Short intergraph tutorial

Michał Bojanowski


“Intergraph” is an R package with coercion routines for netowrk data objects. For more information, see

This is a short tutorial showing how to use functions in package “intergraph” using some example network data contained in the package.

1 Loading example data

To show the data, first load the packages.

library(intergraph)
library(network)
## 
## 'network' 1.18.2 (2023-12-04), part of the Statnet Project
## * 'news(package="network")' for changes since last version
## * 'citation("network")' for citation information
## * 'https://statnet.org' for help, support, and other information
library(igraph)
## 
## Attaching package: 'igraph'
## The following objects are masked from 'package:network':
## 
##     %c%, %s%, add.edges, add.vertices, delete.edges, delete.vertices,
##     get.edge.attribute, get.edges, get.vertex.attribute, is.bipartite,
##     is.directed, list.edge.attributes, list.vertex.attributes,
##     set.edge.attribute, set.vertex.attribute
## The following objects are masked from 'package:stats':
## 
##     decompose, spectrum
## The following object is masked from 'package:base':
## 
##     union

Now, these are the summaries of the “igraph” objects:

summary(exIgraph)
## IGRAPH 258c8b4 D--- 15 11 -- 
## + attr: label (v/c), label (e/c)
summary(exIgraph2)
## IGRAPH 66a1bae U--- 15 11 -- 
## + attr: label (v/c), label (e/c)

These are the summaries of the “network” objects:

exNetwork
##  Network attributes:
##   vertices = 15 
##   directed = TRUE 
##   hyper = FALSE 
##   loops = FALSE 
##   multiple = FALSE 
##   bipartite = FALSE 
##   total edges= 11 
##     missing edges= 0 
##     non-missing edges= 11 
## 
##  Vertex attribute names: 
##     label vertex.names 
## 
##  Edge attribute names: 
##     label
exNetwork2
##  Network attributes:
##   vertices = 15 
##   directed = FALSE 
##   hyper = FALSE 
##   loops = FALSE 
##   multiple = FALSE 
##   bipartite = FALSE 
##   total edges= 11 
##     missing edges= 0 
##     non-missing edges= 11 
## 
##  Vertex attribute names: 
##     label vertex.names 
## 
##  Edge attribute names: 
##     label

More information is available in the Appendix.

2 Functions asNetwork and asIgraph

Conversion of network objects between classes “network” and “igraph” can be performed using functions asNetwork and asIgraph.

2.1 network => igraph

Converting “network” objects to “igraph” is done by calling function asIgraph on a “network” object:

# check class of 'exNetwork'
class(exNetwork)
## [1] "network"
# convert to 'igraph'
g <- asIgraph(exNetwork)
# check class of the result
class(g)
## [1] "igraph"

Check if edgelists of the objects are identical

el.g <- get.edgelist(g)
## Warning: `get.edgelist()` was deprecated in igraph 2.0.0.
## ℹ Please use `as_edgelist()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
el.n <- as.matrix(exNetwork, "edgelist")
identical( as.numeric(el.g), as.numeric(el.n))
## [1] TRUE

2.2 igraph => network

Converting “igraph” objects to “network” is done by calling function asNetwork on an “igraph” object:

net <- asNetwork(exIgraph)

Note the warning because of a “non-standard” network attribute layout, which is a function. Printing “network” objects does not handle non-standard attributes very well. However, all the data and attributes are copied correctly.

Check if edgelists of the objects are identical

el.g2 <- get.edgelist(exIgraph)
el.n2 <- as.matrix(net, "edgelist")
identical( as.numeric(el.g2), as.numeric(el.n2))
## [1] TRUE

2.3 Handling attributes

Objects of class “igraph” and “network”, apart from storing actual network data (vertexes and edges), allow for adding attributes of vertexes, edges, and attributes of the network as a whole (called “network attributes” or “graph attributes” in the nomenclatures of packages “network” and “igraph” respectively).

Vertex and edge attributes are used by “igraph” and “network” in a largely similar fashion. However, network-level attributes are used differently. Objects of class “network” use network-level attributes to store various metadata, e.g., network size, whether the network is directed, is bipartite, etc. In “igraph” this information is stored separately.

The above difference affects the way the attributes are copied when we convert “network” and “igraph” objects into one another.

Both functions asNetwork and asIgraph have an additional argument attrmap that is used to specify how vertex, edge, and network attributes are copied. The attrmap argument requires a data frame. Rows of that data frame specify rules of copying/renaming different attributes. The data frame should have the following columns (all of class “character”):

The default rules are returned by a function attrmap(), these are:

attrmap()
##      type fromcls  fromattr   tocls       toattr
## 1 network network  directed  igraph         <NA>
## 2 network network bipartite  igraph         <NA>
## 3 network network     loops  igraph         <NA>
## 4 network network     mnext  igraph         <NA>
## 5 network network  multiple  igraph         <NA>
## 6 network network         n  igraph         <NA>
## 7 network network     hyper  igraph         <NA>
## 8  vertex  igraph      name network vertex.names

For example, the last row specifies a rule that when an object of class “igraph” is converted to class “network”, then a vertex attribute name in the “igraph” object will be copied to a vertex attribute called vertex.names in the resulting object of class “network.

If the column toattr contains an NA, that means that the corresponding attribute is not copied. For example, the first row specifies a rule that when an object of class “network” is converted to class “igraph”, then a network attribute directed in the “network” object is not copied to the resulting object of class “igraph”.

Users can customize the rules, or add new ones, by constructing similar data frames and supplying them through argument attrmap to functions asIgraph and asNetwork.

As an example let us set the option to always drop the na vertex attribute. First, we need to setup the rule by adding an extra row to the data frame returned by attrmap:

new_rule <- data.frame(type="vertex", fromcls="network", fromattr="na",
                       tocls="igraph", toattr=NA,
                       stringsAsFactors=FALSE)
# combine with the default rules
rules <- rbind( attrmap(), new_rule )
rules
##      type fromcls  fromattr   tocls       toattr
## 1 network network  directed  igraph         <NA>
## 2 network network bipartite  igraph         <NA>
## 3 network network     loops  igraph         <NA>
## 4 network network     mnext  igraph         <NA>
## 5 network network  multiple  igraph         <NA>
## 6 network network         n  igraph         <NA>
## 7 network network     hyper  igraph         <NA>
## 8  vertex  igraph      name network vertex.names
## 9  vertex network        na  igraph         <NA>

Now we can use it with asIgraph:

(ig1 <- asIgraph(exNetwork))
## IGRAPH 8fa0936 D--- 15 11 -- 
## + attr: label (v/c), na (v/l), vertex.names (v/c), label (e/c), na
## | (e/l)
## + edges from 8fa0936:
##  [1]  2-> 1  3-> 1  4-> 1  5-> 1  6-> 7  8-> 9 10->11 11->12 14->12 12->13
## [11] 13->14
(ig2 <- asIgraph(exNetwork, amap=rules))
## IGRAPH d22eb45 D--- 15 11 -- 
## + attr: label (v/c), vertex.names (v/c), label (e/c), na (e/l)
## + edges from d22eb45:
##  [1]  2-> 1  3-> 1  4-> 1  5-> 1  6-> 7  8-> 9 10->11 11->12 14->12 12->13
## [11] 13->14
# check if "na" was dropped
"na" %in% igraph::vertex_attr_names(ig1)
## [1] TRUE
"na" %in% igraph::vertex_attr_names(ig2)
## [1] FALSE

3 Network objects to/from data frames

Function asDF can be used to convert network object (of class “igraph” or “network”) to a list of two data frames:

l <- asDF(exIgraph)
str(l)
## List of 2
##  $ edges   :'data.frame':    11 obs. of  3 variables:
##   ..$ V1   : num [1:11] 2 3 4 5 6 8 10 11 12 13 ...
##   ..$ V2   : num [1:11] 1 1 1 1 7 9 11 12 13 14 ...
##   ..$ label: chr [1:11] "ba" "ca" "da" "ea" ...
##  $ vertexes:'data.frame':    15 obs. of  2 variables:
##   ..$ intergraph_id: int [1:15] 1 2 3 4 5 6 7 8 9 10 ...
##   ..$ label        : chr [1:15] "a" "b" "c" "d" ...

The resulting list has two components edges and vertexes. The edges component is essentially an edge list containing ego and alter ids in the first two columns. The remaining columns store edge attributes (if any). For our example data it is

l$edges
##    V1 V2 label
## 1   2  1    ba
## 2   3  1    ca
## 3   4  1    da
## 4   5  1    ea
## 5   6  7    fg
## 6   8  9    hi
## 7  10 11    jk
## 8  11 12    kl
## 9  12 13    lm
## 10 13 14    mn
## 11 14 12    nl

The vertexes component contains data on vertexes with vertex id (the same that is used in the first two column of edges) is stored in the first two columns. The remaining columns store vertex attributes (if any). For our example data it is:

l$vertexes
##    intergraph_id label
## 1              1     a
## 2              2     b
## 3              3     c
## 4              4     d
## 5              5     e
## 6              6     f
## 7              7     g
## 8              8     h
## 9              9     i
## 10            10     j
## 11            11     k
## 12            12     l
## 13            13     m
## 14            14     n
## 15            15     o

Functions asNetwork and asIgraph can also be used to create network objects from data frames such as those above. The first argument should be an edge list data frame. Optional argument vertices expectes data frames with vertex data (just like l$vertexes). Additionally we need to specify whether the edges should be interpreted as directed or not through the argument directed.

For example, to create an object of class “network” from the dataframes created above from object exIgraph we can:

z <- asNetwork(l$edges, directed=TRUE, l$vertexes)
z
##  Network attributes:
##   vertices = 15 
##   directed = TRUE 
##   hyper = FALSE 
##   loops = FALSE 
##   multiple = FALSE 
##   bipartite = FALSE 
##   total edges= 11 
##     missing edges= 0 
##     non-missing edges= 11 
## 
##  Vertex attribute names: 
##     label vertex.names 
## 
##  Edge attribute names: 
##     label

This is actually what basically happens when we call asNetwork(exIgraph)


4 Appendix

4.1 Example networks

Package intergraph contains four example networks:

All four datasets contain:

We will use them in the examples below.

Networks are shown below using the following code:

layout(matrix(1:4, 2, 2, byrow=TRUE))
op <- par(mar=c(1,1,2,1))
# compute layout
coords <- layout.fruchterman.reingold(exIgraph)
plot(exIgraph, main="exIgraph", layout=coords)
plot(exIgraph2, main="exIgraph2", layout=coords)
plot(exNetwork, main="exNetwork", displaylabels=TRUE, coord=coords)
plot(exNetwork2, main="exNetwork2", displaylabels=TRUE, coord=coords)
par(op)

4.2 Session information

sessionInfo()
## R version 4.3.2 (2023-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=pl_PL.UTF-8        LC_COLLATE=C              
##  [5] LC_MONETARY=pl_PL.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=pl_PL.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=pl_PL.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: Europe/Warsaw
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] igraph_2.0.1.1   network_1.18.2   knitr_1.45       intergraph_2.0-4
## 
## loaded via a namespace (and not attached):
##  [1] crayon_1.5.2         vctrs_0.6.5          cli_3.6.2           
##  [4] rlang_1.1.3          xfun_0.41            highr_0.10          
##  [7] jsonlite_1.8.8       glue_1.7.0           htmltools_0.5.7     
## [10] sass_0.4.8           fansi_1.0.6          rmarkdown_2.25      
## [13] grid_4.3.2           evaluate_0.23        jquerylib_0.1.4     
## [16] tibble_3.2.1         fastmap_1.1.1        yaml_2.3.8          
## [19] lifecycle_1.0.4      compiler_4.3.2       coda_0.19-4         
## [22] pkgconfig_2.0.3      statnet.common_4.9.0 lattice_0.22-5      
## [25] digest_0.6.34        R6_2.5.1             utf8_1.2.4          
## [28] pillar_1.9.0         magrittr_2.0.3       bslib_0.6.1         
## [31] tools_4.3.2          cachem_1.0.8