library(injurytools)
library(ggplot2)
library(dplyr)
library(gridExtra)
library(grid)
library(knitr)
Example data: we continue exploring the cohort of Liverpool Football Club male’s first team players over two consecutive seasons, 2017-2018 and 2018-2019, scrapped from https://www.transfermarkt.com/ website1.
gg_injphoto(injd,
title = "Overview of injuries:\nLiverpool FC 1st male team during 2017-2018 and 2018-2019 seasons",
by_date = "2 month",
fix = TRUE) +
## plus some lines of ggplot2 code..
xlab("Follow-up date") + ylab("Players") + labs(caption = "source: transfermarkt.com") +
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 22),
axis.text.x.bottom = element_text(size = 13, angle = 20, hjust = 1),
axis.text.y.left = element_text(size = 12),
axis.title.x = element_text(size = 20, face = "bold", vjust = -1),
axis.title.y = element_text(size = 20, face = "bold", vjust = 1.8),
legend.text = element_text(size = 20),
plot.caption = element_text(face = "italic", size = 12, colour = "gray10"))
Let’s count how many injuries (red crosses in the graph) occurred and how severe they were (length of the thick black line).
# warnings set to FALSE
injds <- injsummary(injd)
injds_perinj <- injsummary(injd, var_type_injury = "injury_type")
# injds
injds[["overall"]] |>
mutate(incidence_new = paste0(round(injincidence, 2), " (", round(injincidence_lower, 2), ",", round(injincidence_upper, 2), ")"),
burden_new = paste0(round(injburden, 2), " (", round(injburden_lower, 2), ",", round(injburden_upper, 2), ")")) |>
dplyr::select(1:2, 6, incidence_new, burden_new) |>
kable(col.names = c("N injuries", "N days lost", "Total expo", "Incidence (95% CI)", "Burden (95% CI)"),
caption = "Injury incidence and injury burden are reported as 100 player-matches",
align = "c")
injds_perinj[["overall"]] |>
mutate(incidence_new = paste0(round(injincidence, 2), " (", round(injincidence_lower, 2), ",", round(injincidence_upper, 2), ")"),
burden_new = paste0(round(injburden, 2), " (", round(injburden_lower, 2), ",", round(injburden_upper, 2), ")")) |>
dplyr::select(1:2, 4, 9, incidence_new, burden_new) |>
kable(col.names = c("Type of injury", "N injuries", "N days lost", "Total expo", "Incidence (95% CI)", "Burden (95% CI)"),
caption = "Injury incidence and injury burden are reported as 100 player-matches",
align = "c")
Overall
N injuries | N days lost | Total expo | Incidence (95% CI) | Burden (95% CI) |
---|---|---|---|---|
82 | 2049 | 74690 | 9.88 (7.74,12.02) | 246.9 (236.21,257.59) |
Type of injury | N injuries | N days lost | Total expo | Incidence (95% CI) | Burden (95% CI) |
---|---|---|---|---|---|
Bone | 11 | 173 | 74690 | 1.33 (0.54,2.11) | 20.85 (17.74,23.95) |
Concussion | 16 | 213 | 74690 | 1.93 (0.98,2.87) | 25.67 (22.22,29.11) |
Ligament | 9 | 596 | 74690 | 1.08 (0.38,1.79) | 71.82 (66.05,77.58) |
Muscle | 25 | 735 | 74690 | 3.01 (1.83,4.19) | 88.57 (82.16,94.97) |
Unknown | 21 | 332 | 74690 | 2.53 (1.45,3.61) | 40.01 (35.7,44.31) |
Let’s plot the information shown in the second table in a risk matrix that displays injury incidence against injury burden.
# warnings set to FALSE
gg_injriskmatrix(injds_perinj,
var_type_injury = "injury_type",
title = "Risk matrix")
# warnings set to FALSE
palette <- c("#000000", "#E69F00", "#56B4E9", "#009E73",
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")
# source of the palette: http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
theme3 <- theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20),
axis.text.x.bottom = element_text(size = 20),
axis.text.y.left = element_text(size = 20),
axis.title.x = element_text(size = 15),
axis.title.y = element_text(size = 15),
legend.title = element_text(size = 15),
legend.text = element_text(size = 15))
gg_injriskmatrix(injds_perinj,
var_type_injury = "injury_type",
title = "Risk matrix") +
scale_fill_manual(name = "Type of injury",
values = palette[c(7:8, 2:3, 5)]) +
guides(fill = guide_legend(override.aes = list(size = 5))) +
theme3
We prepare two injd
objects:
## Plot just for checking whether cut_injd() worked well
p1 <- gg_injphoto(injd1, fix = TRUE, by_date = "3 months")
p2 <- gg_injphoto(injd2, fix = TRUE, by_date = "3 months")
grid.arrange(p1, p2, ncol = 2)
Let’s compute injury summary statistics for each season.
## **Season 2017/2018**
injds1[["overall"]] |>
mutate(incidence_new = paste0(round(injincidence, 2), " (", round(injincidence_lower, 2), ",", round(injincidence_upper, 2), ")"),
burden_new = paste0(round(injburden, 2), " (", round(injburden_lower, 2), ",", round(injburden_upper, 2), ")")) |>
dplyr::select(1:2, 6, incidence_new, burden_new) |>
kable(col.names = c("N injuries", "N days lost", "Total expo", "Incidence (95% CI)", "Burden (95% CI)"),
caption = "Injury incidence and injury burden are reported as 100 player-matches",
align = "c")
## **Season 2018/2019**
injds2[["overall"]] |>
mutate(incidence_new = paste0(round(injincidence, 2), " (", round(injincidence_lower, 2), ",", round(injincidence_upper, 2), ")"),
burden_new = paste0(round(injburden, 2), " (", round(injburden_lower, 2), ",", round(injburden_upper, 2), ")")) |>
dplyr::select(1:2, 6, incidence_new, burden_new) |>
kable(col.names = c("N injuries", "N days lost", "Total expo", "Incidence (95% CI)", "Burden (95% CI)"),
caption = "Injury incidence and injury burden are reported as 100 player-matches",
align = "c")
N injuries | N days lost | Total expo | Incidence (95% CI) | Burden (95% CI) |
---|---|---|---|---|
26 | 1141 | 37364 | 6.26 (3.86,8.67) | 274.84 (258.89,290.78) |
N injuries | N days lost | Total expo | Incidence (95% CI) | Burden (95% CI) |
---|---|---|---|---|
56 | 908 | 37326 | 13.5 (9.97,17.04) | 218.94 (204.7,233.18) |
Player-wise statistics can be extracted by
injds2 <- injsummary(injd1); injds2[[1]]
(or
injds2[["playerwise"]]
). Then, we plot them:
p11 <- gg_injbarplot(injds1)
p12 <- gg_injbarplot(injds1, type = "burden")
p21 <- gg_injbarplot(injds2)
p22 <- gg_injbarplot(injds2, type = "burden")
# grid.arrange(p11, p21, p12, p22, nrow = 2)
theme2 <- theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 26),
axis.text.x.bottom = element_text(size = 18),
axis.text.y.left = element_text(size = 13),
axis.title.x = element_text(size = 11, vjust = 1),
axis.title.y = element_text(size = 22, face = "bold", vjust = 1))
p11 <- p11 +
xlab("Injury incidence") +
ylab("Player-wise incidence (injuries per 100 player-match)") +
ggtitle("2017/2018 season") +
scale_y_continuous(limits = c(0, 80)) + ## same x axis
theme2 +
theme(plot.margin = margin(0.2, 0.2, 0.2, 0.5, "cm"))
p12 <- p12 +
xlab("Injury burden") +
ylab("Player-wise burden (days lost per 100 player-match)") +
scale_y_continuous(limits = c(0, 6110)) +
theme2 +
theme(plot.margin = margin(0.2, 0.2, 0.2, 0.65, "cm"))
p21 <- p21 +
ylab("Player-wise incidence (injuries per 100 player-match)") +
ggtitle("2018/2019 season") +
scale_y_continuous(limits = c(0, 80)) +
theme2
p22 <- p22 +
ylab("Player-wise burden (days lost per 100 player-match)") +
scale_y_continuous(limits = c(0, 6110)) +
theme2
grid.arrange(p11, p21, p12, p22, nrow = 2)
# warnings set to FALSE
## Calculate summary statistics
injds1_perinj <- injsummary(injd1, var_type_injury = "injury_type")
injds2_perinj <- injsummary(injd2, var_type_injury = "injury_type")
## Plot
p1 <- gg_injriskmatrix(injds1_perinj, var_type_injury = "injury_type",
title = "Season 2017/2018", add_contour = FALSE)
p2 <- gg_injriskmatrix(injds2_perinj, var_type_injury = "injury_type",
title = "Season 2018/2019", add_contour = FALSE)
# Print both plots side by side
# grid.arrange(p1, p2, nrow = 1)
palette <- c("#000000", "#E69F00", "#56B4E9", "#009E73",
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")
# source of the palette: http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
theme3 <- theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20),
axis.text.x.bottom = element_text(size = 18),
axis.text.y.left = element_text(size = 18),
axis.title.x = element_text(size = 18),
axis.title.y = element_text(size = 18),
legend.title = element_text(size = 15),
legend.text = element_text(size = 15))
## Plot
p1 <- gg_injriskmatrix(injds1_perinj, var_type_injury = "injury_type",
title = "Season 2017/2018", add_contour = T,
cont_max_x = 6, cont_max_y = 130, ## after checking the data
bins = 15)
p2 <- gg_injriskmatrix(injds2_perinj, var_type_injury = "injury_type",
title = "Season 2018/2019", add_contour = T,
cont_max_x = 6, cont_max_y = 130,
bins = 15)
p1 <- p1 +
scale_x_continuous(limits = c(0, 5.5)) +
scale_y_continuous(limits = c(0, 125)) +
scale_fill_manual(name = "Type of injury",
values = palette[c(8, 2:3, 5)]) + # get rid off the green (pos: 4)
guides(fill = guide_legend(override.aes = list(size = 5))) +
theme3
p2 <- p2 +
scale_x_continuous(limits = c(0, 5.5)) +
scale_y_continuous(limits = c(0, 125)) +
scale_fill_manual(name = "Type of injury",
values = palette[c(7, 8, 2:3, 5)]) + # keep the same color coding
guides(fill = guide_legend(override.aes = list(size = 5))) +
theme3
grid.arrange(p1, p2, ncol = 2,
top = textGrob("Risk matrices", gp = gpar(fontsize = 26, font = 2))) ## for the main title
We will plot polar area diagrams2.
theme4 <- theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 20),
axis.text.x = element_text(size = 16),
axis.text.y = element_text(size = 18),
legend.title = element_text(size = 20),
legend.text = element_text(size = 20),
strip.text = element_text(size = 20))
gg_injprev_polar(injd, by = "monthly",
title = "Proportion of injured and available\n players in each month") +
scale_fill_manual(name = "Type of injury",
values = c("seagreen3", "red3")) +
theme4
palette2 <- c("seagreen3", "#000000", "#E69F00", "#56B4E9", "#009E73",
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")
# source of the palette: http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
gg_injprev_polar(injd, by = "monthly",
var_type_injury = "injury_type",
title = "Proportion of injured and available\n players in each month according to the type of injury") +
scale_fill_manual(name = "Type of injury",
values = palette2[c(1, 8:9, 3:4, 6)]) +
theme4
These data sets are provided for illustrative purposes. We warn that they might not be accurate and could potentially include discrepancies or incomplete information compared to what actually occurred.↩︎
See the Note section in ?injprev()
or have a look at this section in Estimate
summary statistics vignette, to better understand what the
proportions refer to.↩︎