Package ‘hexify’

February 4, 2026

Title Equal-Area Hex Grids on the 'Snyder' TSEA' 'Icosahedron’
Version 0.3.9

Description Provides functions to build and use equal-area hexagonal discrete
global grids using the 'Snyder' TSEA' projection ('Snyder' 1992
<doi:10.3138/27H7-8K88-4882-1752>). Implements the TSEA' discrete global grid
system ('Sahr', "'White' and 'Kimerling' 2003 <doi:10.1559/152304003100011090>).
Includes a fast 'C++' core for projection and aperture quantization, and
'sf'/'terra’-compatible R wrappers for grid generation and coordinate assignment.
Output is compatible with 'dggridR' for interoperability.

License MIT + file LICENSE
Language en-US

Encoding UTF-8
RoxygenNote 7.3.3

Suggests testthat (>= 3.0.0), lifecycle, knitr, rmarkdown, terra,
raster, ggplot2, RColorBrewer, rnaturalearth, tibble, gridExtra

VignetteBuilder knitr
LinkingTo Rcpp
Imports sf, Repp, methods, rlang

URL https://gillescolling.com/hexify/

BugReports https://github.com/gcol33/hexify/issues
Config/testthat/edition 3

Depends R (>=3.5)

LazyData true

NeedsCompilation yes

Author Gilles Colling [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-3070-6066>)

Maintainer Gilles Colling <gilles.colling@51@gmail.com>
Repository CRAN
Date/Publication 2026-02-04 17:00:02 UTC

https://doi.org/10.3138/27H7-8K88-4882-1752
https://doi.org/10.1559/152304003100011090
https://gillescolling.com/hexify/
https://github.com/gcol33/hexify/issues
https://orcid.org/0000-0003-3070-6066

2 Contents

Contents
hexify-package 3
as_dgegrid 3
AS_ ST . 4
as_tibble. HexData e 5
cells . . . e e e 5
cell_to_lonlat e 6
cell_to_sf e e e e 6
dgearthstat L e 7
dggrid_is_compatible 8
dgverify L 9
from_dggrid 9
globe_centers 10
grid_clip e e 11
grid_global 12
grid_info L 13
grid_rect 13
HexData-class e 14
HexGridInfo-class e 15
hexify o e 15
hexify-conversions e e 18
hexify-grid L e 18
hexify-stats L 18
hexify_build_icosa 18
hexify_compare_resolutions 19
hexify_face_centers L 20
hexify_forward 21
hexify_forward_to_face 22
hexify_get_precision e 22
hexify_grid L 23
hexify_heatmap 24
hexify_inverse L 27
hexify_projection_stats 28
hexify_roundtrip_test 29
hexify_set_precision e e e 30
hexify_set_verbose 30
hexify_which _face 31
hexify_world e 32
hex_grid 33
1s_hex_data e 35
is_hex_grid L 35
lonlat_to_cell e 36
n_cells e e e e e 37
plot,HexData,missing-method 37
plot_globe L 39
plot_grid 41

plot_world 43

hexity-package 3

Index 44

hexify-package hexify

Description

Core icosahedron and ’Snyder’ projection helpers.

Author(s)
Maintainer: Gilles Colling <gilles.colling@51@gmail.com> (ORCID) [copyright holder]

See Also
Useful links:

e https://gillescolling.com/hexify/
* Report bugs at https://github.com/gcol33/hexify/issues

as_dggrid Convert hexify grid to ’dggridR’-compatible grid object

Description
Creates a ’dggridR’-compatible grid specification from a hexify_grid object. The resulting object
can be used with ’dggridR’ functions that accept a dggs object.

Usage
as_dggrid(grid)

Arguments

grid A hexify_grid object from hexify_grid()

Value
A list with "dggridR’-compatible fields:

pole_lon_deg Longitude of grid pole (default 11.25)
pole_lat_deg Latitude of grid pole (default 58.28252559)

azimuth_deg Grid azimuth rotation (default 0)
aperture Grid aperture (3, 4, or 7)

res Resolution level

topology Grid topology ("HEXAGON")
projection Map projection CISEA’)

precision Output decimal precision (default 7)

https://orcid.org/0000-0003-3070-6066
https://gillescolling.com/hexify/
https://github.com/gcol33/hexify/issues

4 as_sf

See Also

Other "dggridR’ compatibility: dggrid_43h_sequence(), dggrid_is_compatible(), from_dggrid()

as_sf Convert HexData to sf Object

Description

Converts a HexData object to an sf spatial features object. Can create either point geometries (cell
centers) or polygon geometries (cell boundaries).

Usage
as_sf(x, geometry = c("point”, "polygon”), ...)
Arguments
X A HexData object
geometry Type of geometry: "point" (default) or "polygon"
Additional arguments (ignored)
Details

For point geometry, cell centers (cell_cen_lon, cell_cen_lat) are used. For polygon geometry, cell
boundaries are computed using the grid specification.

Value

An sf object

Examples

df <- data.frame(lon = c(@, 10, 20), lat = c(45, 50, 55))
result <- hexify(df, lon = "lon", lat = "lat"”, area_km2 = 1000)

Get sf points
sf_pts <- as_sf(result)

Get sf polygons
sf_poly <- as_sf(result, geometry = "polygon")

as_tibble.HexData

as_tibble.HexData Convert HexData to tibble

Description

Convert HexData to tibble

Usage

as_tibble.HexData(x, ...)

Arguments

X A HexData object

Additional arguments (ignored)

Value

A tibble

cells Get Cell IDs

Description

Extract the unique cell IDs present in a HexData object.

Usage

cells(x)

Arguments

X A HexData object

Value

A vector of cell IDs

6 cell to_sf

cell_to_lonlat Convert cell ID to longitude/latitude

Description

Converts DGGS cell IDs back to geographic coordinates (cell centers).

Usage
cell_to_lonlat(cell_id, grid)

Arguments

cell_id Numeric vector of cell IDs

grid A HexGridInfo or HexData object
Value

Data frame with lon_deg and lat_deg columns

See Also

lonlat_to_cell for the forward operation

Examples

grid <- hex_grid(area_km2 = 1000)
cells <- lonlat_to_cell(c(@, 10), c(45, 50), grid)
coords <- cell_to_lonlat(cells, grid)

cell_to_sf Convert cell IDs to sf polygons

Description

Creates sf polygon geometries for hexagonal grid cells.

Usage
cell_to_sf(cell_id = NULL, grid)

Arguments
cell_id Numeric vector of cell IDs. If NULL and x is HexData, uses cells from x.
grid A HexGridInfo or HexData object. If HexData and cell_id is NULL, polygons

are generated for all cells in the data.

dgearthstat 7

Details
When called with a HexData object and no cell_id argument, this function generates polygons for
all unique cells in the data, which is useful for plotting.

Value

sf object with cell_id and geometry columns

See Also

hex_grid for grid specifications, as_sf for converting HexData to sf

Examples

From grid specification

grid <- hex_grid(area_km2 = 1000)

cells <- lonlat_to_cell(c(@, 10, 20), c(45, 50, 55), grid)
polys <- cell_to_sf(cells, grid)

From HexData (all cells)

df <- data.frame(lon = c(@, 10, 20), lat = c(45, 50, 55))
result <- hexify(df, lon = "lon", lat = "lat"”, area_km2 = 1000)
polys <- cell_to_sf(grid = result)

dgearthstat Get grid statistics for Earth coverage

Description

Calculates statistics about the hexagonal grid at the current resolution, including total number of
cells, cell area, and cell spacing.

Usage

dgearthstat(dggs)
Arguments

dggs Grid specification from hexify_grid()
Value

List with components:

area_km Total Earth surface area in km”2
n_cells Total number of cells at this resolution

cell_area_km2 Average cell area in km”2

8 dggrid_is_compatible

cell_spacing_km
Average distance between cell centers in km

resolution Resolution level
aperture Grid aperture
See Also

Other grid statistics: dg_closest_res_to_area(), hexify_area_to_eff_res(), hexify_compare_resolutions(),
hexify_eff_res_to_area(), hexify_eff_res_to_resolution(), hexify_resolution_to_eff_res()

Examples

grid <- hexify_grid(area = 1000, aperture = 3)
stats <- dgearthstat(grid)

print(sprintf(”"Resolution %d has %.0f cells”,
stats$resolution, stats$n_cells))

print(sprintf(”Average cell area: %.2f km*2",
stats$cell_area_km2))

print(sprintf("Average cell spacing: %.2f km",
stats$cell_spacing_km))

dggrid_is_compatible Validate 'dggridR’ grid compatibility with hexify

Description
Checks whether a ’dggridR’ grid object is compatible with hexify functions. Returns TRUE if
compatible, or throws an error describing incompatibilities.

Usage
dggrid_is_compatible(dggs, strict = TRUE)

Arguments
dggs A ’dggridR’ grid object
strict If TRUE (default), throw errors for incompatibilities. If FALSE, return FALSE
instead of throwing errors.
Value

TRUE if compatible, FALSE if not compatible (when strict=FALSE)

See Also

Other ’dggridR’ compatibility: as_dggrid(), dggrid_43h_sequence(), from_dggrid()

dgverify 9

dgverify Verify grid object

Description
Validates that a grid object has all required fields and valid values. This function is called internally
by most hexify functions to ensure grid integrity.

Usage
dgverify(dggs)

Arguments

dggs Grid object to verify (from hexify_grid)

Value

TRUE (invisibly) if valid, otherwise throws an error

Examples

grid <- hexify_grid(area = 1000, aperture = 3)
dgverify(grid) # Should pass silently

Invalid grid will throw error
bad_grid <- list(aperture = 5)
try(dgverify(bad_grid)) # Will error

from_dggrid Convert ’dggridR’ grid object to hexify_grid

Description
Creates a hexify_grid object from a ’dggridR’ dggs object. This allows using hexify functions with
grids created by *dggridR’ dgconstruct().

Usage
from_dggrid(dggs)

Arguments

dggs A ’dggridR’ grid object from dgconstruct()

10 globe_centers

Details

Only ISEA’ projection with HEXAGON topology is fully supported. Other configurations will
generate warnings.

The function validates that the *dggridR’ grid uses compatible settings:

* Projection must be ’ISEA’ (FULLER not supported)
* Topology must be "HEXAGON" (DIAMOND, TRIANGLE not supported)
* Aperture must be 3, 4, or 7

Value

A hexify_grid object

See Also

Other *dggridR’ compatibility: as_dggrid(), dggrid_43h_sequence(), dggrid_is_compatible()

globe_centers Globe center presets

Description

Named list of lon/lat coordinates for common globe views. Used by plot_globe when center is
specified as a string.

Usage

globe_centers

Format
Named list with elements:

europe c(10, 50) - Western/Central Europe
north_america c(-100, 45) - USA and Canada
south_america c(-60, -15) - Full continent

africa ¢(20, 5) - Central Africa

asia c(100, 35) - China, SE Asia, Japan

oceania c(135, -25) - Australia, NZ, Indonesia
middle_east c(45, 25) - Arabian Peninsula, Iran, Turkey
south_asia c(80, 20) - India, Pakistan, Bangladesh
pacific c(-160, -10) - Polynesia, Pacific islands
caribbean c(-70, 18) - Caribbean islands

arctic c(0, 90) - North pole view

antarctic c(0, -90) - South pole view

grid_clip 11

Examples

globe_centers$europe
globe_centers$oceania

grid_clip Clip hexagon grid to polygon boundary

Description

Creates hexagon polygons clipped to a given polygon boundary. This is useful for generating grids
that conform to country borders, study areas, or other irregular boundaries.

Usage

grid_clip(boundary, grid, crop = TRUE)

Arguments
boundary An sf/sfc polygon to clip to. Can be a country boundary, study area, or any
polygon geometry.
grid A HexGridInfo object specifying the grid parameters
crop If TRUE (default), cells are cropped to the boundary. If FALSE, only cells
whose centroids fall within the boundary are kept (no cropping).
Details

The function first generates a rectangular grid covering the bounding box of the input polygon, then
clips or filters cells to the boundary.

When crop = TRUE, hexagons are geometrically intersected with the boundary, which may produce
partial hexagons at the edges. When crop = FALSE, only complete hexagons whose centroids fall
within the boundary are returned.

Value

sf object with hexagon polygons clipped to the boundary

See Also

grid_rect for rectangular grids, grid_global for global grids

12 grid_global

Examples

Get France boundary from built-in world map
france <- hexify_world[hexify_world$name == "France”,]

Create grid clipped to France
grid <- hex_grid(area_km2 = 2000)
france_grid <- grid_clip(france, grid)

Plot result
library(ggplot2)
ggplot() +
geom_sf(data = france, fill = "gray95") +
geom_sf(data = france_grid, fill = alpha("steelblue”, 0.3),
color = "steelblue") +
theme_minimal()

Keep only complete hexagons (no cropping)
france_grid_complete <- grid_clip(france, grid, crop = FALSE)

grid_global Generate a global hexagon grid

Description

Creates hexagon polygons covering the entire Earth.

Usage
grid_global(grid)

Arguments

grid A HexGridInfo object specifying the grid parameters

Details

This function generates a complete global grid by sampling points densely across the globe. For
large grids (many small cells), consider using grid_rect() to generate regional subsets.

Value

sf object with hexagon polygons

See Also

grid_rect for regional grids

grid_info

Examples

Coarse global grid

grid <- hex_grid(area_km2 = 100000)
global <- grid_global(grid)
plot(global)

grid_info Get Grid Specification

Description

Extract the grid specification from a HexData object.

Usage
grid_info(x)

Arguments

X A HexData object
Value

A HexGridInfo object
Examples

df <- data.frame(lon = c(@, 10, 20), lat = c(45, 50, 55))
result <- hexify(df, lon = "lon", lat = "lat"”, area_km2 = 1000)
grid_spec <- grid_info(result)

grid_rect Generate a rectangular grid of hexagons

Description

Creates hexagon polygons covering a rectangular geographic region.

Usage
grid_rect(bbox, grid)

Arguments

bbox Bounding box as ¢(xmin, ymin, Xmax, ymax), or an sf/sfc object

grid A HexGridInfo object specifying the grid parameters

14 HexData-class

Value

sf object with hexagon polygons

See Also

grid_global for global grids

Examples

grid <- hex_grid(area_km2 = 5000)
europe <- grid_rect(c(-10, 35, 30, 60), grid)
plot(europe)

HexData-class HexData Class

Description

An S4 class representing hexified data. Contains the original user data plus cell assignments from
the hexification process.

Details

HexData objects are created by hexify. The original data is preserved in the data slot, while cell
assignments are stored separately in cell_id and cell_center.

Use as.data. frame() to get a combined data frame with cell columns.

Slots

data Data frame or sf object. The original user data (untouched).
grid HexGridInfo object. The grid specification used.
cell_id Numeric vector. Cell IDs for each row of data.

cell_center Matrix. Two-column matrix (lon, lat) of cell centers.

See Also

hexify for creating HexData objects, HexGridInfo-class for grid specifications

HexGridInfo-class 15

HexGridInfo-class HexGridlInfo Class

Description

An S4 class representing a hexagonal grid specification. Stores all parameters needed for grid
operations.

Details

Create HexGridInfo objects using the hex_grid constructor function. Do not use new("HexGridInfo",
... directly.

The aperture can be "3", "4", "7" for standard grids, or "4/3" for mixed aperture grids that start with
aperture 4 and switch to aperture 3.

Slots

aperture Character. Grid aperture: "3", "4","7", or "4/3" for mixed.
resolution Integer. Grid resolution level (0-30).

area_km2 Numeric. Cell area in square kilometers.

diagonal_km Numeric. Cell diagonal (long diagonal) in kilometers.

crs Integer. Coordinate reference system (default 4326 = "WGS84”).

See Also

hex_grid for the constructor function, HexData-class for hexified data objects

hexify Assign hexagonal DGGS cell IDs to geographic points

Description

Takes a data.frame or sf object with geographic coordinates and returns a HexData object that
stores the original data plus cell assignments. The original data is preserved unchanged; cell IDs
and centers are stored in separate slots.

16 hexity

Usage
hexify(
data,
grid = NULL,
lon = "lon",
lat = "lat",

area_km2 = NULL,
diagonal = NULL,
resolution = NULL,
aperture = 3,

resround = "nearest”

)
Arguments

data A data.frame or sf object containing coordinates

grid A HexGridInfo object from hex_grid(). If provided, overrides area_km?2, res-

olution, and aperture parameters.

lon Column name for longitude (ignored if data is sf)

lat Column name for latitude (ignored if data is sf)

area_km2 Target cell area in km”2 (mutually exclusive with diagonal).

diagonal Target cell diagonal (long diagonal) in km

resolution Grid resolution (0-30). Alternative to area_km?2.

aperture Grid aperture: 3, 4, 7, or "4/3" for mixed (default 3)

resround How to round resolution: "nearest", "up", or "down"
Details

For sf objects, coordinates are automatically extracted and transformed to "WGS84’ (EPSG:4326)
if needed. The geometry column is preserved.

Either area_km2 (or area), diagonal, or resolution must be provided unless a grid object is
supplied.

The HexData return type (default) stores the grid specification so downstream functions like plot (),
hexify_cell_to_sf(), etc. don’t need grid parameters repeated.

Value
A HexData object containing:

* data: The original input data (unchanged)
» grid: The HexGridInfo specification
e cell_id: Numeric vector of cell IDs for each row
e cell_center: Matrix of cell center coordinates (lon, lat)
Use as.data.frame(result) to extract the original data. Use cells(result) to get unique cell

IDs. Use result@cell_id to get all cell IDs. Use result@cell_center to get cell center coordi-
nates.

hexify 17

Grid Specification
You can create a grid specification once and reuse it:
grid <- hex_grid(area_km2 = 1000)

resultl <- hexify(df1, grid = grid)
result2 <- hexify(df2, grid = grid)

See Also

hex_grid for grid specification, HexData-class for return object details, as_sf for converting to
sf

Other hexify main: hexify_grid()

Examples

Simple data.frame

df <- data.frame(
site = c("Vienna"”, "Paris"”, "Madrid"),
lon = c(16.37, 2.35, -3.70),
lat = c(48.21, 48.86, 40.42)

)

New recommended workflow: use grid object

grid <- hex_grid(area_km2 = 1000)

result <- hexify(df, grid = grid, lon = "lon", lat = "lat")
print(result) # Shows grid info

plot(result) # Plot with default styling

Direct area specification (grid created internally)
result <- hexify(df, lon = "lon", lat = "lat"”, area_km2 = 1000)

Extract plain data.frame
df_result <- as.data.frame(result)

With sf object (any CRS)

library(sf)

pts <- st_as_sf(df, coords = c("lon", "lat"), crs = 4326)
result_sf <- hexify(pts, area_km2 = 1000)

Different apertures
result_ap4 <- hexify(df, lon = "lon"”, lat = "lat", area_km2 = 1000, aperture = 4)

Mixed aperture (ISEA43H)
result_mixed <- hexify(df, lon = "lon", lat = "lat”, area_km2 = 1000, aperture = "4/3")

18 hexity_build_icosa

hexify-conversions Coordinate Conversions

Description

Functions for converting between coordinate systems

hexify-grid Core Grid Construction

Description

Core functions for hexify grid construction and validation

hexify-stats Grid Statistics

Description

Functions for calculating grid statistics and utilities

hexify_build_icosa Initialize icosahedron geometry

Description
Sets up the icosahedron state for ISEA projection. Uses standard ISEA3H orientation by default
(vertex O at 11.25E, 58.28N).

Usage

hexify_build_icosa(
vert@_lon = ISEA_VERTO_LON_DEG,

vert@_lat = ISEA_VERTQ_LAT_DEG,
azimuth = ISEA_AZIMUTH_DEG
)
Arguments
vert@_lon Vertex 0 longitude in degrees (default ISEA_VERTO_LON_DEG)
verto_lat Vertex 0 latitude in degrees (default ISEA_VERTO_LAT_DEG)

azimuth Azimuth rotation in degrees (default ISEA_AZIMUTH_DEG)

hexity_compare_resolutions 19

Details
The icosahedron is initialized lazily at the C++ level when first needed. Manual call is only required
for non-standard orientations.

Value

Invisible NULL. Called for side effect.

See Also

Other projection: hexify_face_centers(), hexify_forward(), hexify_forward_to_face(),
hexify_get_precision(), hexify_inverse(), hexify_projection_stats(), hexify_set_precision(),
hexify_set_verbose(), hexify_which_face()

Examples

Use standard ISEA3H orientation
hexify_build_icosa()

Custom orientation
hexify_build_icosa(vert@_lon = @, vert@_lat = 90, azimuth = 0)

hexify_compare_resolutions
Compare grid resolutions

Description
Generates a table comparing different resolution levels for a given grid configuration. Useful for
choosing appropriate resolution.

Usage

hexify_compare_resolutions(aperture = 3, res_range = 0:15, print = FALSE)

Arguments
aperture Grid aperture (3, 4, or 7)
res_range Range of resolutions to compare (e.g., 1:10)
print If TRUE, prints a formatted table to console. If FALSE (default), returns a data
frame.
Value

If print=FALSE: data frame with columns resolution, n_cells, cell_area_km?2, cell_spacing_km,
cls_km. If print=TRUE: invisibly returns the data frame after printing.

20 hexity_face_centers

See Also

Other grid statistics: dg_closest_res_to_area(), dgearthstat(), hexify_area_to_eff_res(),
hexify_eff_res_to_area(), hexify_eff_res_to_resolution(), hexify_resolution_to_eff_res()

Examples

Get data frame of resolutions 0-10 for aperture 3
comparison <- hexify_compare_resolutions(aperture = 3, res_range = 0:10)
print(comparison)

Print formatted table directly
hexify_compare_resolutions(aperture = 3, res_range = 0:10, print

TRUE)

Find resolution with cells ~1000 km*2
subset(comparison, cell_area_km2 > 900 & cell_area_km2 < 1100)

hexify_face_centers Get icosahedron face centers

Description

Returns the center coordinates of all 20 icosahedral faces.

Usage

hexify_face_centers()

Value

Data frame with 20 rows and columns lon, lat (degrees)

See Also

Other projection: hexify_build_icosa(), hexify_forward(), hexify_forward_to_face(), hexify_get_precision().
hexify_inverse(), hexify_projection_stats(), hexify_set_precision(), hexify_set_verbose(),
hexify_which_face()

Examples

centers <- hexify_face_centers()
plot(centers$lon, centers$lat)

hexity_forward 21

hexify_forward Forward Snyder projection

Description

Projects geographic coordinates onto the icosahedron, returning face index and planar coordinates
(tx, ty).

Usage

hexify_forward(lon, lat)

Arguments
lon Longitude in degrees
lat Latitude in degrees
Details

tx and ty are normalized coordinates within the triangular face, typically in range [0, 1].

Value

Named numeric vector: c(face, tx, ty)

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward_to_face(),
hexify_get_precision(), hexify_inverse(), hexify_projection_stats(), hexify_set_precision(),
hexify_set_verbose(), hexify_which_face()

Examples

result <- hexify_forward(16.37, 48.21)
result["face”], result["icosa_triangle_x"], result["icosa_triangle_y"]

22 hexity_get_precision

hexify_forward_to_face
Forward projection to specific face

Description

Projects to a known face (skips face detection).

Usage

hexify_forward_to_face(face, lon, lat)

Arguments
face Face index (0-19)
lon Longitude in degrees
lat Latitude in degrees
Value

Named numeric vector: c(icosa_triangle_x, icosa_triangle_y)

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward(), hexify_get_precision(),
hexify_inverse(), hexify_projection_stats(), hexify_set_precision(), hexify_set_verbose(),
hexify_which_face()

hexify_get_precision Get current precision settings

Description

Get current precision settings

Usage

hexify_get_precision()

Value

List with tol and max_iters

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward(), hexify_forward_to_face(),
hexify_inverse(), hexify_projection_stats(), hexify_set_precision(), hexify_set_verbose(),
hexify_which_face()

hexity_grid

23

hexify_grid

Create a hexagonal grid specification

Description

Creates a discrete global grid system (DGGS) object with hexagonal cells at a specified resolution.
This is the main constructor for hexify grids.

Usage

hexify_grid(

area,

topology = "HEXAGON",
metric = TRUE,

resround = "nearest”,
aperture =
projection = "ISEA"
)
Arguments
area Target cell area in km”?2 (if metric=TRUE) or area code
topology Grid topology (only "HEXAGON" supported)
metric Whether area is in metric units (km”2)
resround How to round resolution ("nearest"”, "up", "down")
aperture Aperture sequence (3, 4, or 7)
projection Projection type (only "ISEA’ supported currently)
Value

A hexify_grid object containing:

area
resolution
aperture
topology
projection

index_type

See Also

Target cell area

Calculated resolution level
Grid aperture (3, 4, or 7)

Grid topology ("HEXAGON")
Map projection ("ISEA")

Index encoding type ("z3", "z7", or "zorder")

hexify for the main user function, hexify_grid_to_cell for coordinate conversion

Other hexify main: hexify()

24 hexity_heatmap

Examples

Create a grid with ~1000 km*2 cells
grid <- hexify_grid(area = 1000, aperture = 3)
print(grid)

Create a finer resolution grid (~100 km"2 cells)

fine_grid <- hexify_grid(area = 100, aperture = 3, resround = "up")
hexify_heatmap Create a ggplot2 visualization of hexagonal grid cells
Description

Creates a ggplot2-based visualization of hexagonal grid cells, optionally colored by a value column.
Supports continuous and discrete color scales, projection transformation, and customizable styling.

Usage

hexify_heatmap(
data,
value = NULL,
basemap = NULL,
crs = NULL,
colors = NULL,
breaks = NULL,
labels = NULL,
hex_border = "#5D4E37",
hex_lwd = 0.3,
hex_alpha = 0.7,
basemap_fill = "gray90",
basemap_border = "gray50",
basemap_lwd = 0.5,
mask_outside = FALSE,
aperture = 3L,

xlim = NULL,
ylim = NULL,
title = NULL,
legend_title = NULL,
na_color = "gray9e",
theme_void = TRUE

)

Arguments
data A HexData object from hexify(), a data frame with cell_id and cell_area columns,

or an sf object with hexagon polygons.

hexify_heatmap

value

basemap

crs

colors

breaks

labels

hex_border
hex_lwd
hex_alpha
basemap_fill
basemap_border
basemap_1lwd

mask_outside

aperture
x1lim

ylim

title
legend_title
na_color

theme_void

25

Column name (as string) to use for fill color. If NULL, cells are drawn with a
uniform fill color. If not specified but data has a ’count’ or *n’ column, that will
be used automatically.

Optional basemap. Can be:

* NULL: No basemap (default)
e "world”: Use built-in hexify_world map (low resolution)

* "world_hires": Use high-resolution map from rnaturalearth (requires pack-
age)
* An sf object: User-supplied vector map

Target CRS for the map projection. Can be:

* A numeric EPSG code (e.g., 4326 for "WGS84’, 3035 for LAEA Europe)
* A proj4 string

* An sf crs object

e NULL to use "'WGS84” (EPSG:4326)

Color palette for the heatmap. Can be:

¢ A character vector of colors (for manual scale)
* A single RColorBrewer palette name (e.g., "YIOrRd", "Greens")
e NULL to use viridis

Numeric vector of break points for binning continuous values, or NULL for
continuous scale. Use Inf and -Inf for open-ended bins.

Labels for the breaks (length should be one less than breaks). If NULL, labels
are auto-generated.

Border color for hexagons

Line width for hexagon borders
Transparency for hexagon fill (0-1)
Fill color for basemap polygons
Border color for basemap polygons
Line width for basemap borders

Logical. If TRUE and basemap is provided, mask hexagon portions that fall
outside the basemap polygons.

Grid aperture (default 3), used if data is from hexify()
Optional x-axis limits (in target CRS units) as c(min, max)
Optional y-axis limits (in target CRS units) as c(min, max)
Plot title

Title for the color legend

Color for NA values

Logical. If TRUE (default), use a minimal theme without axes, gridlines, or
background.

26

Details

hexity_heatmap

This function provides publication-quality heatmap visualizations of hexagonal grids using ggplot2.
It returns a ggplot object that can be further customized with standard ggplot2 functions.

Value

A ggplot2 object that can be further customized or saved.

Color Scales
The function supports three types of color scales:
Continuous Set breaks = NULL for a continuous gradient

Binned Provide breaks vector to bin values into categories

Discrete If value column is a factor, discrete colors are used

Projections
Common projections:
4326 *"WGS84’ (unprojected lat/lon)
3035 LAEA Europe
3857 Web Mercator
"+proj=robin'' Robinson (world maps)

"+proj=moll" Mollweide (equal-area world maps)

See Also

plot_grid for base R plotting, cell_to_sf to generate polygons manually

Other visualization: plot_world()

Examples

library(hexify)

Sample data with counts

cities <- data.frame(
lon = c(16.37, 2.35, -3.70, 12.5, 4.9),
lat = c(48.21, 48.86, 40.42, 41.9, 52.4),
count = c(100, 250, 75, 180, 300)

)

result <- hexify(cities, lon = "lon”, lat = "lat", area_km2 = 5000)

Simple plot (uniform fill, no value mapping)
hexify_heatmap(result)

library(ggplot2)

hexify_inverse

With world basemap
hexify_heatmap(result, basemap = "world")

Heatmap with value mapping
hexify_heatmap(result, value = "count")

With world basemap and custom colors

hexify_heatmap(result, value = "count”,
basemap = "world",
colors = "Y10rRd",
title = "City Density")

Binned values with custom breaks
hexify_heatmap(result, value = "count”,
basemap = "world",
breaks = c(-Inf, 100, 200, Inf),
labels = c("Low”, "Medium”, "High"),

colors = c("#fee8c8", "#fdbb84", "#e34a33"))

Different projection (LAEA Europe)
hexify_heatmap(result, value = "count”,
basemap = "world”,
crs = 3035,
xlim = c (2500000, 6500000),
ylim = c(1500000, 5500000))

Customize further with ggplot2

hexify_heatmap(result, value = "count”, basemap = "world"”) +

labs(caption = "Data source: Example”) +
theme(legend.position = "bottom”)

27

hexify_inverse Inverse Snyder projection

Description

Converts face plane coordinates back to geographic coordinates.

Usage

hexify_inverse(x, y, face, tol = NULL, max_iters =
Arguments

X X coordinate on face plane

y Y coordinate on face plane

face Face index (0-19)

tol Convergence tolerance (NULL for default)

max_iters Maximum iterations (NULL for default)

NULL)

28 hexity_projection_stats

Value

Named numeric vector: c(lon_deg, lat_deg)

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward(), hexify_forward_to_face(),
hexify_get_precision(), hexify_projection_stats(), hexify_set_precision(), hexify_set_verbose(),
hexify_which_face()

Examples

coords <- hexify_inverse(0.5, 0.3, face = 2)

hexify_projection_stats
Get inverse projection statistics

Description

Returns and optionally resets convergence statistics.

Usage

hexify_projection_stats(reset = TRUE)

Arguments

reset Whether to reset statistics after retrieval (default TRUE)

Value

List with statistics (iterations, convergence info, etc.)

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward(), hexify_forward_to_face(),
hexify_get_precision(), hexify_inverse(), hexify_set_precision(), hexify_set_verbose(),
hexify_which_face()

hexity_roundtrip_test 29

hexify_roundtrip_test Round-trip accuracy test

Description

Tests the accuracy of the coordinate conversion functions by converting coordinates to cells and
back, measuring the distance between original and reconstructed coordinates.

Usage

hexify_roundtrip_test(grid, lon, lat, units = "km")

Arguments

grid Grid specification

lon Longitude to test

lat Latitude to test

units Distance units ("km" or "degrees")
Value

List with:

original Original coordinates

cell Cell index

reconstructed Reconstructed coordinates

error Distance between original and reconstructed

See Also

Other coordinate conversion: hexify_cell_id_to_quad_ij(), hexify_cell_to_icosa_tri(),
hexify_cell_to_lonlat(), hexify_cell_to_plane(), hexify_cell_to_quad_ij(), hexify_cell_to_quad_xy(),
hexify_grid_cell_to_lonlat(), hexify_grid_to_cell(), hexify_icosa_tri_to_plane(),
hexify_icosa_tri_to_quad_ij(), hexify_icosa_tri_to_quad_xy(), hexify_lonlat_to_cell(),
hexify_lonlat_to_plane(), hexify_lonlat_to_quad_ij(),hexify_quad_ij_to_cell(), hexify_quad_ij_to_icos:
hexify_quad_ij_to_xy(), hexify_quad_xy_to_cell(), hexify_quad_xy_to_icosa_tri()

30 hexify_set_verbose

hexify_set_precision Set inverse projection precision

Description

Controls the accuracy/speed tradeoff for inverse Snyder projection.

Usage

hexify_set_precision(
mode = c("fast”, "default”, "high", "ultra"),

tol = NULL,
max_iters = NULL
)
Arguments
mode Preset mode: "fast", "default”, "high", or "ultra"
tol Custom tolerance (overrides mode if provided)
max_1iters Custom max iterations (overrides mode if provided)
Value
Invisible NULL
See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward(), hexify_forward_to_face(),
hexify_get_precision(), hexify_inverse(), hexify_projection_stats(), hexify_set_verbose(),
hexify_which_face()

Examples

hexify_set_precision("high")
hexify_set_precision(tol = 1e-12, max_iters = 100)

hexify_set_verbose Set verbose mode for inverse projection

Description

When enabled, prints convergence information.

Usage

hexify_set_verbose(verbose = TRUE)

hexify_which_face 31

Arguments

verbose Logical

Value

Invisible NULL

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward(), hexify_forward_to_face(),
hexify_get_precision(), hexify_inverse(), hexify_projection_stats(), hexify_set_precision(),
hexify_which_face()

hexify_which_face Determine which face contains a point

Description

Returns the icosahedral face index (0-19) containing the given coordinates.

Usage

hexify_which_face(lon, lat)

Arguments
lon Longitude in degrees
lat Latitude in degrees
Value

Integer face index (0-19)

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward(), hexify_forward_to_face(),
hexify_get_precision(), hexify_inverse(), hexify_projection_stats(), hexify_set_precision(),
hexify_set_verbose()

Examples

face <- hexify_which_face(16.37, 48.21)

32

hexity_world

hexify_world Simplified World Map

Description

A lightweight sf object containing simplified world country borders, suitable for use as a basemap

when visualizing hexagonal grids.

Usage

hexify_world

Format

An sf object with 177 features and 15 fields:

name Country short name

name_long Country full name

admin Administrative name

sovereignt Sovereignty

iso_a2 ISO 3166-1 alpha-2 country code
iso_a3 ISO 3166-1 alpha-3 country code
iso_n3 ISO 3166-1 numeric code
continent Continent name

region_un UN region

subregion UN subregion

region_wb World Bank region

pop_est Population estimate

gdp_md GDP in millions USD
income_grp Income group classification
economy Economy type

geometry MULTIPOLYGON geometry in "WGS84’ (EPSG:4326)

Source

Simplified from Natural Earth 1:110m Cultural Vectors (https://www.naturalearthdata.com/)

https://www.naturalearthdata.com/

hex_grid 33

Examples

library(sf)

Plot the built-in world map
plot(st_geometry(hexify_world), col = "lightgray”, border = "white")

Filter by continent
europe <- hexify_world[hexify_world$continent == "Europe”,]
plot(st_geometry(europe))

hex_grid Create a Hexagonal Grid Specification

Description

Creates a HexGridInfo object that stores all parameters needed for hexagonal grid operations. Use
this to define the grid once and pass it to all downstream functions.

Usage

hex_grid(
area_km2 = NULL,
resolution = NULL,
aperture = 3,

resround = "nearest”,
crs = 4326L
)
Arguments
area_km2 Target cell area in square kilometers. Mutually exclusive with resolution.
resolution Grid resolution level (0-30). Mutually exclusive with area_km2.
aperture Grid aperture: 3 (default), 4, 7, or "4/3" for mixed.
resround Resolution rounding when using area_km2: "nearest" (default), "up", or "down".
crs Coordinate reference system EPSG code (default 4326 = "WGS84°).
Details

Exactly one of area_km2 or resolution must be provided.

When area_km2 is provided, the resolution is calculated automatically using the cell count formula:
N = 10 * aperture”res + 2.

Value

A HexGridInfo object containing the grid specification.

34 hex_grid

One Grid, Many Datasets

A HexGridInfo acts as a shared spatial reference system - like a CRS, but discrete and equal-area.
Define the grid once, then attach multiple datasets without repeating parameters:

Step 1: Define the grid once
grid <- hex_grid(area_km2 = 1000)

Step 2: Attach multiple datasets to the same grid

birds <- hexify(bird_obs, lon = "longitude”, lat = "latitude", grid = grid)
mammals <- hexify(mammal_obs, lon = "lon"”, lat = "lat"”, grid = grid)
climate <- hexify(weather_stations, lon = "x", lat = "y", grid = grid)
No aperture, resolution, or area needed after step 1 - the grid

travels with the data.

Step 3: Work at the cell level

Once hexified, lon/lat no longer matter - cell_id is the shared key

bird_counts <- aggregate(species ~ cell_id, data = as.data.frame(birds), length)

mammal_richness <- aggregate(species ~ cell_id, data = as.data.frame(mammals),
function(x) length(unique(x)))

Join datasets by cell_id - guaranteed to align because same grid
combined <- merge(bird_counts, mammal_richness, by = "cell_id")

Step 4: Visual confirmation

All datasets produce identical grid overlays
plot(birds) # See the grid

plot(mammals) # Same grid, different data

See Also

hexify for assigning points to cells, HexGridInfo-class for class documentation

Examples

Create grid by target area
grid <- hex_grid(area_km2 = 1000)
print(grid)

Create grid by resolution
grid <- hex_grid(resolution = 8, aperture = 3)

Create grid with different aperture
grid4 <- hex_grid(area_km2 = 500, aperture = 4)

Create mixed aperture grid
grid43 <- hex_grid(area_km2 = 1000, aperture = "4/3")

Use grid in hexify
df <- data.frame(lon = c(@, 10, 20), lat = c(45, 50, 55))

is_hex_data

result <- hexify(df, lon = "lon", lat = "lat"”, grid = grid)

35

is_hex_data Check if object is HexData

Description

Check if object is HexData

Usage

is_hex_data(x)

Arguments

X Object to check

Value

Logical

is_hex_grid Check if object is HexGridlInfo

Description

Check if object is HexGridInfo

Usage

is_hex_grid(x)

Arguments

X Object to check

Value

Logical

36 lonlat_to_cell

lonlat_to_cell Convert longitude/latitude to cell ID

Description

Converts geographic coordinates to DGGS cell IDs using a grid specification.

Usage

lonlat_to_cell(lon, lat, grid)

Arguments

lon Numeric vector of longitudes in degrees

lat Numeric vector of latitudes in degrees

grid A HexGridInfo or HexData object, or legacy hexify_grid
Details

This function accepts either a HexGridInfo object from hex_grid() or a HexData object from
hexify(). If a HexData object is provided, its grid specification is extracted automatically.

Value

Numeric vector of cell IDs

See Also

cell_to_lonlat for the inverse operation, hex_grid for creating grid specifications

Examples

grid <- hex_grid(area_km2 = 1000)
cells <- lonlat_to_cell(lon = c(@, 10), lat = c(45, 50), grid = grid)

Or use HexData object

df <- data.frame(lon = c(@, 10, 20), lat = c(45, 50, 55))
result <- hexify(df, lon = "lon"”, lat = "lat"”, area_km2 = 1000)
cells <- lonlat_to_cell(lon = 5, lat = 48, grid = result)

n_cells

37

n_cells Get Number of Cells

Description

Get the number of unique cells in a HexData object.

Usage
n_cells(x)

Arguments

X A HexData object

Value

Integer count of unique cells

plot,HexData,missing-method
Plot HexData objects

Description

Default plot method for HexData objects. Draws hexagonal grid cells with an optional basemap.

Usage

S4 method for signature 'HexData,missing'
plot(
X!
Y,
basemap = TRUE,
clip_basemap = TRUE,
basemap_fill = "gray90",
basemap_border = "gray50”,
basemap_lwd = 0.5,
grid_fill = "#E69F0Q",
grid_border = "#5D4E37",
grid_lwd = 0.
grid_alpha =
fill = NULL,
show_points = FALSE,
point_size = "auto”,

8,
0.7,

38 plot,HexData,missing-method

clip_basemap

basemap_fill

basemap_border

basemap_1lwd
grid_fill
grid_border

point_color = "red”,
crop = TRUE,
crop_expand = 0.1,
main = NULL,
)
Arguments
X A HexData object from hexify()
y Ignored (for S4 method compatibility)
basemap Basemap specification:

* TRUE or "world”: Use built-in world map
e FALSE or NULL: No basemap
* sf object: Custom basemap

Clip basemap to data extent (default TRUE). Clipping temporarily disables S2
spherical geometry to avoid edge-crossing errors.

Fill color for basemap (default "gray90")

Border color for basemap (default "gray50")

Line width for basemap borders (default 0.5)

Fill color for grid cells (default "#E69F00" - amber/orange)
Border color for grid cells (default "#5D4E37" - dark brown)

grid_lwd Line width for cell borders (default 0.8)
grid_alpha Transparency for cell fill (0-1, default 0.7)
fill Column name for fill mapping (optional)

show_points

point_size

point_color
crop
crop_expand

main

Details

Show original points on top of cells (default FALSE). Points are jittered within
their assigned hexagon.

Size of points. Can be:

¢ A number (direct cex value)

* A preset defining what fraction of a hex cell one point covers: "tiny" (~2\
"large" (~20\

Color of points (default "red")

Crop to data extent (default TRUE)
Expansion factor for crop (default 0.1)
Plot title

Additional arguments passed to base plot()

This function generates polygon geometries for the cells present in the data and plots them. Poly-
gons are computed on demand, not stored, to minimize memory usage.

plot_globe 39

Value

Invisibly returns the HexData object

See Also

hexify_heatmap for ggplot2 plotting

Examples

df <- data.frame(lon = runif(50, -5, 5), lat = runif(50, 45, 50))
result <- hexify(df, lon = "lon", lat = "lat"”, area_km2 = 2000)

Basic plot
plot(result, basemap = FALSE)

With basemap and custom styling
plot(result, grid_fill = "lightblue”, grid_border = "darkblue")

plot_globe Plot hexagonized globe

Description

Renders a global hexagonal grid on an orthographic projection with customizable rotation, land
clipping, and styling options.

Usage

plot_globe(
area = 50000,
center = "europe”,
clip_to_land = FALSE,
land_data = NULL,
exclude_antarctica = TRUE,
fill = "#D4B896",
border = "grey30",
border_width = 0.2,
ocean_fill = "white",
ocean_border = "grey50",
show_land = clip_to_land,
land_fill = NA,
land_border = "grey40",
land_width = 0.3,
use_ggplot = NULL,
return_data = FALSE,
aperture = 3L

40

Arguments

area

center

clip_to_land
land_data

Cell area in km”2 (passed to hex_grid)

plot_globe

Globe center: either a preset name (e.g., "europe") or numeric vector c(lon, lat).

See globe_centers for presets.

If TRUE, clip hexagons to land boundaries

Optional sf object for land boundaries. If NULL and clip_to_land is TRUE, uses

rnaturalearth::ne_countries()

exclude_antarctica

fill

border
border_width
ocean_fill
ocean_border
show_land
land_fill
land_border
land_width
use_ggplot
return_data

aperture

Details

If TRUE, exclude Antarctica from land clipping

Fill color for hexagons (default "#D4B896")

Border color for hexagons (default "grey30")

Border width for hexagons (default 0.2)

Fill color for ocean/globe background (default "white")
Border color for globe circle (default "grey50")

If TRUE, show land boundaries (default TRUE when clipping)
Fill color for land (default NA, transparent)

Border color for land boundaries (default "grey40")

Border width for land boundaries (default 0.3)

NULL = auto-detect, TRUE = force ggplot2, FALSE = force base
If TRUE, return sf objects instead of plotting

Grid aperture (default 3L)

The function handles several technical challenges:

» Hexagons on the back side of the globe fail to transform - these are filtered out gracefully

* Invalid geometries after projection are repaired with st_buffer(0)

* Clipping is done in orthographic CRS to avoid topology errors

Value

If use_ggplot = TRUE: ggplot2 object (can add layers with +) If use_ggplot = FALSE: NULL
invisibly (plots directly) If return_data = TRUE: list of sf objects (hexagons, land, ocean_circle,

Ccrs)

See Also

globe_centers for available presets, grid_global for generating global grids without plotting

plot_grid 41

Examples

Get data for custom plotting (fast, no rendering)

data <- plot_globe(area = 100000, center = "europe", return_data = TRUE)
nrow(data$hexagons)

class(data$ocean_circle)

Basic usage - Europe-centered globe
plot_globe(area = 80000, center = "europe")

plot_grid Plot hexagonal grid clipped to a polygon boundary

Description

A convenience function that creates a grid, clips it to a boundary polygon, and plots the result in a
single call.

Usage

plot_grid(
boundary,
grid,
crop = TRUE,
boundary_fill = "gray95",
boundary_border = "gray40",
boundary_lwd = 0.5,
grid_fill = "steelblue”,
grid_border = "steelblue”,
grid_lwd = 0.3,
grid_alpha = 0.3,

title = NULL,
expand = 0.05
)
Arguments
boundary An sf/sfc polygon to clip to (e.g., country boundary)
grid A HexGridInfo object from hex_grid()
crop If TRUE (default), cells are cropped to boundary. If FALSE, only complete

hexagons within boundary are shown.

boundary_fill Fill color for the boundary polygon (default "gray95")
boundary_border
Border color for boundary (default "gray40")

boundary_1lwd Line width for boundary (default 0.5)

42

grid_lwd Line width for cell borders (default 0.3)
grid_alpha Transparency for cell fill (0-1, default 0.3)
title Plot title. If NULL (default), auto-generates title with cell area.
expand Expansion factor for plot limits (default 0.05)
Details

grid_fill Fill color for grid cells (default "steelblue")

grid_border Border color for grid cells (default "steelblue")

plot_grid

This is a convenience wrapper around grid_clip() that handles the common use case of visualiz-

ing a hexagonal grid over a geographic region.

Value

A ggplot object that can be further customized

See Also

grid_clip for the underlying clipping function, hex_grid for grid specification

Examples

Plot grid over France

france <- hexify_world[hexify_world$name == "France"”, 1]
grid <- hex_grid(area_km2 = 2000)

plot_grid(france, grid)

Customize colors

plot_grid(france, grid,
grid_fill = "coral”, grid_alpha = 0.5,
boundary_fill = "lightyellow")

Keep only complete hexagons
plot_grid(france, grid, crop = FALSE)

Add ggplot2 customizations

library(ggplot2)

plot_grid(france, grid) +
labs(subtitle = "ISEA3H Discrete Global Grid"”) +
theme_void()

plot_world

43

plot_world Quick world map plot

Description

Simple wrapper to plot the built-in world map.

Usage
plot_world(fill = "gray90@", border = "gray50",

Arguments
fill Fill color for countries
border Border color for countries
Additional arguments passed to plot()
Value

NULL invisibly. Creates a plot as side effect.

See Also

Other visualization: hexify_heatmap()

Examples

Quick world map
plot_world()

Custom colors
plot_world(fill = "lightblue”, border = "darkblue")

Index

* *dggridR’ compatibility dggrid_43h_sequence, 4, 8, 10
as_dggrid, 3 dggrid_is_compatible, 4, 8, 10
dggrid_is_compatible, 8 dgverify, 9
from_dggrid, 9

x coordinate conversion from_dggrid, 4, 8,9
hexify_roundtrip_test, 29

x datasets globe_centers, 10, 40
globe_centers, 10 grid_clip, 11,42
hexify_world, 32 grid_global, 11,12, 14,40

* grid statistics grid_info, 13
dgearthstat, 7 grid_rect, 11, 12,13

hexify_compare_resolutions, 19
+ hexify main hex_grid, 7, 15, 17, 33, 36, 40, 42

hexify, 15 HexData-class, 14
HexGridInfo-class, 15
hexify, 14,15, 23, 34
hexify-conversions, 18
hexify-grid, 18
hexify-package, 3
hexify-stats, 18

hexify_grid, 23

* projection
hexify_build_icosa, 18
hexify_face_centers, 20
hexify_forward, 21
hexify_forward_to_face, 22

hexify_get_precision, 22 hexify_area_to_eff_res, 8, 20
hexify_inverse, 27 hexify_build_icosa, 18, 20-22, 28, 30, 31
hexify_projection_stats, 28 hexify_cell_id_to_quad_ij, 29
hexify_set_precision, 30 hexify_cell_to_icosa_tri, 29
hexify_set_verbose, 30 hexify_cell_to_lonlat, 29
hexify_which_face, 31 hexify_cell_to_plane, 29
 visualization hexify_cell_to_quad_ij, 29
hexify_heatmap, 24 hexify_cell_to_quad_xy, 29
plot_world, 43 hexify_compare_resolutions, 8, 19
hexify_eff_res_to_area, 8, 20
as_dggrid, 3, 8, 10 hexify_eff_res_to_resolution, 8, 20
as_sf, 4,7,17 hexify_face_centers, 19, 20, 21, 22, 28, 30
as_tibble.HexData, 5 31
hexify_forward, 19, 20, 21, 22, 28, 30, 31
cell_to_lonlat, 6, 36 hexify_forward_to_face, 19-22, 22, 28, 30
cell_to_sf, 6, 26 31
cells, 5 hexify_get_precision, 19-22, 22, 28, 30,
31
dg_closest_res_to_area, 8, 20 hexify_grid, 17,23
dgearthstat, 7, 20 hexify_grid_cell_to_lonlat, 29

44

INDEX

hexify_grid_to_cell, 23, 29
hexify_heatmap, 24, 39, 43
hexify_icosa_tri_to_plane, 29
hexify_icosa_tri_to_quad_ij, 29
hexify_icosa_tri_to_quad_xy, 29
hexify_inverse, 19-22, 27, 28, 30, 31
hexify_lonlat_to_cell, 29
hexify_lonlat_to_plane, 29
hexify_lonlat_to_quad_ij, 29
hexify_projection_stats, 19-22, 28, 28,

30, 31
hexify_quad_ij_to_cell, 29
hexify_quad_ij_to_icosa_tri, 29
hexify_quad_ij_to_xy, 29
hexify_quad_xy_to_cell, 29
hexify_quad_xy_to_icosa_tri, 29
hexify_resolution_to_eff_res, 8, 20
hexify_roundtrip_test, 29
hexify_set_precision, 19-22, 28, 30, 31
hexify_set_verbose, 19-22, 28, 30, 30, 31
hexify_which_face, 19-22, 28, 30, 31, 31
hexify_world, 32

is_hex_data, 35
is_hex_grid, 35

lonlat_to_cell, 6, 36
n_cells, 37

plot,HexData,missing-method, 37
plot_globe, 10, 39
plot_grid, 26, 41
plot_world, 26, 43

45

	hexify-package
	as_dggrid
	as_sf
	as_tibble.HexData
	cells
	cell_to_lonlat
	cell_to_sf
	dgearthstat
	dggrid_is_compatible
	dgverify
	from_dggrid
	globe_centers
	grid_clip
	grid_global
	grid_info
	grid_rect
	HexData-class
	HexGridInfo-class
	hexify
	hexify-conversions
	hexify-grid
	hexify-stats
	hexify_build_icosa
	hexify_compare_resolutions
	hexify_face_centers
	hexify_forward
	hexify_forward_to_face
	hexify_get_precision
	hexify_grid
	hexify_heatmap
	hexify_inverse
	hexify_projection_stats
	hexify_roundtrip_test
	hexify_set_precision
	hexify_set_verbose
	hexify_which_face
	hexify_world
	hex_grid
	is_hex_data
	is_hex_grid
	lonlat_to_cell
	n_cells
	plot,HexData,missing-method
	plot_globe
	plot_grid
	plot_world
	Index

