
Package ‘gmfamm’
June 18, 2024

Type Package

Title Generalized Multivariate Functional Additive Models

Version 0.1.0

Description Supply implementation to model generalized multivariate functional
data using Bayesian additive mixed models of R package 'bamlss' via a latent
Gaussian process (see Umlauf, Klein, Zeileis (2018)
<doi:10.1080/10618600.2017.1407325>).

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.5), bamlss

Imports mgcv, stats, MASS, splines, Matrix

Suggests testthat (>= 3.0.0), tidyverse, JMbayes2, registr, funData,
MFPCA, MJMbamlss, refund

Config/testthat/edition 3

RoxygenNote 7.3.1

NeedsCompilation no

Author Nikolaus Umlauf [aut] (<https://orcid.org/0000-0003-2160-9803>),
Alexander Volkmann [aut, cre]

Maintainer Alexander Volkmann <alexandervolkmann8@gmail.com>

Repository CRAN

Date/Publication 2024-06-18 14:30:05 UTC

Contents
apply_respfun_outcome . 2
compress_outcomes . 3
fam . 3
fam2 . 4
famg . 4

1

https://doi.org/10.1080/10618600.2017.1407325
https://orcid.org/0000-0003-2160-9803

2 apply_respfun_outcome

gm . 5
gmfamm . 6
gmfamm_predict . 8
incorporate_outcome . 10
mface_cyc . 10
pbc_gmfamm . 13
simMuFu . 14
trafficfam . 17
trafficfam2 . 17
trafficfam3 . 18
trafficfam4 . 19
varbinq . 19

Index 20

apply_respfun_outcome Apply link functions based on outcome information

Description

This is an internal function for the extreme case that a vector is plugged into a response function
depending on outcome information.

Usage

apply_respfun_outcome(x, outcome, links)

Arguments

x Vector of additive predictors.

outcome Factor vector containing information on the outcome of the corresponding ele-
ment of vector x.

links Vector containing the names of the respective links for the mu outcomes.

Value

Vector of lenght x where different response functions have been applied.

compress_outcomes 3

compress_outcomes Compress the outcome list of predictions into single vectors

Description

This is an internal function combining all mu and sigma outcomes, respectively, taking into account
the outcome information.

Usage

compress_outcomes(pred_list, mus, sigmas, outcome)

Arguments

pred_list List of predictions for each outcome.

mus Character vector with names of included mu models.

sigmas Character vector with names of included sigma models.

outcome Factor vector containing the information of which row corresponds to which
outcome.

Value

List with two elements containing predictions for mu and sigma model terms. If a some model
parameters are missing (such as sigma for binomial distributional assumption) NA elements are
contained.

fam First draft of new family

Description

Fix three distributional assumptions and do not supply any derivatives.

Usage

fam(...)

Arguments

... Not used.

Value

A bamlss family object.

4 famg

fam2 Next draft of new family

Description

Fix three distributional assumptions but supply derivatives.

Usage

fam2(...)

Arguments

... Not used.

Value

A bamlss family object.

famg Draft of new family for gamlss2

Description

Fix three distributional assumptions but supply derivatives.

Usage

famg(...)

Arguments

... Not used.

Value

A gamlss2 family object.

gm 5

gm Indicate Generalized Multivariate Model

Description

This function is used in the formula call of a generalized multivariate functional additive mixed
model to supply the information of the outcome and factor variables to bamlss.

Usage

gm(y, outcome, ...)

Arguments

y Name of variable in data set which contains the values of the longitudinal out-
come.

outcome Name of variable in data set which is the factor variable indicating which out-
come the value is from. Note that only the ordering not the factor levels are used
in the estimation process.

... Additional arguments not used at the moment.

Value

Matrix combining y and outcomes of class ’matrix’ and ’gm’.

Examples

set.seed(123)
Number of subjects
n <- 10

Number of observations
ni <- 3

Covariate vector
x <- rep(rnorm(n), each = ni)
t <- rep(c(0, 0.5, 1), times = n)

Additive predictor
eta_1 <- t + 0.5*x
eta_2 <- t + 0.5*x

Outcomes
y1 <- rnorm(n*ni, eta_1, 0.3)
y2 <- rbinom(n*ni, 1, 1/(1 + exp(-eta_2)))

Data format
dat <- data.frame(

6 gmfamm

id = factor(rep(seq_len(n), each = ni)),
y = c(y1, y2),
dim = factor(rep(c(1, 2), each = n*ni)),
t = t,
x = x,
fpc = 1

)

Specify formula
f <- list(

gm(y, dim) ~ t + x,
sigma1 ~ 1,
mu2 ~ t + x,
Lambda ~ -1 + s(id, by = fpc, bs = "re")

)

gmfamm Family object for bamlss for Generalized Multivariate Functional Ad-
ditive Mixed Models

Description

Family object for bamlss for Generalized Multivariate Functional Additive Mixed Models

Usage

gmfamm(family, ...)

Arguments

family Vector of bamlss family names to construct the full family.

... Not used at the moment.

Value

An object of class family.bamlss

Examples

Short example to see how a family can be specified.
gmfamm(family = c("binomial", "poisson", "gaussian"))

Long example to see how an analysis can be done.

library(tidyverse)
library(registr)
library(funData)
library(MFPCA)

gmfamm 7

library(MJMbamlss)
library(refund)

Take only three outcomes (normal, binary, poisson)
Log-transformation of serBilir to get normal distribution
pbc <- pbc_gmfamm %>%

filter(outcome %in% c("serBilir", "hepatomegaly", "platelets")) %>%
droplevels() %>%
mutate(y = case_when(outcome == "serBilir" ~ log(y),

outcome != "serBilir" ~ y),
year = ifelse(year > 9.99, 9.99, year))

pbc_list <- split(pbc, pbc$outcome) %>%
lapply(function (dat) {
dat <- dat %>%

mutate(value = y, index = year) %>%
select(id, value, index) %>%
arrange(id, index)

})

Fit separate univariate GPFCAs
Two numbers (x, y) in npc criterion indicate x% total variance but each pc
hast to contribute at least y%
gfpcs <- mapply(function (data, fams) {

gfpca_twoStep(Y = data, family = fams, npc_criterion = c(0.99, 0.001),
verbose = FALSE)

}, data = pbc_list, fams = list("binomial", "poisson", "gaussian"),
SIMPLIFY = FALSE)

Convert fitted values to funData
mfdata <- multiFunData(lapply(gfpcs, function (x) {

funData(argvals = x$t_vec,
X = matrix(x$Yhat$value, ncol = length(x$t_vec), byrow = TRUE))

}))

Convert estimated eigenfunctions to funData
uniexpansions <- lapply(gfpcs, function (x) {

list(type = "given",
functions = funData(argvals = x$t_vec, X = t(x$efunctions)))

})

Calculate the maximal number of MFPCs
m <- sum(sapply(gfpcs, "[[", "npc"))

Estimate the MFPCs with weights 1
mfpca <- MFPCA(mFData = mfdata, M = m, uniExpansions = uniexpansions)

Choose number of MFPCs based on threshold
nfpc <- min(which(cumsum(mfpca$values) / sum(mfpca$values) > 0.95))

Attach estimated MFPCs
pbc <- attach_wfpc(mfpca, pbc, n = nfpc, marker = "outcome", obstime = "year")

8 gmfamm_predict

Specify formula
f <- list(

gm(y, outcome) ~ year + drug + sex, # hepatomegaly
mu2 ~ year, # platelets
mu3 ~ year + age, # serBilir
sigma3 ~ 1, # serBilir sd
Lambda ~ -1 + s(id, fpc.1, bs = "pcre") +
s(id, fpc.2, bs = "pcre") + s(id, fpc.3, bs = "pcre") +
s(id, fpc.4, bs = "pcre")

)

b <- bamlss(f,
family = gmfamm(c("binomial", "poisson", "gaussian")),
data = pbc)

gmfamm_predict Prediction of Generalized Multivariate Functional Additive Mixed
model

Description

Note: FPC basis has to be evaluated for newdata before the predict function.

Usage

gmfamm_predict(
object,
newdata,
model = NULL,
term = NULL,
match.names = TRUE,
intercept = TRUE,
type = c("link", "parameter"),
compress = TRUE,
FUN = function(x) {

mean(x, na.rm = TRUE)
},
trans = NULL,
what = c("samples", "parameters"),
nsamps = NULL,
verbose = FALSE,
drop = TRUE,
cores = NULL,
chunks = 1,
...

)

gmfamm_predict 9

Arguments

object bamlss-model object to be predicted.
newdata Dataset for which to create predictions. Not needed for conditional survival

probabilities.
model Character or integer, specifies the model for which predictions should be com-

puted.
term Character or integer, specifies the model terms for which predictions are re-

quired. Note that, e.g., term = c("s(x1)", "x2") will compute the combined
prediction s(x1) + x2.

match.names Should partial string matching be used to select the terms for prediction. Note
that, e.g., term = "x1" will select all terms including "x1" if match.names =
TRUE.

intercept Should the intercept be included?
type Character string indicating which type of predictions to compute. link returns

the predictors of the corresponding model., "parameter" returns the estimates
for all pedictors, "probabilities" returns the survival probabilities conditional
on the survival up to the last longitudinal measurement, and "cumhaz" return
the cumulative hazard up to the survival time or for a time window after the last
longitudinal measurement. If type is set to "loglik", the log-likelihood of the
joint model is returned. Note that types "probabilities" and "cumhaz" are
not yet implemented.

compress TRUE if the
FUN A function that should be applied on the samples of predictors or parameters,

depending on argument type.
trans A transformer function or named list of transformer functions that computes

transformed predictions. If trans is a list, the list names must match the names
of the parameters of the bamlss.family.

what Predictions can be computed from samples or estimated parameters of optimizer
functions. If no samples are available the default is to use estimated parameters.

nsamps If the fitted bamlss object contains samples of parameters, computing predic-
tions may take quite some time. Therefore, to get a first feeling it can be useful
to compute predictions only based on nsamps samples, i.e., nsamps specifies the
number of samples which are extracted on equidistant intervals.

verbose Print information during runtime of the algorithm.
drop If predictions for only one model are returned, the list structure is dropped.
cores Specifies the number of cores that should be used for prediction. Note that this

functionality is based on the parallel package.
chunks Should computations be split into chunks? Prediction is then processed sequen-

tially.
... Currently not used.

Details

Functionality of some arguments are restricted.

10 mface_cyc

incorporate_outcome Incorporate outcome information into

Description

This is an internal function multiplying all outcome predictions with 0 if the respective row is not
part of the outcome.

Usage

incorporate_outcome(pred_list, mus, sigmas, outcome_ids, outcome_levels)

Arguments

pred_list List of predictions for each outcome.

mus Integer vector for numbering available mus. Can be NULL but shouldn’t.

sigmas Integer vector for numbering available sigmas. Can be NULL.

outcome_ids Numeric matrix resulting from model.matrix call containing the info about the
outcomes. Column names are hard coded.

outcome_levels Character string containing the outcome names.

Value

List but now with 0 elements where the rows are not corresponding to outcomes.

mface_cyc Multilevel functional principal components analysis with fast covari-
ance estimation

Description

Decompose dense or sparse multilevel functional observations using multilevel functional principal
component analysis with the fast covariance estimation approach.

Usage

mface_cyc(
Y,
id,
visit = NULL,
twoway = TRUE,
weight = "obs",
argvals = NULL,
pve = 0.99,

mface_cyc 11

npc = NULL,
p = 3,
m = 2,
knots = 35,
silent = TRUE

)

Arguments

Y A multilevel functional dataset on a regular grid stored in a matrix. Each row of
the data is the functional observations at one visit for one subject. Missingness
is allowed and need to be labeled as NA. The data must be specified.

id A vector containing the id information to identify the subjects. The data must
be specified.

visit A vector containing information used to identify the visits. If not provided,
assume the visit id are 1,2,... for each subject.

twoway Logical, indicating whether to carry out twoway ANOVA and calculate visit-
specific means. Defaults to TRUE.

weight The way of calculating covariance. weight = "obs" indicates that the sample
covariance is weighted by observations. weight = "subj" indicates that the
sample covariance is weighted equally by subjects. Defaults to "obs".

argvals A vector containing observed locations on the functional domain.

pve Proportion of variance explained. This value is used to choose the number of
principal components for both levels.

npc Pre-specified value for the number of principal components. If given, this over-
rides pve.

p The degree of B-splines functions to use. Defaults to 3.

m The order of difference penalty to use. Defaults to 2.

knots Number of knots to use or the vectors of knots. Defaults to 35.

silent Logical, indicating whether to not display the name of each step. Defaults to
TRUE.

Details

The fast MFPCA approach (Cui et al., 2023) uses FACE (Xiao et al., 2016) to estimate covari-
ance functions and mixed model equations (MME) to predict scores for each level. As a result, it
has lower computational complexity than MFPCA (Di et al., 2009) implemented in the mfpca.sc
function, and can be applied to decompose data sets with over 10000 subjects and over 10000
dimensions.

This code is a direct copy of the function mfpca.face in the refund package (version 0.1-35) and
slightly adapted to allow cyclical splines in the estimation of the eigenfunctions.

12 mface_cyc

Value

A list containing:

Yhat FPC approximation (projection onto leading components) of Y, estimated curves
for all subjects and visits

Yhat.subject Estimated subject specific curves for all subjects

Y.df The observed data

mu estimated mean function (or a vector of zeroes if center==FALSE).

eta The estimated visit specific shifts from overall mean.

scores A matrix of estimated FPC scores for level1 and level2.

efunctions A matrix of estimated eigenfunctions of the functional covariance, i.e., the FPC
basis functions for levels 1 and 2.

evalues Estimated eigenvalues of the covariance operator, i.e., variances of FPC scores
for levels 1 and 2.

pve The percent variance explained by the returned number of PCs.

npc Number of FPCs: either the supplied npc, or the minimum number of basis func-
tions needed to explain proportion pve of the variance in the observed curves for
levels 1 and 2.

sigma2 Estimated measurement error variance.

Author(s)

Ruonan Li <rli20@ncsu.edu>, Erjia Cui <ecui@umn.edu>, adapted by Alexander Volkmann

References

Cui, E., Li, R., Crainiceanu, C., and Xiao, L. (2023). Fast multilevel functional principal component
analysis. Journal of Computational and Graphical Statistics, 32(3), 366-377.

Di, C., Crainiceanu, C., Caffo, B., and Punjabi, N. (2009). Multilevel functional principal compo-
nent analysis. Annals of Applied Statistics, 3, 458-488.

Xiao, L., Ruppert, D., Zipunnikov, V., and Crainiceanu, C. (2016). Fast covariance estimation for
high-dimensional functional data. Statistics and Computing, 26, 409-421.

Examples

require(refund)
data(DTI)
mfpca.DTI <- mfpca.face(Y = DTI$cca, id = DTI$ID, twoway = TRUE)

pbc_gmfamm 13

pbc_gmfamm Subset of PBC data set for GMFAMM

Description

A subset of data from the pbc2 data set which is the Mayo Clinic Primary Biliary Cirrhosis Data,
where only patients who survived at least 10 years since they entered the study and were alive and
had not had a transplant at the end of the 10th year.

Usage

pbc_gmfamm

Format

‘pbc_gmfamm‘ A data frame with 5,943 rows and 10 columns:

id patients identifier; in the subset, there are 50 patients included.

years number of years in the study without event

status a factor with levels alive, transplanted, and dead.

drug a factor with levels placebo and D-penicilin.

age at registration in years.

sex a factor with levels male and female.

year number of years between enrollment and this visit date.

status2 a numeric vector with value 1 denotign if the patient was dead, and 0 if the patient was
alive or transplanted.

outcome a factor with levels albumin, alkaline, ascites, edema, hepatomegaly, histologic,
platelets, prothrombin, serBilir, serChol, SGOT, spiders.

y value of the corresponding outcome at the visit date.

Details

Additionally, subject 124 is excluded as it has only one longitudinal measurement per outcome.
Function gfpca_twoStep, however, assumes at least two longitudinal observations per subject.

Source

pbc2

References

Hall et al. (2008): Modelling sparse generalized longitudinal observations with latent gaussian
processes. Journal of the Royal Statistical Society Series B: Statistical Methodology, 70(4), 703-
723.

14 simMuFu

simMuFu Simulate multivariate functional data

Description

This function provides a unified simulation structure for multivariate functional data f1, . . . , fN on
one- or two-dimensional domains, based on a truncated multivariate Karhunen-Loeve representa-
tion:

fi(t) =

M∑
m=1

ρi,mψm(t).

The multivariate eigenfunctions (basis functions) ψm are constructed from univariate orthonormal
bases. There are two different concepts for the construction, that can be chosen by the parameter
type: A split orthonormal basis (split, only one-dimensional domains) and weighted univari-
ate orthonormal bases (weighted, one- and two-dimensional domains). The scores ρi,m in the
Karhunen-Loeve representation are simulated independently from a normal distribution with zero
mean and decreasing variance. See Details.

Usage

simMuFu(
type,
argvals,
M,
eFunType,
ignoreDeg = NULL,
eValType,
N,
seed,
seed_funs = 8

)

Arguments

type A character string, specifying the construction method for the multivariate eigen-
functions (either "split" or "weighted"). See Details.

argvals A list, containing the observation points for each element of the multivariate
functional data that is to be simulated. The length of argvals determines the
number of elements in the resulting simulated multivariate functional data. See
Details.

M An integer (type = "split") or a list of integers (type = "weighted"), giving
the number of univariate basis functions to use. See Details.

eFunType A character string (type = "split") or a list of character strings (type = "weighted"),
specifying the type of univariate orthonormal basis functions to use. See Details.

ignoreDeg A vector of integers (type = "split") or a list of integer vectors (type = "weighted"),
specifying the degrees to ignore when generating the univariate orthonormal
bases. Defaults to NULL. See Details.

simMuFu 15

eValType A character string, specifying the type of eigenvalues/variances used for the
simulation of the multivariate functions based on the truncated Karhunen-Loeve
representation. See eVal for details.

N An integer, specifying the number of multivariate functions to be generated.

seed A random seed for the score generation.

seed_funs A random seed to make the eigenfunction creation reproducible.

Details

The parameter type defines how the eigenfunction basis for the multivariate Karhunen-Loeve rep-
resentation is constructed:

• type = "split": The basis functions of an underlying ’big’ orthonormal basis are split in
M parts, translated and possibly reflected. This yields an orthonormal basis of multivariate
functions with M elements. This option is implemented only for one-dimensional domains.

• type = "weighted": The multivariate eigenfunction basis consists of weighted univariate or-
thonormal bases. This yields an orthonormal basis of multivariate functions with M elements.
For data on two-dimensional domains (images), the univariate basis is constructed as a tensor
product of univariate bases in each direction (x- and y-direction).

Depending on type, the other parameters have to be specified as follows:

Split ’big’ orthonormal basis: The parameters M (integer), eFunType (character string) and
ignoreDeg (integer vector or NULL) are passed to the function eFun to generate a univariate or-
thonormal basis on a ’big’ interval. Subsequently, the basis functions are split and translated, such
that the j-th part of the split function is defined on the interval corresponding to argvals[[j]].
The elements of the multivariate basis functions are given by these split parts of the original basis
functions multiplied by a random sign σj ∈ {−1, 1}, j = 1, . . . , p.

Weighted orthonormal bases: The parameters argvals, M,eFunType and ignoreDeg are all
lists of a similar structure. They are passed element-wise to the function eFun to generate or-
thonormal basis functions for each element of the multivariate functional data to be simulated. In
case of bivariate elements (images), the corresponding basis functions are constructed as tensor
products of orthonormal basis functions in each direction (x- and y-direction).
If the j-th element of the simulated data should be defined on a one-dimensional domain, then

• argvals[[j]] is a list, containing one vector of observation points.
• M[[j]] is an integer, specifying the number of basis functions to use for this entry.
• eFunType[[j]] is a character string, specifying the type of orthonormal basis functions to

use for this entry (see eFun for possible options).
• ignoreDeg[[j]] is a vector of integers, specifying the degrees to ignore when constructing

the orthonormal basis functions. The default value is NULL.

If the j-th element of the simulated data should be defined on a two-dimensional domain, then

• argvals[[j]] is a list, containing two vectors of observation points, one for each direction
(observation points in x-direction and in y-direction).

• M[[j]] is a vector of two integers, giving the number of basis functions for each direction
(x- and y-direction).

16 simMuFu

• eFunType[[j]] is a vector of two character strings, giving the type of orthonormal basis
functions for each direction (x- and y-direction, see eFun for possible options). The corre-
sponding basis functions are constructed as tensor products of orthonormal basis functions in
each direction.

• ignoreDeg[[j]] is a list, containing two integer vectors that specify the degrees to ignore
when constructing the orthonormal basis functions in each direction. The default value is
NULL.

The total number of basis functions (i.e. the product of M[[j]] for all j) must be equal!

This code is a direct copy of the function simMultiFunData in the funData package (version 1.3-9)
and slightly adapted. It also returns the simulated scores and needs the additional argument seed to
generate reproducible eigenvalues and eigenfunctions.

Value

simData A multiFunData object with N observations, representing the simulated multi-
variate functional data.

trueFuns A multiFunData object with M observations, representing the multivariate eigen-
function basis used for simulating the data.

trueVals A vector of numerics, representing the eigenvalues used for simulating the data.

score A matrix containing the simulated scores.

References

C. Happ, S. Greven (2018): Multivariate Functional Principal Component Analysis for Data Ob-
served on Different (Dimensional) Domains. Journal of the American Statistical Association,
113(522): 649-659.

Examples

oldPar <- par(no.readonly = TRUE)
library(funData)

split
split <- simMuFu(type = "split", argvals = list(seq(0,1,0.01),

seq(-0.5,0.5,0.02)),
M = 5, eFunType = "Poly", eValType = "linear", N = 7,
seed = 2)

par(mfrow = c(1,2))
plot(split$trueFuns, main = "Split: True Eigenfunctions", ylim = c(-2,2))
plot(split$simData, main = "Split: Simulated Data")

weighted (one-dimensional domains)

par(oldPar)

trafficfam 17

trafficfam Draft of family for traffic example

Description

Fix four distributional assumptions and supply derivatives. Use BCCGo for speed data. Use nega-
tive binomial for count data.

Usage

trafficfam(...)

Arguments

... Not used.

Value

A bamlss family object.

trafficfam2 Draft 2 of family for traffic example

Description

Fix four distributional assumptions and supply derivatives. Use BCCGo for speed data. Use zero-
truncated negative binomial for count data (no second derivatives available).

Usage

trafficfam2(...)

Arguments

... Not used.

Value

A bamlss family object.

18 trafficfam3

trafficfam3 Draft of family for traffic example

Description

Fix four distributional assumptions and supply derivatives. Use gamma for speed data. Use negative
binomial for count data.

Usage

trafficfam3(...)

Arguments

... Not used.

Value

A bamlss family object.

Examples

Construct data
set.seed(123)
Number of subjects
n <- 10

Number of observations
ni <- 3

Covariate vector
x <- rep(rnorm(n), each = ni)
t <- rep(c(0, 0.5, 1), times = n)

Additive predictor
eta_1 <- eta_2 <- eta_3 <- eta_4 <- t + 0.5*x

Outcomes
y1 <- rnbinom(n*ni, exp(eta_1), 0.3)
y2 <- rnbinom(n*ni, exp(eta_2), 0.4)
y3 <- rgamma(n*ni, shape = 0.3, scale = exp(eta_3) / 0.3)
y4 <- rgamma(n*ni, shape = 0.4, scale = exp(eta_4) / 0.4)

Data format
dat <- data.frame(

id = factor(rep(seq_len(n), each = ni)),
y = c(y1, y2, y3, y4),
dim = factor(rep(c(1:4), each = n*ni)),
t = t,
x = x,

trafficfam4 19

fpc = 1
)

Specify formula
f <- list(

gm(y, dim) ~ t + x,
sigma1 ~ 1,
mu2 ~ t + x,
sigma2 ~ 1,
mu3 ~ t + x,
sigma3 ~ 1,
mu4 ~ t + x,
sigma4 ~ 1,
Lambda ~ -1 + s(id, by = fpc, bs = "re")

)

Model
b <- bamlss(f, family = trafficfam3, n.iter = 20, burnin = 10,

data = dat)

trafficfam4 Draft of family for traffic example

Description

Fix four distributional assumptions and supply derivatives. Use lognormal for speed data. Use
Poisson for count data.

Usage

trafficfam4(...)

Arguments

... Not used.

Value

A bamlss family object.

varbinq Generalized Multivariate Functional Additive Models

Description

This package does things. _PACKAGE

Index

∗ datasets
pbc_gmfamm, 13

apply_respfun_outcome, 2

bamlss, 9
bamlss.family, 9

compress_outcomes, 3

fam, 3
fam2, 4
famg, 4

gfpca_twoStep, 13
gm, 5
gmfamm, 6
gmfamm_predict, 8

incorporate_outcome, 10

mface_cyc, 10

parallel, 9
pbc2, 13
pbc_gmfamm, 13

simMuFu, 14

trafficfam, 17
trafficfam2, 17
trafficfam3, 18
trafficfam4, 19

varbinq, 19

20

	apply_respfun_outcome
	compress_outcomes
	fam
	fam2
	famg
	gm
	gmfamm
	gmfamm_predict
	incorporate_outcome
	mface_cyc
	pbc_gmfamm
	simMuFu
	trafficfam
	trafficfam2
	trafficfam3
	trafficfam4
	varbinq
	Index

