powerNLSEM: Simulation-Based Power Estimation (MSPE) for Nonlinear SEM
Model-implied simulation-based power estimation (MSPE) for
nonlinear (and linear) SEM, path analysis and regression analysis. A
theoretical framework is used to approximate the relation between
power and sample size for given type I error rates and effect sizes.
The package offers an adaptive search algorithm to find the optimal N for
given effect sizes and type I error rates. Plots can be used to visualize
the power relation to N for different parameters of interest (POI).
Theoretical justifications are given in Irmer et al.
(2024a) <doi:10.31219/osf.io/pe5bj> and detailed description
are given in Irmer et al. (2024b) <doi:10.3758/s13428-024-02476-3>.
Version: |
0.1.2 |
Depends: |
ggplot2, stats, utils |
Imports: |
crayon, lavaan (≥ 0.6.16), mvtnorm, numDeriv, pbapply, rlang (≥ 1.1.0), stringr |
Suggests: |
knitr, MplusAutomation (≥ 0.7-2), rmarkdown, semTools, simsem |
Published: |
2024-09-27 |
DOI: |
10.32614/CRAN.package.powerNLSEM |
Author: |
Julien Patrick Irmer
[aut, cre,
cph] |
Maintainer: |
Julien Patrick Irmer <jpirmer at gmail.com> |
BugReports: |
https://github.com/jpirmer/powerNLSEM/issues |
License: |
GPL-3 |
URL: |
https://github.com/jpirmer/powerNLSEM |
NeedsCompilation: |
no |
Citation: |
powerNLSEM citation info |
Materials: |
README NEWS |
CRAN checks: |
powerNLSEM results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=powerNLSEM
to link to this page.