
stat_pp_point(distribution = di, detrend = de, dparams = dp) +
labs(x = "Probability Points", y = "Cumulative Probability") +
scale_y_continuous(limits = c(-.5, .5))
gg
Based on empirical tests, we set the rate parameter to
rate = .022
. That value let the most P-P points inside the
confidence bands. Even so, that group of outside the confidence bands
(at the lower tail) indicate that a more appropriate distribution should
be selected.
In this package, we also included an interactive Shiny app with which you’re able to explore this package functions and its parameters. To run the app, simply call:
runShinyExample()