jSDM
is an R package for fitting joint species
distribution models (JSDM) in a hierarchical Bayesian framework.
The Gibbs sampler is written in C++. It uses Rcpp, Armadillo and GSL to maximize computation efficiency.
Package: | jSDM |
---|---|
Type: | Package |
Version: | 0.2.1 |
Date: | 2019-01-11 |
License: | GPL-3 |
LazyLoad: | yes |
The package includes the following functions to fit various species distribution models :
function | data type | data format |
---|---|---|
jSDM_binomial_logit() |
presence-absence | wide |
jSDM_binomial_probit() |
presence-absence | wide |
jSDM_binomial_probit_sp_constrained() |
presence-absence | wide |
jSDM_binomial_probit_long_format() |
presence-absence | long |
jSDM_poisson_log() |
abundance | wide |
jSDM_gaussian() |
continuous | wide |
jSDM_binomial_probit()
:
Ecological process:
\[y_{ij} \sim \mathcal{B}ernoulli(\theta_{ij}),\] where
conditions | model specification |
---|---|
if n_latent=0 and
site_effect="none" |
probit\((\theta_{ij}) = \beta_{0j} + X_i \beta_j\) |
if n_latent>0 and
site_effect="none" |
probit\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + W_i \lambda_j\) |
if n_latent=0 and
site_effect="random" |
probit\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + \alpha_i\) and \(\alpha_i \sim \mathcal{N}(0,V_\alpha)\) |
if n_latent>0 and
site_effect="fixed" |
probit\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + W_i \lambda_j + \alpha_i\) |
if n_latent=0 and
site_effect="fixed" |
probit\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + \alpha_i\) |
if n_latent>0 and
site_effect="random" |
probit\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + W_i \lambda_j + \alpha_i\) and \(\alpha_i \sim \mathcal{N}(0,V_\alpha)\) |
jSDM_binomial_probit_sp_constrained()
:
This function allows to fit the same models than the function
jSDM_binomial_probit
except for models not including latent
variables, indeed n_latent
must be greater than zero in
this function.
At first, the function fit a JSDM with the constrained species
arbitrarily chosen as the first ones in the presence-absence
data-set.
Then, the function evaluates the convergence of MCMC \(\lambda\) chains using the Gelman-Rubin
convergence diagnostic (Gelman & Rubin 1992) (\(\hat{R}\)). It identifies the species
(\(\hat{j}_l\)) having the higher \(\hat{R}\) for \(\lambda_{\hat{j}_l}\). These species drive
the structure of the latent axis \(l\).
The \(\lambda\) corresponding to this
species are constrained to be positive and placed on the diagonal of the
\(\Lambda\) matrix for fitting a second
model.
This usually improves the convergence of the latent variables and factor
loadings. The function returns the parameter posterior distributions for
this second model.
jSDM_binomial_logit()
:
Ecological process :
\[y_{ij} \sim \mathcal{B}inomial(\theta_{ij},t_i),\] where
conditions | model specification |
---|---|
if n_latent=0 and
site_effect="none" |
logit\((\theta_{ij}) = \beta_{0j} + X_i \beta_j\) |
if n_latent>0 and
site_effect="none" |
logit\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + W_i \lambda_j\) |
if n_latent=0 and
site_effect="fixed" |
logit\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + \alpha_i\) |
if n_latent>0 and
site_effect="fixed" |
logit\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + W_i \lambda_j + \alpha_i\) |
if n_latent=0 and
site_effect="random" |
logit\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + \alpha_i\) and \(\alpha_i \sim \mathcal{N}(0,V_{\alpha})\) |
if n_latent>0 and
site_effect="random" |
logit\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + W_i \lambda_j + \alpha_i\) and \(\alpha_i \sim \mathcal{N}(0,V_\alpha)\) |
jSDM_poisson_log()
:
Ecological process :
\[y_{ij} \sim \mathcal{P}oisson(\theta_{ij}),\]
where
conditions | model specification |
---|---|
if n_latent=0 and
site_effect="none" |
log\((\theta_{ij}) = \beta_{0j} + X_i \beta_j\) |
if n_latent>0 and
site_effect="none" |
log\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + W_i \lambda_j\) |
if n_latent=0 and
site_effect="fixed" |
log\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + \alpha_i\) |
if n_latent>0 and
site_effect="fixed" |
log\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + W_i \lambda_j + \alpha_i\) |
if n_latent=0 and
site_effect="random" |
log\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + \alpha_i\) and \(\alpha_i \sim \mathcal{N}(0,V_\alpha)\) |
if n_latent>0 and
site_effect="random" |
log\((\theta_{ij}) = \beta_{0j} + X_i \beta_j + W_i \lambda_j + \alpha_i\) and \(\alpha_i \sim \mathcal{N}(0,V_\alpha)\) |
jSDM_binomial_probit_long_format()
:
Ecological process:
\[y_{n} \sim \mathcal{B}ernoulli(\theta_n),\] such as \(species_n=j\) and \(site_n=i\), where
conditions | model specification |
---|---|
if n_latent=0 and
site_effect="none" |
probit\((\theta_n) = D_n \gamma + X_n \beta_j\) |
if n_latent>0 and
site_effect="none" |
probit\((\theta_n) = D_n \gamma + X_n \beta_j + W_i \lambda_j\) |
if n_latent=0 and
site_effect="random" |
probit\((\theta_n) = D_n \gamma + X_n \beta_j + \alpha_i\) and \(\alpha_i \sim \mathcal{N}(0,V_\alpha)\) |
if n_latent>0 and
site_effect="fixed" |
probit\((\theta_n) = D_n \gamma + X_n \beta_j + W_i \lambda_j + \alpha_i\) |
if n_latent=0 and
site_effect="fixed" |
probit\((\theta_n) = D_n \gamma + X_n \beta_j + \alpha_i\) |
if n_latent>0 and
site_effect="random" |
probit\((\theta_n) = D_n \gamma + X_n \beta_j + W_i \lambda_j + \alpha_i\) and \(\alpha_i \sim \mathcal{N}(0,V_\alpha)\) |
jSDM_gaussian()
:
Ecological process:
\[y_{ij} \sim \mathcal{N}(\theta_{ij}, V),\] where
conditions | model specification |
---|---|
if n_latent=0 and
site_effect="none" |
\(\theta_{ij} = \beta_{0j} + X_i \beta_j\) |
if n_latent>0 and
site_effect="none" |
\(\theta_{ij} = \beta_{0j} + X_i \beta_j + W_i \lambda_j\) |
if n_latent=0 and
site_effect="random" |
\(\theta_{ij} = \beta_{0j} + X_i \beta_j + \alpha_i\) and \(\alpha_i \sim \mathcal{N}(0,V_\alpha)\) |
if n_latent>0 and
site_effect="fixed" |
\(\theta_{ij} = \beta_{0j} + X_i \beta_j + W_i \lambda_j + \alpha_i\) |
if n_latent=0 and
site_effect="fixed" |
\(\theta_{ij} = \beta_{0j} + X_i \beta_j + \alpha_i\) |
if n_latent>0 and
site_effect="random" |
\(\theta_{ij} = \beta_{0j} + X_i \beta_j + W_i \lambda_j + \alpha_i\) and \(\alpha_i \sim \mathcal{N}(0,V_\alpha)\) |
Joint Species distribution models (jSDM) are useful tools to explain or predict species range and abundance from various environmental factors and species correlations (Warton et al. 2015). jSDM is becoming an increasingly popular statistical method in conservation biology.
In this vignette, we illustrate the use of the jSDM
R
package which aims at providing user-friendly statistical functions
using field observations (occurrence or abundance data) to fit jSDMs
models.
Package’s functions are developed in a hierarchical Bayesian framework and use adaptive rejection Metropolis sampling algorithms or conjugate priors within Gibbs sampling to estimate model’s parameters. Using compiled C++ code for the Gibbs sampler reduce drastically the computation time. By making these new statistical tools available to the scientific community, we hope to democratize the use of more complex, but more realistic, statistical models for increasing knowledge in ecology and conserving biodiversity.
(ref:cap-DAG) A graphical summary of the jSDM-package
statistical framework. In this Directed Acyclic Graph (DAG), the orange
boxes refer to data, the blue ellipses to parameters to be estimated,
and the arrows to functional relationships described with the help of
statistical distributions.
Model types available in jSDM
R package are not limited
to those described in this example. jSDM
includes various
model types for occurrence and abundance data, you can find more
examples of use on the jSDM
website.
We first load the jSDM
library.
Below, we show an example of the use of jSDM-package
for
fitting species distribution model to occurence data for 9 frog’s
species.
Referring to the models used in the articles Warton et al. (2015) and Albert & Siddhartha (1993), we define the following model :
\[ \mathrm{probit}(\theta_{ij}) =\alpha_i + \beta_{0j}+X_i.\beta_j+ W_i.\lambda_j \]
Link function probit: \(\mathrm{probit}: q \rightarrow \Phi^{-1}(q)\) where \(\Phi\) correspond to the repartition function of the reduced centred normal distribution.
Response variable: \(Y=(y_{ij})^{i=1,\ldots,nsite}_{j=1,\ldots,nsp}\) with:
\[y_{ij}=\begin{cases} 0 & \text{ if species $j$ is absent on the site $i$}\\ 1 & \text{ if species $j$ is present on the site $i$}. \end{cases}\]
\[y_{ij}=\begin{cases} 1 & \text{if} \ z_{ij} > 0 \\ 0 & \text{otherwise.} \end{cases}\]
It can be easily shown that: \(y_{ij} \sim \mathcal{B}ernoulli(\theta_{ij})\).
Latent variables: \(W_i=(W_i^1,\ldots,W_i^q)\) where \(q\) is the number of latent variables considered, which has to be fixed by the user (by default q=2). We assume that \(W_i \sim \mathcal{N}(0,I_q)\) and we define the associated coefficients: \(\lambda_j=(\lambda_j^1,\ldots, \lambda_j^q)'\). We use a prior distribution \(\mathcal{N}(0,1)\) for all lambdas not concerned by constraints to \(0\) on upper diagonal and to strictly positive values on diagonal.
Explanatory variables: bioclimatic data about each site. \(X=(X_i)_{i=1,\ldots,nsite}\) with \(X_i=(x_i^1,\ldots,x_i^p)\in \mathbb{R}^p\) where \(p\) is the number of bioclimatic variables considered. The corresponding regression coefficients for each species \(j\) are noted : \(\beta_j=(\beta_j^1,\ldots,\beta_j^p)'\).
\(\beta_{0j}\) correspond to the intercept for species \(j\) which is assume to be a fixed effect. We use a prior distribution \(\mathcal{N}(0,1)\) for all betas.
\(\alpha_i\) represents the random effect of site \(i\) such as \(\alpha_i \sim \mathcal{N}(0,V_{\alpha})\) and we assumed that \(V_{\alpha} \sim \mathcal {IG}(\text{shape}=0.1, \text{rate}=0.1)\) as prior distribution by default.
(ref:cap-frog) Litoria ewingii (Wilkinson et al. 2019).
This data-set is available in jSDM-package
.
It can be loaded with the data()
command. The frogs
dataset is in “wide” format: each line is a site and the occurrence data
(from Species_1 to Species_9) are in columns. A site is characterized by
its x-y geographical coordinates, one discrete covariate and two other
continuous covariates.
# frogs data
data(frogs, package="jSDM")
head(frogs)
#> Covariate_1 Covariate_2 Covariate_3 Species_1 Species_2 Species_3 Species_4
#> 1 3.870111 0 0.045334 1 0 0 0
#> 2 3.326950 1 0.115903 0 0 0 0
#> 3 2.856729 1 0.147034 0 0 0 0
#> 4 1.623249 1 0.124283 0 0 0 0
#> 5 4.629685 1 0.081655 0 0 0 0
#> 6 0.698970 1 0.107048 0 0 0 0
#> Species_5 Species_6 Species_7 Species_8 Species_9 y x
#> 1 0 0 0 0 0 66.41479 9.256424
#> 2 0 1 0 0 0 67.03841 9.025588
#> 3 0 1 0 0 0 67.03855 9.029416
#> 4 0 1 0 0 0 67.04200 9.029745
#> 5 0 1 0 0 0 67.04439 9.026514
#> 6 0 0 0 0 0 67.03894 9.023580
We rearrange the data in two data-sets: a first one for the presence-absence observations for each species (columns) at each site (rows), and a second one for the site characteristics.
We also normalize the continuous explanatory variables to facilitate MCMC convergence.
We use the jSDM_binomial_probit()
function to fit the
jSDM (increase the number of iterations to achieve convergence).
mod_frogs_jSDM_probit <- jSDM_binomial_probit(
# Chains
burnin=1000, mcmc=1000, thin=1,
# Response variable
presence_data = PA_frogs,
# Explanatory variables
site_formula = ~.,
site_data = Env_frogs,
# Model specification
n_latent=2, site_effect="random",
# Starting values
alpha_start=0, beta_start=0,
lambda_start=0, W_start=0,
V_alpha=1,
# Priors
shape_Valpha=0.1,
rate_Valpha=0.1,
mu_beta=0, V_beta=1,
mu_lambda=0, V_lambda=1,
# Various
seed=1234, verbose=1)
#>
#> Running the Gibbs sampler. It may be long, please keep cool :)
#>
#> **********:10.0%
#> **********:20.0%
#> **********:30.0%
#> **********:40.0%
#> **********:50.0%
#> **********:60.0%
#> **********:70.0%
#> **********:80.0%
#> **********:90.0%
#> **********:100.0%
We visually evaluate the convergence of MCMCs by representing the trace and density a posteriori of some estimated parameters.
np <- nrow(mod_frogs_jSDM_probit$model_spec$beta_start)
oldpar <- par(no.readonly = TRUE)
## beta_j of the first two species
par(mfrow=c(2,2))
for (j in 1:2) {
for (p in 1:np) {
coda::traceplot(coda::as.mcmc(mod_frogs_jSDM_probit$mcmc.sp[[j]][,p]))
coda::densplot(coda::as.mcmc(mod_frogs_jSDM_probit$mcmc.sp[[j]][,p]),
main = paste(colnames(mod_frogs_jSDM_probit$mcmc.sp[[j]])[p],
", species : ",j), cex.main=0.9)
}
}
## lambda_j of the first two species
n_latent <- mod_frogs_jSDM_probit$model_spec$n_latent
par(mfrow=c(2,2))
for (j in 1:2) {
for (l in 1:n_latent) {
coda::traceplot(coda::as.mcmc(mod_frogs_jSDM_probit$mcmc.sp[[j]][,np+l]))
coda::densplot(coda::as.mcmc(mod_frogs_jSDM_probit$mcmc.sp[[j]][,np+l]),
main = paste(colnames(mod_frogs_jSDM_probit$mcmc.sp[[j]])
[np+l],", species : ",j), cex.main=0.9)
}
}
## Latent variables W_i for the first two sites
par(mfrow=c(2,2))
for (l in 1:n_latent) {
for (i in 1:2) {
coda::traceplot(mod_frogs_jSDM_probit$mcmc.latent[[paste0("lv_",l)]][,i],
main = paste0("Latent variable W_", l, ", site ", i),
cex.main=0.9)
coda::densplot(mod_frogs_jSDM_probit$mcmc.latent[[paste0("lv_",l)]][,i],
main = paste0("Latent variable W_", l, ", site ", i),
cex.main=0.9)
}
}
## V_alpha
par(mfrow=c(2,2))
coda::traceplot(mod_frogs_jSDM_probit$mcmc.V_alpha)
coda::densplot(mod_frogs_jSDM_probit$mcmc.V_alpha)
## Deviance
coda::traceplot(mod_frogs_jSDM_probit$mcmc.Deviance)
coda::densplot(mod_frogs_jSDM_probit$mcmc.Deviance)
## probit_theta
par (mfrow=c(1,2))
hist(mod_frogs_jSDM_probit$probit_theta_latent,
main = "Predicted probit theta",
xlab ="predicted probit theta")
hist(mod_frogs_jSDM_probit$theta_latent,
main = "Predicted theta",
xlab ="predicted theta")
Overall, the traces and the densities of the parameters indicate the convergence of the algorithm. Indeed, we observe on the traces that the values oscillate around averages without showing an upward or downward trend and we see that the densities are quite smooth and for the most part of Gaussian form.
After fitting the jSDM with latent variables, the full species residual correlation matrix \(R=(R_{ij})^{i=1,\ldots, n_{species}}_{j=1,\ldots, n_{species}}\) can be derived from the covariance in the latent variables such as : \[\Sigma_{ij} = \lambda_i^T .\lambda_j \], then we compute correlations from covariances : \[R_{i,j} = \frac{\Sigma_{ij}}{\sqrt{\Sigma _{ii}\Sigma _{jj}}}\].
We use the function plot_residual_cor()
to compute and
display the residual correlation matrix between species :
We use the predict.jSDM()
S3 method on the
mod_frogs_jSDM_probit
object of class jSDM
to
compute the mean (or expectation) of the posterior distributions
obtained and get the expected values of model’s parameters.
# Sites and species concerned by predictions :
## 50 sites among the 104
Id_sites <- sample.int(nrow(PA_frogs), 50)
## All species
Id_species <- colnames(PA_frogs)
# Simulate new observations of covariates on those sites
simdata <- matrix(nrow=50, ncol = ncol(mod_frogs_jSDM_probit$model_spec$site_data))
colnames(simdata) <- colnames(mod_frogs_jSDM_probit$model_spec$site_data)
rownames(simdata) <- Id_sites
simdata <- as.data.frame(simdata)
simdata$Covariate_1 <- rnorm(50)
simdata$Covariate_3 <- rnorm(50)
simdata$Covariate_2 <- rbinom(50,1,0.5)
# Predictions
theta_pred <- predict(mod_frogs_jSDM_probit, newdata=simdata, Id_species=Id_species,
Id_sites=Id_sites, type="mean")
hist(theta_pred, main="Predicted theta with simulated data", xlab="predicted theta")