
Measurement Errors in R

Iñaki Ucar, Edzer Pebesma, Arturo Azcorra

Abstract

This paper presents an R package to handle and represent measurements with errors in a
very simple way. We briefly introduce the main concepts of metrology and propagation of
uncertainty, and discuss related R packages. Building upon this, we introduce the errors

package, which provides a class for associating uncertainty metadata, automated propagation
and reporting. Working with errors enables transparent, lightweight, less error-prone
handling and convenient representation of measurements with errors. Finally, we discuss the
advantages, limitations and future work of computing with errors.

This manuscript corresponds to errors version 0.4.2 and was typeset on 2024-07-29.
For citations, please use the version published in the R Journal (see citation("errors")).

1 Introduction

The International Vocabulary of Metrology (VIM) defines a quantity as “a property of a
phenomenon, body, or substance, where the property has a magnitude that can be expressed as
a number and a reference”, where most typically the number is a quantity value, attributed to a
measurand and experimentally obtained via some measurement procedure, and the reference is a
measurement unit [BIPM et al., 2012].

Additionally, any quantity value must accommodate some indication about the quality of the
measurement, a quantifiable attribute known as uncertainty. The Guide to the Expression of
Uncertainty in Measurement (GUM) defines uncertainty as “a parameter, associated with the
result of a measurement, that characterises the dispersion of the values that could reasonably
be attributed to the measurand” [BIPM et al., 2008]. Uncertainty can be mainly classified
into standard uncertainty, which is the result of a direct measurement (e.g., electrical voltage
measured with a voltmeter, or current measured with a amperemeter), and combined standard

uncertainty, which is the result of an indirect measurement (i.e., the standard uncertainty when
the result is derived from a number of other quantities by the means of some mathematical
relationship; e.g., electrical power as a product of voltage and current). Therefore, provided a
set of quantities with known uncertainties, the process of obtaining the uncertainty of a derived
measurement is called propagation of uncertainty.

Traditionally, computational systems have treated these three components (quantity values,
measurement units and uncertainty) separately. Data consisted of bare numbers, and mathemat-
ical operations applied to them solely. Units were just metadata, and uncertainty propagation
was an unpleasant task requiring additional effort and complex operations. Nowadays though,
many software libraries have formalised quantity calculus as method of including units within
the scope of mathematical operations, thus preserving dimensional correctness and protecting us
from computing nonsensical combinations of quantities. However, these libraries rarely integrate
uncertainty handling and propagation [Flater, 2018].

Within the R environment, the units package [Pebesma and Mailund, 2017, Pebesma et al.,
2016] defines a class for associating unit metadata to numeric vectors, which enables transparent

1

quantity derivation, simplification and conversion. This approach is a very comfortable way of
managing units with the added advantage of eliminating an entire class of potential programming
mistakes. Unfortunately, neither units nor any other package address the integration of
uncertainties into quantity calculus.

This article presents errors [Ucar, 2018], a package that defines a framework for associating un-
certainty metadata to R vectors, matrices and arrays, thus providing transparent, lightweight and
automated propagation of uncertainty. This implementation also enables ongoing developments
for integrating units and uncertainty handling into a complete solution.

2 Propagation of uncertainty

There are two main methods for propagation of uncertainty: the Taylor series method (TSM)
and the Monte Carlo method (MCM). The TSM, also called the delta method, is based on a
Taylor expansion of the mathematical expression that produces the output variables. As for the
MCM, it can deal with generalised input distributions and propagates the uncertainty by Monte
Carlo simulation.

2.1 Taylor series method

The TSM is a flexible and simple method of propagation of uncertainty that offers a good degree
of approximation in most cases. In the following, we will provide a brief description. A full
derivation, discussion and examples can be found in Arras [1998].

Mathematically, an indirect measurement is obtained as a function of n direct or indirect
measurements, Y = f(X1, ..., Xn), where the distribution of Xn is unknown a priori. Usually,
the sources of random variability are many, independent and probably unknown as well. Thus,
the central limit theorem establishes that an addition of a sufficiently large number of random
variables tends to a normal distribution. As a result, the first assumption states that Xn are
normally distributed.

The second assumption presumes linearity, i.e., that f can be approximated by a first-order
Taylor series expansion around µXn

(see Figure 1). Then, given a set of n input variables X and
a set of m output variables Y , the first-order uncertainty propagation law establishes that

ΣY = JXΣXJT
X (1)

where Σ is the covariance matrix and J is the Jacobian operator.

In practice, as recommended in the GUM [BIPM et al., 2008], this first-order approximation
is good even if f is non-linear, provided that the non-linearity is negligible compared to
the magnitude of the uncertainty, i.e., IE[f(X)] ≈ f(IE[X]). Also, this weaker condition is
distribution-free: no assumptions are needed on the probability density functions (PDF) of Xn,
although they must be reasonably symmetric.

If we consider Equation (1) for pairwise computations, i.e., Y = f(X1, X2), we can write the
propagation of the uncertainty σY as follows:

σ2

Y =

(

∂2f

∂X2
1

)

2

σ2

X1
+

(

∂2f

∂X2
2

)

2

σ2

X2
+ 2

∂f∂f

∂X1∂X2

σX1X2
(2)

The cross-covariances for the output Y and any other variable Z can be simplified as follows:

σY Z =
∂f

∂X1

σX1Z +
∂f

∂X2

σX2Z (3)

2

f(Xn)

µY

µXn

Figure 1: Illustration of linearity in an interval ± one standard deviation around the mean.

where, notably, if Z = Xi, one of the covariances above results in σ2

Xi
. Finally, and for the sake

of completeness, the correlation coefficient can be obtained as rY Z = σY Z/(σY σZ).

2.2 Monte Carlo method

The MCM is based on the same principles underlying the TSM. It is based on the propagation
of the PDFs of the input variables Xn by performing random sampling and evaluating them
under the model considered. Thus, this method is not constrained by the TSM assumptions,
and explicitly determines a PDF for the output quantity Y , which makes it a more general
approach that applies to a broader set of problems. For further details on this method, as well
as a comparison with the TSM and some discussion on the applicability of both methods, the
reader may refer to the Supplement 1 of the GUM [BIPM et al., 2008].

3 Reporting uncertainty

The GUM [BIPM et al., 2008] defines four ways of reporting standard uncertainty and combined
standard uncertainty. For instance, if the reported quantity is assumed to be a mass mS of
nominal value 100 g:

1. mS = 100.02147 g with (a combined standard uncertainty) uc = 0.35 mg.
2. mS = 100.02147(35) g, where the number in parentheses is the numerical value

of (the combined standard uncertainty) uc referred to the corresponding last
digits of the quoted result.

3. mS = 100.02147(0.00035) g, where the number in parentheses is the numerical
value of (the combined standard uncertainty) uc expressed in the unit of the
quoted result.

4. mS = (100.02147 ± 0.00035) g, where the number following the symbol ± is the
numerical value of (the combined standard uncertainty) uc and not a confidence
interval.

Schemes (2, 3) and (4) would be referred to as parenthesis notation and plus-minus notation
respectively throughout this document. Although (4) is a very extended notation, the GUM
explicitly discourages its use to prevent confusion with confidence intervals.

3

4 Related work

Several R packages are devoted to or provide methods for propagation of uncertainties. The car

[Fox and Weisberg, 2016, 2011] and msm [Jackson, 2016, 2011] packages provide the functions
deltaMethod() and deltamethod() respectively. Both of them implement a first-order TSM
with a similar syntax, requiring a formula, a vector of values and a covariance matrix, thus being
able to deal with dependency across variables.

The metRology [Ellison, 2017] and propagate [Spiess, 2014] packages stand out as very
comprehensive sets of tools specifically focused on this topic, including both TSM and MCM.
The metRology package implements TSM using algebraic or numeric differentiation, with
support for correlation. It also provides a function for assessing the statistical performance
of GUM uncertainty (TSM) using attained coverage probability. The propagate package
implements TSM up to second order. It provides a unified interface for both TSM and MCM
through the propagate() function, which requires an expression and a data frame or matrix as
input. Unfortunately, as in the case of car and msm, these packages are limited to work only
with expressions, which does not solve the issue of requiring a separate workflow to deal with
uncertainties.

The spup package [Sawicka and Heuvelink, 2017] focuses on uncertainty analysis in spatial envi-
ronmental modelling, where the spatial cross-correlation between variables becomes important.
The uncertainty is described with probability distributions and propagated using MCM.

Finally, the distr package [Kohl, 2017, Ruckdeschel et al., 2006] takes this idea one step further
by providing an S4-based object-oriented implementation of probability distributions, with
which one can operate arithmetically or apply mathematical functions. It implements all kinds
of probability distributions and has more methods for computing the distribution of derived
quantities. Also, distr is the base of a whole family of packages, such as distrEllipse, distrEx,
distrMod, distrRmetrics, distrSim and distrTeach.

All these packages provide excellent tools for uncertainty analysis and propagation. However,
none of them addresses the issue of an integrated workflow, as units does for unit metadata by
assigning units directly to R vectors, matrices and arrays. As a result, units can be added to
any existing R computation in a very straightforward way. On the other hand, existing tools for
uncertainty propagation require building specific expressions or data structures, and then some
more work to extract the results out and to report them properly, with an appropriate number
of significant digits.

5 Automated uncertainty handling in R: the errors package

The errors package aims to provide easy and lightweight handling of measurement with errors,
including uncertainty propagation using the first-order TSM presented in the previous section
and a formally sound representation.

5.1 Package description and usage

Standard uncertainties, can be assigned to numeric vectors, matrices and arrays, and then all
the mathematical and arithmetic operations are transparently applied to both the values and
the associated uncertainties:

library(errors)

x <- 1:5 + rnorm(5, sd = 0.01)

y <- 1:5 + rnorm(5, sd = 0.02)

4

errors(x) <- 0.01

errors(y) <- 0.02

x; y

Errors: 0.01 0.01 0.01 0.01 0.01

[1] 0.9990614 1.9908897 3.0191456 3.9868636 4.9920641

Errors: 0.02 0.02 0.02 0.02 0.02

[1] 0.9729065 2.0081058 3.0156128 3.9887551 5.0092115

(z <- x / y)

Errors: 0.023478976 0.011058904 0.007421920 0.005603803 0.004451692

[1] 1.0268833 0.9914267 1.0011715 0.9995258 0.9965768

The errors() method assigns or retrieves a vector of uncertainties, which is stored as an
attribute of the class errors, along with a unique object identifier:

str(x)

Errors: num [1:5] 1.00(1) 1.99(1) 3.02(1) 3.99(1) 4.99(1)

Correlations (and thus covariances) between pairs of variables can be set and retrieved using
the correl() and covar() methods. These correlations are stored in an internal hash table
indexed by the unique object identifier assigned to each errors object. If an object is removed,
its associated correlations are cleaned up automatically.

correl(x, x) # one, cannot be changed

[1] 1 1 1 1 1

correl(x, y) # NULL, not defined yet

NULL

correl(x, y) <- runif(length(x), -1, 1)

correl(x, y)

[1] -0.4907878 0.6207427 -0.1397253 0.9474066 -0.9084622

covar(x, y)

[1] -9.815757e-05 1.241485e-04 -2.794506e-05 1.894813e-04 -1.816924e-04

Internally, errors provides S3 methods for the generics belonging to the groups Math and Ops,
which propagate the uncertainty and the covariance using Equations (2) and (3) respectively.

z # previous computation without correlations

Errors: 0.023478976 0.011058904 0.007421920 0.005603803 0.004451692

[1] 1.0268833 0.9914267 1.0011715 0.9995258 0.9965768

(z_correl <- x / y)

Errors: 0.027644878 0.007826436 0.007825470 0.002755904 0.005852348

[1] 1.0268833 0.9914267 1.0011715 0.9995258 0.9965768

Other many S3 methods are also provided, such as generics belonging to the Summary group,
subsetting operators ([, [<-, [[, [[<-), concatenation (c()), differentiation (diff), row and
column binding (rbind, cbind), coercion to list, data frame and matrix, and more. Such methods

5

mutate the errors object, and thus return a new one with no correlations associated. There are
also setters defined as an alternative to the assignment methods (set_*() instead of errors<-,
correl<- and covar<-), primarily intended for their use in conjunction with the pipe operator
(%>%) from the magrittr [Bache and Wickham, 2014] package.

Additionally, other useful summaries are provided, namely, the mean, the weighted mean and
the median. The uncertainty of any measurement of central tendency cannot be smaller than the
uncertainty of the individual measurements. Therefore, the uncertainty assigned to the mean is
computed as the maximum between the standard deviation of the mean and the mean of the
individual uncertainties (weighted, in the case of the weighted mean). As for the median, its
uncertainty is computed as

√

π/2 ≈ 1.253 times the standard deviation of the mean, where this
constant comes from the asymptotic variance formula [Hampel et al., 2011].

It is worth noting that both values and uncertainties are stored with all the digits. However,
when a single measurement or a column of measurements in a data frame are printed, there
are S3 methods for format() and print() defined to properly format the output and display a
single significant digit for the uncertainty. This default representation can be overridden using
the digits option, and it is globally controlled with the option errors.digits.

the elementary charge

e <- set_errors(1.6021766208e-19, 0.0000000098e-19)

print(e, digits = 2)

1.6021766208(98)e-19

The parenthesis notation, in which the number in parentheses is the uncertainty referred to the

corresponding last digits of the quantity value (scheme 2 from the GUM, widely used in physics
due to its compactness), is used by default, but this can be overridden through the appropriate
option in order to use the plus-minus notation instead.

options(errors.notation = "plus-minus")

print(e, digits = 2)

(1.6021766208 ± 0.0000000098)e-19

options(errors.notation = "parenthesis")

Finally, errors also facilitates plotting of error bars. In the following, we first assign a 2% of
uncertainty to all the numeric variables in the iris data set and then we plot it using base
graphics and ggplot2 [Wickham and Chang, 2016, Wickham, 2009]. The result is shown in
Figure 2.

iris.e <- iris

iris.e[1:4] <- lapply(iris.e[1:4], function(x) set_errors(x, x*0.02))

head(iris.e)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1(1) 3.50(7) 1.40(3) 0.200(4) setosa

2 4.9(1) 3.00(6) 1.40(3) 0.200(4) setosa

3 4.70(9) 3.20(6) 1.30(3) 0.200(4) setosa

4 4.60(9) 3.10(6) 1.50(3) 0.200(4) setosa

5 5.0(1) 3.60(7) 1.40(3) 0.200(4) setosa

6 5.4(1) 3.90(8) 1.70(3) 0.400(8) setosa

6

plot(Sepal.Width ~ Sepal.Length, iris.e, col=Species)

legend(6.2, 4.4, unique(iris.e[["Species"]]),

col=1:length(iris.e[["Species"]]), pch=1)

library(ggplot2)

ggplot(iris.e) + aes(Sepal.Length, Sepal.Width, color=Species) +

geom_point() + geom_errors() + theme_bw() + theme(legend.position=c(0.6, 0.8))

5 6 7 8

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

setosa
versicolor
virginica

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal.Length

S
ep

al
.W

id
th

Species

setosa

versicolor

virginica

Figure 2: Base plot with error bars (left) and ggplot2’s version (right).

In base graphics, the error bars are automatically plotted when an object of class errors is
passed. Additionally, we provide the convenience functions errors_min(x) and errors_max(x)

for obtaining the boundaries of the interval in ggplot2 and other plotting packages, instead of
writing x - errors(x) and x + errors(x) respectively.

5.2 Example: Simultaneous resistance and reactance measurement

From Annex H.2 of the GUM [BIPM et al., 2008]:

The resistance R and the reactance X of a circuit element are determined by
measuring the amplitude V of a sinusoidally-alternating potential difference across
its terminals, the amplitude I of the alternating current passing through it, and the
phase-shift angle φ of the alternating potential difference relative to the alternating
current.

The measurands (resistance R, reactance X and impedance Z) are related to the input quantities
(V , I, phi) by the Ohm’s law:

R =
V

I
cos φ; X =

V

I
sin φ; Z =

V

I
(4)

Five simultaneous observations for each input variable are provided (Table H.2 of the GUM),
which are included in errors as dataset GUM.H.2. First, we need to obtain the mean input
values and set the correlations from the measurements. Then, we compute the measurands and
examine the correlations between them. The results agree with those reported in the GUM:

V <- mean(set_errors(GUM.H.2$V))

I <- mean(set_errors(GUM.H.2$I))

phi <- mean(set_errors(GUM.H.2$phi))

7

correl(V, I) <- with(GUM.H.2, cor(V, I))

correl(V, phi) <- with(GUM.H.2, cor(V, phi))

correl(I, phi) <- with(GUM.H.2, cor(I, phi))

print(R <- (V / I) * cos(phi), digits = 2, notation = "plus-minus")

127.732 ± 0.071

print(X <- (V / I) * sin(phi), digits = 3, notation = "plus-minus")

219.847 ± 0.296

print(Z <- (V / I), digits = 3, notation = "plus-minus")

254.260 ± 0.236

correl(R, X); correl(R, Z); correl(X, Z)

[1] -0.5884298

[1] -0.4852592

[1] 0.9925116

5.3 Example: Calibration of a thermometer

From Annex H.3 of the GUM [BIPM et al., 2008]:

A thermometer is calibrated by comparing n = 11 temperature readings tk of the
thermometer [. . .] with corresponding known reference temperatures tR,k in the
temperature range 21 ◦C to 27 ◦C to obtain the corrections bk = tR,k − tk to the
readings.

Measured temperatures and corrections (Table H.6 of the GUM), which are included in errors

as dataset GUM.H.3, are related by a linear calibration curve:

b(t) = y1 + y2(t − t0) (5)

In the following, we first fit the linear model for a reference temperature t0 = 20 ◦C. Then, we
extract the coefficients, and assign the uncertainty and correlation between them. Finally, we
compute the predicted correction b(30), which agrees with the value reported in the GUM:

fit <- lm(bk ~ I(tk - 20), data = GUM.H.3)

y1 <- set_errors(coef(fit)[1], sqrt(vcov(fit)[1, 1]))

y2 <- set_errors(coef(fit)[2], sqrt(vcov(fit)[2, 2]))

covar(y1, y2) <- vcov(fit)[1, 2]

print(b.30 <- y1 + y2 * set_errors(30 - 20), digits = 2, notation = "plus-minus")

-0.1494 ± 0.0041

6 Discussion

The errors package provides the means for defining numeric vectors, matrices and arrays with
errors in R, as well as to operate with them in a transparent way. Propagation of uncertainty

8

implements the commonly used first-order TSM formula from Equation (1). This method has
been pre-computed and expanded for each operation in the S3 groups Math and Ops, instead
of differentiating symbolic expressions on demand or using functions from other packages for
this task. The advantages of this approach are twofold. On the one hand, it is faster, as it
does not involve simulation nor symbolic computation, and very lightweight in terms of package
dependencies.

Another advantage of errors is the built-in consistent and formally sound representation of
measurements with errors, rounding the uncertainty to one significant digit by default and
supporting two widely used notations: parenthesis (e.g., 5.00(1)) and plus-minus (e.g., 5.00±0.01).
These notations are applied for single numbers and data frames, as well as tbl_df data frames
from the tibble [Wickham et al., 2017] package.

Full support is provided for both data.frame and tbl_df, as well as matrices and arrays.
However, some operations on those data structures may drop uncertainties (i.e., object class and
attributes). More specifically, there are six common data wrangling operations: row subsetting,
row ordering, column transformation, row aggregation, column joining and (un)pivoting. Table
1 shows the correspondence between these operations and R base functions, as well as the
compatibility with errors.

Table 1: Compatibility of errors and R base data wrangling functions.

Operation R base function(s) Compatibility

Row subsetting [, [[, subset Full
Row ordering order + [Full
Column transformation transform, within Full
Row aggregation tapply, by, aggregate with simplify=FALSE

Column joining merge Full
(Un)Pivoting reshape Full

Overall, errors is fully compatible with data wrangling operations embed in R base, and this is
because those functions are mainly based on the subsetting generics, for which errors provides
the corresponding S3 methods. Nonetheless, special attention must be paid to aggregations,
which store partial results in lists that are finally simplified. Such simplification is made with
unlist, which drops all the input attributes, including custom classes. However, all these
aggregation functions provide the argument simplify (sometimes SIMPLIFY), which if set to
FALSE, prevents this destructive simplification, and lists are returned. Such lists can be simplified
non-destructively by calling do.call(c, ...).

unlist <- function(x) if (is.list(x)) do.call(c, x) else x

iris.e.agg <- aggregate(. ~ Species, data = iris.e, mean, simplify=FALSE)

as.data.frame(lapply(iris.e.agg, unlist), col.names=colnames(iris.e.agg))

Species Sepal.Length Sepal.Width Petal.Length Petal.Width

1 setosa 5.0(1) 3.43(7) 1.46(3) 0.25(1)

2 versicolor 5.9(1) 2.77(6) 4.26(9) 1.33(3)

3 virginica 6.6(1) 2.97(6) 5.6(1) 2.03(4)

7 Summary and future work

We have introduced errors, a lightweight R package for managing numeric data with associated
standard uncertainties. The new class errors provides numeric operations with automated

9

propagation of uncertainty through a first-order TSM, and a formally sound representation
of measurements with errors. Using this package makes the process of computing indirect
measurements easier and less error-prone.

Future work includes importing and exporting data with uncertainties and providing the user with
an interface for plugging uncertainty propagation methods from other packages. Finally, errors

enables ongoing developments for integrating units and uncertainty handling into a complete
solution for quantity calculus. Having a unified workflow for managing measurements with units
and errors would be an interesting addition to the R ecosystem with very few precedents in
other programming languages.

References

K.O. Arras. An introduction to error propagation: Derivation, meaning and examples of cy = fx
cx fx’. Sep 1998. Technical Report Nr. EPFL-ASL-TR-98-01 R3, Autonomous Systems Lab,
EPFL, September 1998.

Stefan Milton Bache and Hadley Wickham. magrittr: A Forward-Pipe Operator for R, 2014.
URL https://CRAN.R-project.org/package=magrittr. R package version 1.5.

BIPM, IEC, IFCC, ILAC, IUPAC, IUPAP, ISO, and OIML. Evaluation of Measurement Data
– Guide to the Expression of Uncertainty in Measurement, 1st edn. JCGM 100:2008. Joint

Committee for Guides in Metrology, 2008. URL https://www.bipm.org/en/committees/jc/
jcgm/publications.

BIPM, IEC, IFCC, ILAC, IUPAC, IUPAP, ISO, and OIML. The International Vocabulary
of Metrology – Basic and General Concepts and Associated Terms (VIM), 3rd edn. JCGM
200:2012. Joint Committee for Guides in Metrology, 2012. URL https://www.bipm.org/en/
committees/jc/jcgm/publications.

Stephen L R Ellison. metRology: Support for Metrological Applications, 2017. URL https:
//CRAN.R-project.org/package=metRology. R package version 0.9-26-2.

David Flater. Architecture for software-assisted quantity calculus. Computer Standards &

Interfaces, 56:144–147, 2018. ISSN 0920-5489. doi: 10.1016/j.csi.2017.10.002.

John Fox and Sanford Weisberg. An R Companion to Applied Regression. SAGE Publications,
second edition, 2011. ISBN 9781412975148.

John Fox and Sanford Weisberg. car: Companion to Applied Regression, 2016. URL https:
//CRAN.R-project.org/package=car. R package version 2.1-4.

F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw, and W.A. Stahel. Robust Statistics: The Approach

Based on Influence Functions. Wiley Series in Probability and Statistics. Wiley, 2011. ISBN
9781118150689.

Christopher Jackson. msm: Multi-State Markov and Hidden Markov Models in Continuous

Time, 2016. URL https://CRAN.R-project.org/package=msm. R package version 1.6.4.

Christopher H. Jackson. Multi-state models for panel data: The msm package for R. Journal of

Statistical Software, 38(8):1–29, 2011. doi: 10.18637/jss.v038.i08.

Matthias Kohl. distr: Object Oriented Implementation of Distributions, 2017. URL https:
//CRAN.R-project.org/package=distr. R package version 2.6.2.

Edzer Pebesma and Thomas Mailund. units: Measurement Units for R Vectors, 2017. URL
https://CRAN.R-project.org/package=units. R package version 0.4-4.

10

https://CRAN.R-project.org/package=magrittr
https://www.bipm.org/en/committees/jc/jcgm/publications
https://www.bipm.org/en/committees/jc/jcgm/publications
https://www.bipm.org/en/committees/jc/jcgm/publications
https://www.bipm.org/en/committees/jc/jcgm/publications
https://CRAN.R-project.org/package=metRology
https://CRAN.R-project.org/package=metRology
https://CRAN.R-project.org/package=car
https://CRAN.R-project.org/package=car
https://CRAN.R-project.org/package=msm
https://CRAN.R-project.org/package=distr
https://CRAN.R-project.org/package=distr
https://CRAN.R-project.org/package=units

Edzer Pebesma, Thomas Mailund, and James Hiebert. Measurement Units in R. The R Journal,
8(2):486–494, 2016. URL https://journal.r-project.org/archive/2016/RJ-2016-061/index.html.

P. Ruckdeschel, M. Kohl, T. Stabla, and F. Camphausen. S4 classes for distributions. R News, 6
(2):2–6, May 2006.

Kasia Sawicka and Gerard Heuvelink. spup: Uncertainty Propagation Analysis, 2017. URL
https://CRAN.R-project.org/package=spup. R package version 0.1-0.

Andrej-Nikolai Spiess. propagate: Propagation of Uncertainty, 2014. URL https://CRAN.R-
project.org/package=propagate. R package version 1.0-4.

Iñaki Ucar. errors: Uncertainty Propagation for R Vectors, 2018. URL https://CRAN.R-
project.org/package=errors. R package version 0.3.0.

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.
ISBN 978-0-387-98140-6.

Hadley Wickham and Winston Chang. ggplot2: Create Elegant Data Visualisations Using the

Grammar of Graphics, 2016. URL https://CRAN.R-project.org/package=ggplot2. R package
version 2.2.1.

Hadley Wickham, Romain Francois, and Kirill Müller. tibble: Simple Data Frames, 2017. URL
https://CRAN.R-project.org/package=tibble. R package version 1.3.0.

11

https://journal.r-project.org/archive/2016/RJ-2016-061/index.html
https://CRAN.R-project.org/package=spup
https://CRAN.R-project.org/package=propagate
https://CRAN.R-project.org/package=propagate
https://CRAN.R-project.org/package=errors
https://CRAN.R-project.org/package=errors
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=tibble

	Introduction
	Propagation of uncertainty
	Taylor series method
	Monte Carlo method

	Reporting uncertainty
	Related work
	Automated uncertainty handling in R: the errors package
	Package description and usage
	Example: Simultaneous resistance and reactance measurement
	Example: Calibration of a thermometer

	Discussion
	Summary and future work

