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Abstract

Analysis of dose-response data is an important step in many scientific disciplines,
including but not limited to pharmacology, toxicology, and epidemiology. The R package
drda is designed to facilitate the analysis of dose-response data by implementing efficient
and accurate functions with a familiar interface. With drda it is possible to fit models by
the method of least squares, perform goodness-of-fit tests, and conduct model selection.
Compared to other similar packages, drda provides in general more accurate estimates
in the least-squares sense. This result is achieved by a smart choice of the starting point
in the optimization algorithm and by implementing the Newton method with a trust
region with analytical gradients and Hessian matrices. In this article, drda is presented
through the description of its methodological components and examples of its user-friendly
functions. Performance is evaluated using both synthetic data and a real, large-scale drug
sensitivity screening dataset.
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1. Introduction

Inferring dose-response relationships is indispensable in many scientific disciplines. In cancer
research, for example, estimating the magnitude of a chemical compound effect on cancer
cells holds substantial promise for clinical applications. The dose-response relationship can
be modeled via a nonlinear parametric function expressed as a dose-response curve. The
choice of the curve is achieved by selecting the parameter values that lead to the best fit
of the observations. Since conclusions about compound efficacy, for example its potency to
kill the cells, are based on the estimated dose-response curve, it is of great importance to
determine the curve parameters as accurately as possible.

Currently, there are multiple R packages that provide tools for dose-response fitting, such
as drc (Ritz, Baty, and Gerhard 2015), nplr (Commo and Bot 2016), and DoseFinding

(Bornkamp, Pinheiro, and Bretz 2019). The drc package contains various functions for non-
linear regression analysis of biological assays. The package accepts continuous, binary and
discrete responses as quantification of biological effect. It allows the user to choose a nonlinear
model for the dose-response curve fitting from a wide spectrum of sigmoidal functions, which
are normally used to capture the dose-response relationship as their S-shape is in line with
empirical observations from experiments. In the drc package a user can specify initial model
parameters to facilitate the optimization process or rely on the default starter functions. The
package also enables a user to set the weights for the observations to adjust the possible
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variance heterogeneity in the response values. Parameter estimation in drc is done by maxi-
mum likelihood, which simplifies to nonlinear least squares method under the assumption of
response normality.

In contrast to drc, package nplr focuses only on logistic models and does not allow to select
the data distribution. As a feature, the package facilitates the choice of observation weights
via implementing three options: residual-based, standard (or within-replicate variance-based),
and general, which utilizes the fitted response values. Additionally, the package provides con-
fidence intervals on the predicted doses and the trapezoid and the Simpson’s rule (Abramowitz
and Stegun 1965, Chapter 25) to evaluate the area under the curve.

The DoseFinding package provides more flexibility than drc and nplr. It allows for the fitting
of multiple linear and nonlinear dose-response models and to design dose-finding experiments.
Similarly to drc, it provides several options for the data distribution, but by default it uses an
assumption of normality with equal variance. Compared to drc and nplr, package DoseFinding

utilizes a grid search as a starting point selection method in case the user did not specify its
own. It also applies boundaries to parameters of a nonlinear model either specified by a user
or through internal default settings.

To find the optimal solution in a p-dimensional space, where p is the number of parameters,
all packages apply iterative Newton methods, which are widely used numerical procedures
for finding stationary points of a differentiable function (Nocedal and Wright 2006). The drc

package directly calls the R optim() function implementing the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method (Fletcher 2000) for unconstrained optimization, or limited-memory
BFGS (L-BFGS-B), which handles simple box constraints for constrained optimization (Liu
and Nocedal 1989). These two methods are quasi-Newton methods, which are frequently
used in cases when the function derivatives are not feasible or too complicated to obtain,
as they utilize numerical approximations of the function’s Hessian matrix. In contrast, the
nplr package relies on the nlm() function, which uses the classic Newton approach. By
default, both the gradient and Hessian are approximated numerically, however the user can
provide themselves the first and second analytical derivatives. The DoseFinding package
applies different optimization routines depending on the models of choice. For sigmoidal
models, which have linear and nonlinear function parameters, the package performs numerical
optimization just for nonlinear ones, while optimizing the linear parameters in every iteration
of the algorithm. At its core, DoseFinding applies the R nlminb() function, using a quasi-
Newton algorithm similar to the BFGS method utilized by drc.

While all packages have been extremely helpful with a wide range of real applications, we
found that they often present inconsistent results when fitting the same logistic model on the
same data. We introduce here the R package drda, which provides a novel and more accurate
dose-response data analysis using logistic curves via: (i) establishing a smart initialization
procedure to increase the chances of converging to the global solution; (ii) applying a more
advanced Newton method with a trust region and (iii) relying on analytical gradient and
Hessian formulas instead of numerical approximations in problematic cases to assure proper
convergence; (iv) computing confidence intervals for the whole dose-response curve using
multiple comparisons tests correction. Besides, similar to other packages, drda provides tools
to compare the fitted curve against a linear model or other logistic models, to compute
confidence intervals for the estimated parameters, and to plot multiple models in a user-
friendly manner.
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The most important feature of any optimization routine remains the closeness of its solution
to the true minimizer of the objective function, such as the maximum likelihood estimate.
One of the main disadvantages when it comes to numerical optimization is the possibility
of converging to a local optimum instead of the correct answer we seek. This situation can
easily happen when either the function is not well approximated by a quadratic shape in a
neighborhood of the current candidate solution, or when the starting point is far from the
global optimum (either the algorithm is not able to converge in a reasonable number of steps
or it simply converges to a wrong solution). To cope with such scenarios, we implement here
the Newton method with a trust region (Steihaug 1983), which has been shown to be a robust
optimization technique for mitigating issues usually encountered in optimization problems.
The method is more stable than other Newton-based methods, especially for cases when it is
problematic to approximate a function with a quadratic surface (Sorensen 1982). Additionally,
drda uses a multi-step initialization algorithm in order to ensure the right direction in the
optimization routine. With our strategy, drda is able to find the true least squares estimate
in problematic cases where the drc, nplr, and DoseFinding packages instead fail.

Once the least-squares estimate is found, drda provides the user with routines for assessing
goodness-of-fit and reliability of the estimates. Assuming a Gaussian distribution with equal
variance for the observed data, it is possible to compare the fitted model against, for example,
a flat horizontal line or a logistic model with a different number of parameters. The drda

package provides the likelihood ratio test (LRT), the Akaike information criterion (AIC)
(Akaike 1974), and the Bayesian information criterion (BIC) (Schwarz 1978) as a way to
compare the goodness-of-fit of competing models.

The paper is organized as follows: We first describe the methodological components of drda

in Section 2; show how the package is implemented in Section 3; include practical examples in
Section 3.2; and provide a comparison of drda against packages drc, nplr, and DoseFinding

using simulations and a high-throughput dose-response dataset in Section 4. We conclude the
article with a summary and discussion in Section 5.

2. Methodological framework

2.1. Generalized logistic and log-logistic function

Package drda implements the generalized logistic and log-logistic functions as the core models
for fitting dose-response data. The generalized logistic function, also known as Richards’ curve
(Richards 1959), is the 5-parameter function

f(x;ψ) = α+ δ (1 + ν exp{−η(x− ϕ)})−1/ν (1)

solution to the differential equation

∂

∂x
f(x;ψ) =

η

ν

(

1 −

(

f(x;ψ) − α

δ

)ν)

(f(x;ψ) − α)

where ψ = (α, δ, η, ϕ, ν)⊤ and x ∈ R.

Throughout this article, and in our package, we will use the convention η ≥ 0 to avoid
identifiability issues. For example, when ν = 1, it is f(x;α, δ, η, ϕ, 1) = f(x;α+δ,−δ,−η, ϕ, 1).
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Furthermore, to have a sigmoidal curve, a common requirement in dose-response data analysis,
we will also assume that ν ≥ 0. When ν < 0, in fact, the curve is unbounded or even complex.

Our constraints have the benefit of giving the five parameters a clear and easy interpretation:
α is the value of the function when x approaches negative infinity, δ is the (signed) height
of the curve, that is α + δ is the value of the function when x approaches positive infinity,
η is the steepness or growth rate of the curve, ϕ is related to the mid-value of the function,
and ν regulates at which asymptote is the curve maximum growth. In dose-response analyses
parameter δ represents the maximum effect attributable to the drug and it is often denoted
in the literature as Emax (Macdougall 2006). Refer to Figure 1 for a visual explanation of the
five parameters.
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Figure 1: Generalized (5-parameter) logistic function with various choices of parameters.
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When ν = 1 we obtain the 4-parameter logistic function. If we also set (α, δ)⊤ = (0, 1)⊤ or
(α, δ)⊤ = (1,−1)⊤ we obtain the 2-parameter logistic function. When ν = 1 the parameter
ϕ represents the value at which the function is equal to its midpoint, that is α + δ/2. In
such a case, as a measure of drug potency, ϕ is also known as the half maximal effective log-
concentration or log-EC50. As a a measure of antagonist drug potency, ϕ is also known as the
half maximal inhibitory log-concentration (log-IC50). When ν → 0 we obtain the Gompertz
function, i.e.,

lim
ν→0

f(x;ψ) = α+ δ exp {− exp{−η(x− ϕ)}}

The domain of the logistic function is the whole real line, that is x ∈ R. In dose-response
analyses this means that the logistic function is a model for mapping log-doses to responses.
When data is provided on the actual dose-scale we can use the log-logistic function instead:

f+(d;ψ) = α+ δ

(

dη

dη + νϕη+

)
1

ν

(2)

where d = ex and ϕ+ = eφ. Interpretation of parameters is equivalent to the logistic function
with the only exception of ϕ+ being now defined on the positive real line. Note that the
log-logistic function is well-defined also for a dose of 0, where the function is equal to α.
In the literature, the log-logistic function with ν = 1 is also referred to as the Emax model
(Macdougall 2006).

2.2. Normal nonlinear regression

For a particular dose dk (k = 1, . . . ,m) let (yki, wki)
⊤ represent respectively the i-th observed

outcome (i = 1, . . . , nk) and its associated positive weight. If observations have all the same
importance we simply set wki = 1 for all k and i. We assume that each unit has expected
value and variance

E[Yki|dk,ψ] = µ(dk;ψ)

V[Yki|wki, σ] =
σ2

wki

where µ(dk;ψ) is a nonlinear function of the dose dk and a vector of unknown parameters
ψ. Parameter σ > 0 is instead the standard deviation common to all observations. In our
package, µ(dk;ψ) is simply the generalized log-logistic function (Equation 2) or the generalized
logistic function (Equation 1) with the transformation dk = exk .

By assuming the observations to be stochastically independent and Normally distributed, the
joint log-likelihood function is

l(ψ, σ) = −
1

2

(

n log(2π) + n log(σ2) −
m
∑

k=1

nk
∑

i=1

log(wki) +
1

σ2

m
∑

k=1

nk
∑

i=1

wki(yki − ȳk)
2+

+
1

σ2

m
∑

k=1

wk.(ȳk − µ(dk;ψ))2
)

where nk is the sample size at dose k, n =
∑

k nk is the total sample size, ȳk = (
∑

iwkiyki)/wk.
is the weighted average corresponding to dose dk and wk. =

∑

iwki. Maximum likelihood
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estimate ψ̂ is obtained by minimizing the residual sum of squares from the means, i.e.,

ψ̂ = arg min
ψ∈Ψ

1

2

m
∑

k=1

wk.(ȳk − µ(dk;ψ))2 = arg min
ψ∈Ψ

g(ψ) (3)

Maximum likelihood estimate of the variance is

σ̂2 =
1

n

m
∑

k=1

nk
∑

i=1

wki(yki − µ(dk; ψ̂))2 =
D2

n

while its unbiased estimate is

s2 =
D2

n− p

where p is the total number of parameters estimated from the data.

For convenience we will use from now on the simplified notation µk to denote the function
µ(dk;ψ). It is important to remember that µk will always be a function of a dose dk and a
particular parameter value ψ. We will also use the notation g(s) and g(st) to denote respec-
tively the first- and second-order partial derivatives of function g(ψ), with respect first to ψs
and then ψt.

Partial derivatives of the sum of squares g(ψ) are

g(s) =
m
∑

k=1

wk.(µk − ȳk)µ
(s)
k

g(st) =
m
∑

k=1

wk.
(

(µk − ȳk)µ
(st)
k + µ

(s)
k µ

(t)
k

)

The gradient and Hessian of g(ψ) are therefore

∇ψg =
m
∑

k=1

wk.(µk − ȳk)∇ψµk

Hψg =
m
∑

k=1

wk.
(

(µk − ȳk)Hψµk + (∇ψµk) (∇ψµk)
⊤
)

From the previous expressions we can easily retrieve the observed Fisher information matrix,
that is the negative Hessian matrix of the log-likelihood evaluated at the maximum likelihood
estimate, as

I(ψ, σ) =
1

σ2

(

Hψg −2∇ψg/σ

−2 (∇ψg)⊤ /σ q

)

(4)

where

q =
3
∑

k

∑

iwki(yki − µk)
2

σ2
− n

It is also worth noting that the (expected) Fisher information matrix is

I(ψ, σ) =
1

σ2

(

∑

k wk. (∇ψµk) (∇ψµk)
⊤

0

0 3
∑

k

∑

iwki − n

)

(5)
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2.3. Statistical inference

When closed-form solutions of maximum likelihood estimates are missing, also closed-form
expressions of other inferential quantities are not available. Fortunately, we can still rely on
asymptotic, large sample size considerations, to obtain approximate values of quantities of
interest. Obviously, the larger the sample size the better the approximation.

Using either versions (Equation 4 or Equation 5) of the Fisher information matrix we can
calculate approximate confidence intervals. In fact, we can think of the Fisher information
matrix as an approximate precision matrix, so that we only have to invert the matrix and take
diagonal elements as approximate variance estimates. In our package we use the observed
Fisher information matrix (Equation 4) because it is shown to perform better with finite
sample sizes (Efron and Hinkley 1978). As an example, an approximate confidence interval
for generic parameter ψj is

ψ̂j ± tn−p,α

√

(

I(ψ̂, σ̂)−1
)

jj

where tn−p,α is the appropriate quantile of level α of a Student’s t-distribution with n −

p degrees of freedom and
(

I(ψ̂, σ̂)−1
)

jj
is the j-th element in the diagonal of the inverse

observed Fisher information matrix. Using the delta method (Oehlert 1992) we can compute
approximate point-wise confidence intervals for the mean function

µ(dk; ψ̂) ± tn−p,α

√

s2
(

∇
ψ̂
µk
)⊤ (

H
ψ̂
f
)−1 (

∇
ψ̂
µk
)

or for a new, yet to be observed, value y(d)

µ(d; ψ̂) ± tn−p,α

√

s2

(

1 +
(

∇
ψ̂
µ
)⊤ (

H
ψ̂
f
)−1 (

∇
ψ̂
µ
)

)

We can also construct a (conservative and approximate) confidence band over the whole mean
function µ(·;ψ) with the correction proposed by Gsteiger, Bretz, and Liu (2011)

µ(d; ψ̂) ±

√

qp,αs2
(

∇
ψ̂
µ
)⊤ (

H
ψ̂
f
)−1 (

∇
ψ̂
µ
)

where qp,α is the appropriate quantile of level α of a χ2-distribution with p degrees of freedom.

2.4. Optimization by Newton method with a trust region

Closed-form formula of the maximum likelihood estimate ψ̂, that is the solution of equation 3,
is in general not available for nonlinear regression models. We can, however, try to minimize
numerically the sum of squares g(ψ).

Suppose that our algorithm is at iteration t with current solution ψt. We want to find a new
step u such that g(ψt + u) < g(ψt). We start by illustrating the standard Newton method.
We approximate our function by a second-order Taylor expansion, that is

g(ψt + u) ≈ g(ψt) + ∇⊤
ψt
u+

1

2
u⊤

Hψt
u
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The theoretical minimum is attained when the gradient with respect to u is zero, that is
∇ψt

+ Hψt
u = 0 or u = −H

−1
ψt

∇ψt
. The Newton’s candidate solution for iteration t + 1 is

often presented as

ψt+1 = ψt − γH
−1
ψt

∇ψt

where 0 < γ ≤ 1 is a modifier of the step size for ensuring convergence (Armijo 1966).

When the method converges the algorithm is quadratically fast, or at least superlinear (Bon-
nans, Gilbert, Lemarechal, and Sagastizábal 2006): the closer g(ψ) is to a quadratic function
the better its Taylor approximation, the better the algorithm convergence properties.

−6 −4 −2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

log(dose)

P
er

ce
nt

 v
ia

bi
lit

y

True estimate
BFGS

A)

η

φ

 0.2 

 0.4 

 0.6  0.8 

 1 

 1 

 1.5 

 3 
 3.4 

0.0 0.5 1.0 1.5 2.0

−
20

−
10

0
10

20

B)

Figure 2: Problematic real data (cell line: BT-20, compound: BI-2536, dataset: CTRPv2)
(Rees et al. 2016; Seashore-Ludlow et al. 2015; Basu et al. 2013). A) 4-parameter logistic
function as fitted by the BFGS algorithm. Starting point ψ = (α, δ, η, ϕ)⊤ = (1,−1, 1, 0)⊤.
B) Contour plot of the residual sum of squares g(ψ) with respect to parameters η and ϕ.
Fixed parameters α = 1 and δ = −1.

When the Hessian matrix is almost singular it is still possible to apply quasi-Newton methods
(Luenberger and Ye 2008) to (try) avoid convergence problems. In our nonlinear regression
setting we might have the extra complication of an objective function far from a quadratic
shape, so that the (quasi-)Newton method might fail to converge. Although this situations can
be thought to be rare, they are often encountered in real applications. For example, in Figure
2 we show a problematic surface that the quasi-Newton BFGS algorithm, as implemented by
the base R function optim(), is not able to properly explore.

We will try to overcome the issues in the optimization by focusing our search only in a
neighborhood of the current estimate, that is using a trust-region around the current solution
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ψt. The problem to solve is now

min
u∈Rp

g(ψt) + ∇⊤
ψt
u+

1

2
u⊤

Hψt
u s.t. ||u|| ≤ ∆t

where ∆t > 0 is the trust-region radius. Our implementation is based on the exposition of
Nocedal and Wright (2006) and follows closely that of Mogensen and Riseth (2018). Briefly,
at each iteration we compute the standard Newton’s step and accept the new solution if
it is within the trust-region. If the Newton’s step is outside the admissible region we try
an alternative step by a linear combination of the Newton’s step and the steepest descent
step, with the constraint that its length is exactly equal to the radius ∆t (dogleg method).
This new alternative step is then accepted or rejected on the basis of the actual reduction in
the function value. The region radius ∆t+1 for iteration t + 1 is adjusted according to the
length and acceptance of the step just computed. For more details, we refer the reader to the
extensive discussion found in Nocedal and Wright (2006).

2.5. Algorithm initialization

One of the major challenges in fitting nonlinear regression models is choosing a good starting
point for initializing the optimization algorithm. Looking at the example in Figure 2, the
choice of ψ0 = (1,−1, 1, 0)⊤ made the BFGS algorithm converge to a local optimum while a
global optimum might have been found if a better starting point was instead chosen.

First of all, we present the closed-form maximum likelihood estimates α̂ and δ̂ when all other
parameters have been fixed. For the logistic function define hk = (1+ν exp(−η(xk−ϕ)))−1/ν .
For the log-logistic function define hk = (dη/(dη + νϕη+))1/ν . Assume hk to be known. Our
mean function is now

µk(α, δ) = α+ δhk

while the residual sum of squares becomes

g(α, δ) =
1

2

m
∑

k=1

wk.(ȳk − α− δhk)
2

with gradient

g(α) = α
m
∑

k=1

wk + δ
m
∑

k=1

wkhk −
m
∑

k=1

wkȳk

g(δ) = α
m
∑

k=1

wkhk + δ
m
∑

k=1

wkh
2
k −

m
∑

k=1

wkhkȳk

It is easy to prove that the gradient is equal to zero when

α̂ =
(
∑

k wkhk) (
∑

k wkhkȳk) − (
∑

k wkȳk)
(
∑

k wkh
2
k

)

(
∑

k wkhk)
2 − (

∑

k wk)
(
∑

k wkh
2
k

)

δ̂ =
(
∑

k wkhk) (
∑

k wkȳk) − (
∑

k wk) (
∑

k wkhkȳk)

(
∑

k wkhk)
2 − (

∑

k wk)
(
∑

k wkh
2
k

)

(6)

Our initialization strategy is similar for both the logistic and log-logistic functions and can be
summarized in the following steps. Set ν = 1 by default to focus on the 4-parameter version.
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Define a = min{ȳ}−ϵ and b = max{ȳ}+ϵ, where ϵ is a very small number to avoid numerical
problems. By construction, zk = (ȳk − a)/(b − a) is defined in the range (0, 1). When data
is well-behaved and doses span properly the range of the function we can consider a and b to
be approximations of α̂ and α̂+ δ̂ respectively, that is zk ≈ hk. We now have the relationship

uk = log

(

zk
1 − zk

)

≈ −ηϕ+ ηxk = β0 + β1xk

Remember that ϕ = log(ϕ+) and xk = log(dk), thereby to avoid the logarithm of zero in the
log-logistic function we use in our implementation xk ≈ log(1 + dk). By fitting the simple
linear regression u = β⊤x we obtain estimates β̂0 and β̂1. Our initial estimates are therefore
η0 = |β̂1| and ϕ0 = −β̂0/β̂1. Note that for a monotonically decreasing function (δ < 0) the
coefficient β̂1 is negative, therefore to enforce the constraint η > 0 we use the absolute value
of β̂1. Finally, we set α0 and δ0 at their maximum likelihood estimates by plugging η0 and
ϕ0 into Equation 6.

In general, parameter ψ0 = (α0, δ0, η0, ϕ0, 1)⊤ is a good starting point for a numerical opti-
mization algorithm. For data that does not behave well we might obtain a very bad starting
point because of a poor approximation zk ≈ hk. To avoid problems with corner cases we also
perform a grid search over the parameter space of (η, ϕ, ν)⊤ using a space-filling maximum
entropy design with 250 samples (Santner, Williams, and Notz 2018; Dupuy, Helbert, and
Franco 2015). For each tested parameter (η, ϕ, ν)⊤ in the grid we compute the corresponding
values of α and δ using Equation 6. The parameter vector corresponding to the smallest
residual sum of squares is chosen as our second candidate initial point. To further increase
our chances of converging to the global optimum we add to the pool of initial points also
two sub-optimal parameters (in the current implementation we use the parameters associated
with the fifth and eighth lowest residual sum of squares).

The four chosen parameter vectors are passed in turn as starting points to the nlminb()

function. nlminb() is a very fast and efficient function and for well-behaved data it converges
in general to the global optimum. In this case, the best out of the four solutions is also the
solution to our optimization problem. To keep refining the solution in cases of problematic
data we feed the current solution as a starting point to our own trust region implementation
based on analytical gradient and Hessian.

3. Using drda

3.1. General overview

The main function of drda is drda() with signature

drda(

formula, data, subset, weights, na.action, mean_function = "logistic4",

lower_bound = NULL, upper_bound = NULL, start = NULL, max_iter = 1000

)

The first argument, formula, is a symbolic representation in the form y ~ x of the model to
be fitted, where y is the vector of responses and x is the vector of log-doses.
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data is an optional argument, typically a data.frame object, containing the variables in the
model. When data is not specified the variables are taken from the environment where the
function is being called.

subset is a logical vector, or a vector of indices, specifying the portion of data to be used for
model fitting.

weights is an optional argument that specifies the weights to be used for fitting. Usually
weights are used in situations where observations are not equally informative, i.e., when it
is known that some of the observations should have a smaller or larger impact on the fitting
process. If the weights argument is not provided then the ordinary least squares method is
applied.

na.action defines a function for handling NAs found in data. The default option is to use
na.omit(), i.e., to remove all data points associated with the missing values.

mean_function argument specifies the model that should be estimated. In the current ver-
sion of the package the argument can be any of ‘logistic5’, ‘logistic4’, ‘logistic2’,
‘gompertz’, ‘loglogistic5’, ‘loglogistic4’, ‘loglogistic2’, or ‘loggompertz’. Each model
is explained in Section 2.1. By default, the 4-parameter logistic function is chosen. Arguments
lower_bound and upper_bound are used for performing constrained optimization. They serve
as the minimum and maximum values allowed for the model parameters. They are vectors of
length equal to the number of parameters of the model specified by the mean_function ar-
gument. Values -Inf and Inf are allowed. The parameters for the 5-parameter (log-)logistic
function are listed in the following order: α, δ, η, ϕ, ν. For the other models the order is pre-
served but some of the parameters are excluded. Obviously, values in upper_bound must be
greater than or equal to the corresponding values in lower_bound.

start represents an optional vector of starting values for the parameters.

Finally, the max_iter argument sets the value for the maximum number of iterations in the
optimization algorithm.

After the call to drda(), all the common functions expected for a model fit are available:
coef(), deviance(), logLik(), anova(), predict(), residuals(), sigma(), summary(),
vcov(), weights().

To evaluate the efficacy of the treatment it is also possible to compute the normalized area
under or above the curve:

nauc(drda_object, xlim, ylim)

naac(drda_object, xlim, ylim)

The two-element vector xlim defines the interval of integration with respect to x. The two-
element vector ylim defines the theoretical minimum and maximum values for the response
variable y. Therefore, xlim and ylim together define a rectangle that is partitioned into two
regions by the dose-response curve. The normalized area under the curve (NAUC) is defined
as the area of the “lower” rectangle region divided by the total area of the rectangle. The
normalized area above the curve (NAAC) is simply its complement, i.e., 1 - NAUC. Default
value of xlim is c(-10, 10) for the logistic function and c(0, 1000) for the log-logistic
function. The xlim default values were chosen on the basis of dose ranges that are commonly
found in the literature. In the majority of real applications the response variable y is a relative
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measure against a control treatment, therefore the default value for ylim is chosen to be c(0,

1).

It is also possible to estimate effective doses at particular response levels:

effective_dose(drda_object, y, type, level)

The effective_dose() function estimates the doses at which the fitted curve is equal to the
specified response values y. Response values can either be passed on a relative scale (type

= "relative"), in which case the value of y is expected to be in the range (0, 1), or on an
absolute scale (type = "absolute"), in which case the value of y can span the whole real line.
Additionally, it is possible to specify the confidence interval level via the level parameter.
Default values are y = 0.5, type = "relative", and level = 0.95.

3.2. Usage examples

To demonstrate how to use drda, we create the following example data:

R> dose <- rep(c(0.0001, 0.001, 0.01, 0.1, 1, 10, 100), each = 3)

R> relative_viability <- c(

+ 0.877362, 0.812841, 0.883113, 0.873494, 0.845769, 0.999422, 0.888961,

+ 0.735539, 0.842040, 0.518041, 0.519261, 0.501252, 0.253209, 0.083937,

+ 0.000719, 0.049249, 0.070804, 0.091425, 0.041096, 0.000012, 0.092564

+ )

This example imitates an experiment where seven drug doses have been tested three times
each. Relative viability measures have been obtained for each dose-replicate pair and, in this
case, comprise 21 values in the (0, 1) interval. Note that any finite real number is accepted
as a possible valid outcome.

Default fitting

After loading the package, the drda() function can be applied directly to the two variables
with the mean_function selected to be one of the log-logistic functions.

R> library("drda")

R> fit_ll4 <- drda(relative_viability ~ dose, mean_function = "loglogistic4")

If the user prefers the logistic function then doses have to be log-transformed:

R> log_dose <- log(dose)

R> fit_l4 <- drda(relative_viability ~ log_dose)

Note that we did not specify the mean_function argument because the 4-parameter logistic
function is the default model of drda(). The following calls are equivalent with respect to
the chosen mean_function.
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R> test_data <- data.frame(d = dose, x = log_dose, y = relative_viability)

R>

R> fit_ll4 <- drda(relative_viability ~ dose, mean_function = "loglogistic4")

R> fit_ll4 <- drda(y ~ d, data = test_data, mean_function = "loglogistic4")

R> fit_ll4 <- drda(y ~ d, data = test_data, mean_function = "ll4")

R>

R> fit_l4 <- drda(relative_viability ~ log_dose)

R> fit_l4 <- drda(y ~ x, data = test_data)

R> fit_l4 <- drda(y ~ x, data = test_data, mean_function = "l4")

To obtain summaries the user can apply the summary() function to the fitted object.

R> summary(fit_l4)

Call: drda(formula = y ~ x, data = test_data, mean_function = "l4")

Pearson Residuals:

Min 1Q Median 3Q Max

-1.8163 -0.4575 -0.0234 0.2062 2.0436

Parameters:

Estimate Std. Error Lower .95 Upper .95

Maximum 0.8791 0.0260 0.828 0.93

Height -0.8271 0.0412 -0.908 -0.75

Growth rate 1.1433 0.2754 0.604 1.68

Midpoint at -2.1177 0.1828 -2.476 -1.76

Residual std err. 0.0654 0.0119 0.042 0.09

Residual standard error on 17 degrees of freedom

Log-likelihood: 29.69

AIC: -49.38

BIC: -44.15

Optimization algorithm converged in 285 iterations

The summary() function provides information about the Pearson residuals, parameters’ and
residual standard error estimates, and their 95% confidence intervals. Together with the actual
point estimate, the widths of confidence intervals are a good starting point for assessing the
reliability of the model fit. The values of the log-likelihood function, AIC, and BIC are also
provided. Finally, the summary() function warns the user if the algorithm converged and if
so, in how many iterations.

Parameter estimates can be accessed using the coef() and sigma() functions, or by accessing
them directly.

R> coef(fit_l4) # or fit_l4$coefficients
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alpha delta eta phi

0.8791 -0.8271 1.1433 -2.1177

R> sigma(fit_l4) # or fit_l4$sigma

[1] 0.06541

It is important to note that the coef() function always returns the parameter ϕ on the same
scale as the original x variable, in this case the log-EC50. Compare the estimated values with
those of the log-logistic fit:

R> coef(fit_ll4) # or fit_ll4$coefficients

alpha delta eta phi

0.8791 -0.8271 1.1433 0.1203

Our object can be further explored with all the familiar functions expected for a model fit:

R> deviance(fit_l4)

[1] 0.07274

R> vcov(fit_l4)

alpha delta eta phi

alpha 0.0006765 -0.0008055 -0.003198 -0.0014702

delta -0.0008055 0.0016948 0.007015 -0.0005423

eta -0.0031976 0.0070153 0.075847 -0.0056588

phi -0.0014702 -0.0005423 -0.005659 0.0334268

R> residuals(fit_l4)

1 2 3 4 5 6 7

-0.001531 -0.066052 0.004220 -0.002203 -0.029928 0.123725 0.055300

8 9 10 11 12 13 14

-0.098122 0.008379 0.008889 0.010109 -0.007900 0.133678 -0.035594

15 16 17 18 19 20 21

-0.118812 -0.008069 0.013486 0.034107 -0.011355 -0.052439 0.040113

R> logLik(fit_l4)

'log Lik.' 29.69 (df=5)

R> predict(fit_l4)
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1 2 3 4 5 6 7 8 9

0.87889 0.87889 0.87889 0.87570 0.87570 0.87570 0.83366 0.83366 0.83366

10 11 12 13 14 15 16 17 18

0.50915 0.50915 0.50915 0.11953 0.11953 0.11953 0.05732 0.05732 0.05732

19 20 21

0.05245 0.05245 0.05245

R> predict(fit_l4, newdata = log(c(0.002, 0.2, 2)))

[1] 0.87157 0.34872 0.08404

Model comparison and selection

The anova() function can be used to compare competing models within the same logistic
family of models. The constant model (δ = 0), i.e., a flat horizontal line, is always included
by default in the comparisons. When the model being fitted is not the 5-parameter function,
the latter is always included as the general reference model in the likelihood-ratio test.

R> fit_l2 <- drda(y ~ x, data = test_data, mean_function = "logistic2")

R> anova(fit_l2)

Analysis of Deviance Table

Model 1: a

Model 2: 1 - 1 / (1 + exp(-e * (x - p))) (Fit)

Model 3: a + d / (1 + n * exp(-e * (x - p)))^(1 / n) (Full)

Model 3 is the best model according to the Akaike Information Criterion.

Resid. Df Resid. Dev Df AIC BIC Deviance LRT Pr(>Chi)

Model 1 20 2.871 1 21.8 23.9

Model 2 19 0.144 2 -39.1 -36.0 -2.728 62.9 2.2e-15 ***

Model 3 16 0.073 5 -47.4 -41.2 -0.071 14.3 0.0025 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the p-value refers here to the likelihood-ratio test with a χ2-distribution asymptotic
approximation. In this particular case we are testing the null hypothesis that the complete 5-
parameter logistic function is equivalent, likelihood-wise, to our 2-parameter logistic function.
The significant result indicates that the 2-parameter logistic function provides a worse fit for
the observed data compared to a 5-parameter logistic function.

R> fit_gz <- drda(y ~ x, data = test_data, mean_function = "gompertz")

R> fit_l4 <- drda(y ~ x, data = test_data, mean_function = "logistic4")

R> anova(fit_l2, fit_gz, fit_l4)
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Analysis of Deviance Table

Model 1: a

Model 2: 1 - 1 / (1 + exp(-e * (x - p)))

Model 3: a + d * exp(-exp(-e * (x - p)))

Model 4: a + d / (1 + exp(-e * (x - p)))

Model 5: a + d / (1 + n * exp(-e * (x - p)))^(1 / n) (Full)

Model 4 is the best model according to the Akaike Information Criterion.

Resid. Df Resid. Dev Df AIC BIC Deviance LRT Pr(>Chi)

Model 1 20 2.871 21.8 23.9

Model 2 19 0.144 1 -39.1 -36.0 -2.728 62.9 2.2e-15 ***

Model 3 17 0.079 2 -47.7 -42.5 -0.065 12.6 0.0018 **

Model 4 17 0.073 0 -49.4 -44.2 -0.006 1.6

Model 5 16 0.073 1 -47.4 -41.2 0.000 0.0 0.8267

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These results indicate the 4-parameter logistic function as the best fit for the data. Not only
the model has the lowest AIC value, but the likelihood ratio test (Model 5 vs Model 4) is
also not significant. Indeed, the data was generated from a 4-parameter logistic function
with ψ = (0.86,−0.84, 1,−2)⊤ and σ = 0.05. Note that the likelihood ratio test between the
4-parameter logistic model and the Gompertz model could not be performed because of an
equal number of parameters (they are not nested models).

Weighted fitting

In case when not all of the observations should be utilized equally in the model, the weights
argument can be provided to the drda() function. All the generic functions described above
also apply to a weighted fit object.

R> weights <- c(

+ 0.990868, 1.095238, 0.974544, 0.973318, 1.107001, 1.012844, 1.052806,

+ 1.019427, 1.032544, 0.919827, 0.971385, 0.959019, 1.037789, 1.006835,

+ 0.969383, 0.935633, 1.016597, 1.011085, 0.982307, 1.066032, 0.959870

+ )

R> fit_wl4 <- drda(y ~ x, data = test_data, weights = weights)

R> summary(fit_wl4)

Call: drda(formula = y ~ x, data = test_data, weights = weights)

Pearson Residuals:

Min 1Q Median 3Q Max

-1.7940 -0.4663 -0.0153 0.2062 2.0384
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Parameters:

Estimate Std. Error Lower .95 Upper .95

Maximum 0.879 0.0260 0.8278 0.93

Height -0.827 0.0415 -0.9082 -0.75

Growth rate 1.133 0.2702 0.6029 1.66

Midpoint at -2.112 0.1901 -2.4843 -1.74

Residual std err. 0.066 0.0121 0.0424 0.09

Residual standard error on 17 degrees of freedom

Log-likelihood: 29.52

AIC: -49.04

BIC: -43.82

Optimization algorithm converged in 289 iterations

R> weights(fit_wl4)

[1] 0.9909 1.0952 0.9745 0.9733 1.1070 1.0128 1.0528 1.0194 1.0325 0.9198

[11] 0.9714 0.9590 1.0378 1.0068 0.9694 0.9356 1.0166 1.0111 0.9823 1.0660

[21] 0.9599

R> residuals(fit_wl4, type = "weighted")

1 2 3 4 5 6 7

-0.001009 -0.068584 0.004677 -0.001524 -0.030796 0.125179 0.058145

8 9 10 11 12 13 14

-0.097690 0.009904 0.008004 0.009428 -0.008268 0.134622 -0.037250

15 16 17 18 19 20 21

-0.118485 -0.007782 0.013622 0.034320 -0.010973 -0.053849 0.039578

Constrained optimization

The drda() function allows the choice of admissible values for the parameters by setting the
lower_bound and upper_bound arguments appropriately. Unconstrained parameters are set
to -Inf and Inf respectively. While setting the constraints manually, one should be careful in
choosing the values as the optimization problem might become very difficult to solve within
a reasonable number of iterations.

In the next example α is fixed to 1, δ is fixed to -1, the growth rate η is allowed to vary in
[0, 5], while the midpoint parameter ϕ is left unconstrained.

R> lb <- c(1, -1, 0, -Inf)

R> ub <- c(1, -1, 5, Inf)

R> fit_cnstr <- drda(

+ y ~ x, data = test_data, lower_bound = lb, upper_bound = ub

+ )

R> summary(fit_cnstr)
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Call: drda(formula = y ~ x, data = test_data, lower_bound = lb, upper_bound = ub)

Pearson Residuals:

Min 1Q Median 3Q Max

-2.006 -1.046 0.235 0.462 1.002

Parameters:

Estimate Std. Error Lower .95 Upper .95

Maximum 1.0000 NA NA NA

Height -1.0000 NA NA NA

Growth rate 0.6405 0.1021 0.4404 0.84

Midpoint at -2.4224 0.2321 -2.8773 -1.97

Residual std err. 0.0869 0.0145 0.0585 0.12

Residual standard error on 19 degrees of freedom

Log-likelihood: 22.55

AIC: -39.1

BIC: -35.97

Optimization algorithm converged in 333 iterations

Finally, it is possible to provide an explicit starting point using the start argument or change
the maximum number of iterations with the max_iter argument.

R> fit_cnstr <- drda(

+ y ~ x, data = test_data, lower_bound = lb, upper_bound = ub,

+ start = c(1, -1, 0.6, -2), max_iter = 10000

+ )

Basic plot functionality

As basic plot functionality, drda allows to plot the data, the maximum likelihood curve and the
approximate confidence intervals for the curve. Alongside the common plot() arguments, it
is possible to customize the plot by changing the scale of the x-axis with the argument base or
the level of the confidence intervals with the level argument (default to 0.95). The available
options for base are ‘e’, ‘2’, and ‘10’, with the default setting depending on the scale used for
the x variable in the model formula. The curve midpoint and the corresponding (log-)dose
are also highlighted in the plot.

R> fit_l5 <- drda(y ~ x, data = test_data, mean_function = "logistic5")

R> plot(fit_l5)



Alina Malyutina, Jing Tang, Alberto Pessia 19

Predictor

R
es

po
ns

e

−10 −5 0 5

0.
0

0.
4

0.
8

logistic5

It is possible to plot any number of models within the same figure.

R> plot(

+ fit_l2, fit_l4, fit_gz, base = "10", level = 0.9, xlim = c(-10, 5),

+ ylim = c(-0.1, 1.1), xlab = "Dose", ylab = "Relative viability",

+ cex = 0.9, legend = c("2-p logistic", "4-p logistic", "Gompertz")

+ )
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Compare against plots of log-logistic functions:

R> fit_ll2 <- drda(y ~ d, data = test_data, mean_function = "loglogistic2")

R> fit_lgz <- drda(y ~ d, data = test_data, mean_function = "loggompertz")

R> plot(

+ fit_ll2, fit_ll4, fit_lgz, base = "10", level = 0.9,

+ xlim = c(0, 100), ylim = c(-0.1, 1.1), xlab = "Dose",
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+ ylab = "Relative viability", cex = 0.9,

+ legend = c("2-p log-logistic", "4-p log-logistic", "log-Gompertz")

+ )
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Treatment efficacy metrics

To obtain a measure of treatment efficacy, functions nauc() and naac() compute respectively
the normalized area under the curve and above the curve. Since our example data refers to
viability data, we use here the NAAC measure: the closer the value to 1 the better the
treatment effect.

R> naac(fit_l4)

[1] 0.622

To allow the values to be comparable between different compounds and/or studies, the func-
tion sets a hard constraint on both the x and y variables (see Section 3.1). However, the
intervals can be easily changed if needed.

R> naac(fit_l4, xlim = c(-2, 2), ylim = c(0.1, 0.9))

[1] 0.9063

Another useful information for treatment efficacy is the effective dose, that is the (log-)dose
that produces a specific response.

R> effective_dose(fit_l4, y = c(0.75, 0.95))

Estimate Lower .95 Upper .95

0.75 -1.1568 -1.6723 -0.6413

0.95 0.4576 -0.6893 1.6045
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By default effective_dose() uses a relative scale for the response, that is the previous
results are for the 75% and 95% response. Compare them to the actual values of 0.75 and
0.95:

R> effective_dose(fit_l4, y = c(0.75, 0.95), type = "absolute")

Estimate Lower .95 Upper .95

0.75 -3.593 -4.234 -2.953

0.95 NA NA NA

The missing values are a consequence of the fact that the estimated upper bound of the curve
is α̂ = 0.88 and there is no dose such that µ(log(d); ψ̂) = 0.95.

4. Benchmarking

In this section we evaluate the performance and accuracy of drda. We want to compare its
performance against the three packages described in Section 1. To do that we select the
most widely used model for dose-response curve fitting, that is the 4-parameter log-logistic
function. It is the only model implemented in all the four packages we aim to compare. As
a control case, we also add to the comparison the nls() function from package stats. With
nls() the doses are first log-transformed and the fit is done using the SSfpl() self-starting
function.

Define, for each parameter, the following possible values:

σ ∈ {0.05, 0.1}, α ∈ {0, 0.2, 0.45}, δ ∈ {−0.95, 0.3, 1.2},

η ∈ {0.1, 2, 5}, ϕ ∈ {0.0001, 1, 100}

All the possible combinations of the previous values form a set of 162 vector parameters.

For each parameter vector we simulate 100 datasets, with 7 doses and 3 replicates per dose,
from a Normal distribution centered on the corresponding log-logistic function. The seven
doses are uniformly distributed on the log10 scale: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100. Finally,
we apply the fitting function of each package on each one of the 16200 simulated datasets.

For drm() from package drc we select the 4-parameter log-logistic model with argument fct

= LL.4() and fix the maximum number of iterations to 10000, similar to drda(). For nplr()

from package nplr we set LPweight to 0 for the ordinary least squares method. We fix npars

to four for the 4-parameter log-logistic model. For fitMod() from package DoseFinding we
choose the 4-parameter log-logistic model by setting model = "sigEmax" (see Section 2.1).
Since the fitMod() function requires the user to set constraints on the nonlinear parameters,
we use the default values bnds = defBnds(max(dose))$sigEmax. For each dataset we store
the residual sum of squares (RSS), convergence status, and the elapsed time of the function.

Since all packages are solving the same optimization problem, i.e., minimization of the residual
sum of squares, we define the absolute relative error of package k as

ρk =

∣

∣

∣

∣

∣

1 −
RSSk

min{RSSDoseF inding,RSSdrc,RSSdrda,RSSnls,RSSnplr}
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Package % Convergence Mean Minimum First quartile Median Third quartile Maximum

DoseFinding - 1.587 0.000 2.93 10−10 0.012 0.601 60.261
drc 83.8 0.017 0.000 1.49 10−5 2.38 10−4 0.004 3.947
drda 100.0 2.25 10−7 0.000 0.000 0.000 0.000 0.002
nplr - 1.843 0.000 1.13 10−9 0.028 1.479 41.705
nls 25.9 5.65 10−4 0.000 0.000 0.000 0.000 0.189

Table 1: Summary statistics of the RSS relative error for simulated models. A total of
162 vector parameters were analysed. For each parameter, 100 datasets with 7 doses and 3
replicates per dose were simulated.

Package % Convergence Mean Minimum First quartile Median Third quartile Maximum

DoseFinding - 0.445 0.000 0.000 3.37 10−4 0.018 559.641
drc 97.95 0.08 0.000 2.40 10−7 7.55 10−4 0.033 76.804
drda 99.99 2.76 10−4 0.000 0.000 0.000 0.000 0.432
nplr - 0.646 0.000 1.05 10−10 9.86 10−9 0.007 263.943
nls 36.50 0.006 0.000 0.000 0.000 0.000 1.394

Table 2: Summary statistics of the RSS relative error as measured on the CTRPv2 data.

For practical purposes small absolute relative errors can be considered equivalent to zero.

According to our simulation results (Table 1), drda provides the most accurate estimates:
in its worst performance drda achieved a relative error of just 0.2% from the best solution.
Overall, drda converged to a solution 100% of the times, drc 83.8% of the times, while
function nls() only 25.9% of the times. We cannot provide an accurate convergence rate for
DoseFinding and nplr because the information is missing from their returned fit object.

The higher accuracy comes at a small computational cost as more steps are needed for ex-
ploring the parameter space. Our data analysis reveals that fitMOD() and nplr() are the
fastest functions to complete the fit (mean elapsed time of 0.008s and 0.012s respectively).
drda found the global optimum in 0.514 seconds on average. For completeness, drm() and
nls() had an average of 0.04 and 0.013 seconds respectively.

We further tested drda on a real large-scale drug sensitivity dataset downloaded from the
Cancer Therapeutics Response Portal (CTRP) (Rees et al. 2016; Seashore-Ludlow et al.

2015; Basu et al. 2013). The data contains cell viability measures for 379533 cell line/drug
pairs (887 unique cell lines, 545 unique drugs). The majority of experiments (59.13%) were
performed for sixteen drug doses and no replicates, which is only one observation per dose.
The relative viability measures span the (0.0019, 2.864) interval. To speed up the benchmark
process we sampled at random 15000 datasets from the full set.

Similarly to our simulation study, we fitted the 4-parameter log-logistic model with each one
of the four packages. For each cell line-drug-package triple we performed the benchmark and
summarized the results in Table 2.

drda is flagged as the absolute best fit in 96.97% of the cases. When we only consider relative
errors greater than 1%, the percentage raises to 99.53% (70.87% for DoseFinding, 64.95% for
drc, 76.14% for nplr). When compared directly against the other packages, drda outperforms
DoseFinding in 29.07% of the cases (worse for 0.43%), drc in 34.81% of cases (worse for 0.02%),
and nplr in 23.58% of the cases (worse for 0.06%). When nls() succesfully converged, drda
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was better in 4.9% and worse in 0.02% of the cases.

Similar to the simulation study results, fitMod() and nplr() are again the fastest functions
to complete the fit (mean elapsed time of 0.009s and 0.013s respectively). On average drda

found the global optimum (or a very close solution) in 0.3 seconds, drm() in 0.092 seconds,
while nls() in 0.019 seconds.

Results shown in this section were obtained with R version 4.2.1, running under Rocky Linux
8.6 with an Intel® Xeon® Gold 6230 x86_64 Processor, using the Intel® oneAPI Math Kernel
Library 2022.1 as the BLAS/LAPACK back-end. Because of system-specific numerical insta-
bilities, executing the provided replication materials within a different environment will likely
produce minor differences from what was shown here.

5. Summary and discussion

In this paper we introduced the drda package, aimed at evaluating dose-response relation-
ship to advance our understanding of biological processes or pharmacological safety. These
types of experiments are of high importance in drug discovery, as they establish an essential
step for subsequent therapeutic advances. An appropriate interpretation of the experimental
data is grounded on a reliable estimation of the dose-response relationship. Therefore, it is
imperative to provide advanced optimization methods that allow more accurate estimation
of dose-response parameters, and the assessment of their statistical significance.

One of the main limitations of most optimization procedures is their convergence to local
solutions. The basic quasi-Newton methods applied to logistic curve fitting are sensitive to
the selection of a starting point and to cases where data is non-informative. Our package
effectively overcomes the convergence problem as we implement a comprehensive multi-step
initialization procedure. In case of problematic data, we additionally rely on our own trust
region Newton method implementation based on analytical gradient and Hessian. In addition
to standard routines, the package allows a user to evaluate a model fitness via the assessment
of confidence intervals for the whole dose-response curve, estimation of effective doses and
advanced plot options.

We have compared our package with the three state-of-the-art packages - DoseFinding, drc,
and nplr. Using simulations and a large-scale drug screening study, we have shown that drda

has clearly outperformed the other three packages in terms of accuracy. Despite the fact
that our package is on average slower than the other three packages, its gain in accuracy is a
favorable compromise. For most, if not all, experimental applications, accuracy has a higher
priority.

The current version of drda provides optimization tools for continuous data and relies on
the family of logistic functions only. In most applications the dose-response relationship is
fitted with a logistic function. However, in some specific scenarios, other models can be
a better description of the dose-response relationship. For example, a linear no-threshold
model might be preferred for fitting dose-response data in radiation protection studies. We
plan to extend our package to cover such cases in the future. The package is currently
completely implemented in base R, therefore there are still many opportunities for improving
its performance, by, for example, refactoring core critical functions in C.

If a researcher is looking for a package providing improved accuracy at a relatively low speed
cost, drda might provide a viable option.
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drda is available on the Comprehensive R Archive Network (CRAN) at https://CRAN.

R-project.org/package=drda. Users are encouraged to contribute to package development
at https://github.com/albertopessia/drda.
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