This R package, basemodels
, provides equivalent
functions for the dummy classifier and regressor used in ‘Python’
‘scikit-learn’ library with some modifications. Our goal is to allow R
users to easily identify baseline performance for their
classification and regression problems. Our baseline models use
no predictors, and are useful in cases of class imbalance, multi-class
classification, and when users want to quickly identify how much
improvement their statistical and machine learning models are over
several baseline models. We use a “better” default (proportional
guessing) for the dummy classifier than the Python implementation
(“prior”, which is the most frequent class in the training set).
# Split the data into training and testing sets
set.seed(2023)
index <- sample(1:nrow(iris), nrow(iris) * 0.8)
train_data <- iris[index,]
test_data <- iris[-index,]
dummy_model <- dummy_classifier(train_data$Species, strategy = "proportional", random_state = 2024)
# Make predictions using the trained dummy classifier
pred_vec <- predict_dummy_classifier(dummy_model, test_data)
# Evaluate the performance of the dummy classifier
conf_matrix <- caret::confusionMatrix(pred_vec, test_data$Species)
print(conf_matrix)
# Make predictions using the trained dummy regressor
reg_model <- dummy_regressor(train_data$Sepal.Length, strategy = "median")
y_hat <- predict_dummy_regressor(reg_model, test_data)
# Find mean squared error
mean((test_data$Sepal.Length-y_hat)^2)
The package can be installed directly from CRAN:
install.packages("basemodels")
or directly from GitHub:
devtools::install_github("Ying-Ju/basemodels")