stanreg
tidier gains exponentiate
argument
(wish of GH #122)tidy.brmsfit
gains optional rhat
and
ess
columns (Alexey Stukalov)lqmm
models (David Luke
Thiessen)glmmTMB
tidying with
conf.int=TRUE
, random effects in multiple model components,
subset of components requested in tidy output (GH #136, Daniel
Sjoberg)tidy.brmsfit
works better for models with no
random/group-level effects (Matthieu Bruneaux)as.data.frame.ranef.lme
now processes the optional
argument (see ?as.data.frame)
, so that
data.frame(ranef_object)
works
stanreg
tidier now checks for spurious values in
...
TMB
tidierslme
tidier gets functionality for information about
variance models (use effects = "var_model"
) (Bill
Denney)
support for models with fixed sigma values in lme
tidier (Bill Denney)
added tidy
and glance
methods for
allFit
objects from the lme4
package
get_methods()
function returns a table of all
available tidy
/glance
/augment
methods
improved lme tidying for random effects values
brms tidiers no longer use deprecated
posterior_samples
glance.lme4
now returns nobs (Cory Brunson)
some tidiers are less permissive about unused arguments passed
via ...
TMB
tidiers (the TMB package does not
return an object of class TMB, so users should run
class(fit) <- "TMB"
before tidying)term names are no longer “sanitized” in gamlss
tidiers (e.g. “(Intercept)” is not converted to “X.Intercept.”)
gamlss glance
method returns nobs
(GH
#113)
Wald confidence intervals for lmerTest
models now
respect ddf.method
tidy.glmmTMB(.,effects="ran_vals")
fixed for
stringsAsFactors
changes in glmmTMB (GH #103)
tidy.gamlss
now works in a wider range of cases (GH
#74)
tidy.brmsfit
works for models without group effects
(GH #100)
dplyr
1.0.0; skip
exampleslmer
tidier gets ddf.method
(applies
only to lmerTest
fits)
glmmTMB
gets exponentiate
options
experimental GLMMadaptive
tidiers
tibble
packagegls
tidier gets confint
(GH #49)estimate.method
in MCMC tidiers goes away;
use robust
to compute point estimates/uncertainty via
median and MAD rather than mean and SEmisc fixes: lme4 tidiers (confint for ran_vals
,
profile conf intervals fixed), R2jags, gamlss …
ran_vals
works for glmmTMB
don’t ignore conf.level
in
tidy.(merMod|glmmTMB)
(GH #30,31: @strengejacke)
levels correct in tidy.brmsfit
(GH #36: @strengejacke)
component
argument works for random effects in
glmmTMB
(GH #33: @strengejacke)
brmsfit
and rstanarm
methods allow
conf.method="HPDinterval"
tidy.brmsfit
gets component column (GH #35: @strengejacke),
response column for multi-response models (GH #34: @strengejacke)
component tags are stripped from tidied brmsfit
objects
“Intercept” terms in brms
fits are re-coded as
“(Intercept)” by default, for dotwhisker/cross-model compatibility; for
previous behaviour, specify fix.intercept=FALSE
more consistent term names in brmsfit
,
rstanreg
tidiers
improved tidy.MCMCglmm
all methods return tibbles (tbl_df
) rather than data
frames
the value of the group variable for fixed-effect parameters has
changed from "fixed"
to NA
brmsfit
and rstanarm
tidiers are more
consistent with other tidiers (e.g. the argument for setting confidence
level is conf.level
rather than prob
)
"ran_vals"
extracts conditional modes/BLUPs/varying
parameters (deviations from population-level estimates), while
"ran_coefs"
extracts group-level estimatesimproved nlme
tidiers
improved glmmTMB
tidiers (can handle some
zero-inflation parameters)
lme4
tidiers now optionally take a pre-computed
profile argument when using conf.method="profile"
scales="sdcor"
[default]) or their
variances and covariances (if scales = "varcov"
)effects = "ran_coefs"
for the group-level estimates
(previously these effects were extracted with
tidy(model, "random")
) or effects = "ran_vals"
for the conditional modes (deviations of the group-level parameters from
the population-level estimates)effects
can take a vector of values (those listed
above, plus “fixed” for fixed effects). The default value is effects =
c(“ran_pars”, “fixed”) which extracts random effect
variances/covariances and fixed effect estimates.group
specifier (at least for
lme4 models
); use something like
tidyr::unite(term,term,group,sep=".")
to collapse the two
columns