SCIBER is a simple method that outputs the batch-effect corrected expression data in the original space/dimension. These expression data of individual genes can be directly used for all follow-up analyses. SCIBER has four steps; each step has a clear biological meaning, and the algorithms used for them are k-means clustering, t-test, Fisher’s exact test, and linear regression, respectively, all of which are easily comprehensible.
Install SCIBER with standard commands,
install.packages('SCIBER')
or install the development version of SCIBER with the following commands.
# install.packages("devtools")
::install_github("RavenGan/SCIBER") devtools
Once SCIBER is installed, load it.
library(SCIBER)
We downloaded two batches of Human dendritic cell data from this paper
Villani, A. C., Satija, R., Reynolds, G., Sarkizova, S., Shekhar, K., Fletcher, J., … & Hacohen, N. (2017). Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science, 356(6335), eaah4573.
We library normalized the cells, log transformed the counts, and selected top 500 highly variable genes for each batch. We pooled all the genes and use them as the genes for both batches. The pre-processed data are available as part of this package.
Please note that for each data frame in the object meta
,
there should be two columns named cell_id
and
cell_type
. For instance, let meta_i
be a data
frame under meta
, and there should be two columns
meta_i$cell_id
and meta_i$cell_type
. If the
cell type information is not available, any values put in
meta_i$cell_type
should work.
data("HumanDC")
<- HumanDC[["exp"]]
exp <- HumanDC[["metadata"]] meta
We first specify the parameter we want to use in SCIBER. We set omega = 0.5 which is also the default setting in SCIBER. Setting ref_index = 1 indicates the first bacth is treated as the reference batch while the second is the query batch. By using n_core = 1, we only use 1 core to run SCIBER.
<- c()
omega 1]] <- 0.5
omega[[
<- 1
ref_index <- 1 n_core
Let’s run SCIBER to remove the batch effects.
<- SCIBER(input_batches = exp, ref_index = ref_index,
res batches_meta_data = meta, omega = omega, n_core = n_core)
#> [1] "The available number of cores is 10. SCIBER uses 1 to perform batch effect removal."
The output of SCIBER is a list of batches, which is the same as the input exp. The order of batches in res is the same as that of exp.
Next, we combine the output batches, do PCA and UMAP before plotting them.
library(stats)
library(Matrix)
library(uwot)
<- function(dat, PCs){
do_PCA <- prcomp(t(as.matrix(dat)), scale. = F)
dat_pca_embeddings <- dat_pca_embeddings$x
dat_pca_embeddings <- dat_pca_embeddings[, 1:as.numeric(PCs)]
dat_pca_embeddings
return(dat_pca_embeddings)
}
<- function(V) {
do_umap umap(
X = V,
n_threads = 6,
n_neighbors = 30L,
n_components = 2L,
metric = 'cosine',
n_epochs = NULL,
learning_rate = 1.0,
min_dist = 0.3,
spread = 1.0,
set_op_mix_ratio = 1.0,
local_connectivity = 1L,
repulsion_strength = 1,
negative_sample_rate = 1,
a = NULL,
b = NULL,
fast_sgd = FALSE,
verbose = FALSE
)
}
<- rbind(meta[[1]], meta[[2]])
meta_data rownames(meta_data) <- meta_data$cell_id
<- cbind(res[[1]], res[[2]])
projected_dat
all(rownames(meta_data) == colnames(projected_dat))
#> [1] TRUE
<- do_PCA(projected_dat, PCs = 20)
SCIBER_pca <- do_umap(SCIBER_pca) SCIBER_umap
Then, we load necessary packages and function for plots.
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(ggplot2)
library(ggthemes)
library(cowplot)
#>
#> Attaching package: 'cowplot'
#> The following object is masked from 'package:ggthemes':
#>
#> theme_map
<- function(
obtain_plot
umap_use,
meta_data,
label_name,palette_use = tableau_color_pal()(10),
pt_size = 4, point_size = 0.5, pt_shape = '.',
base_size = 12,
do_points = TRUE,
do_density = FALSE,
legend_position = "top"
){<- umap_use %>% data.frame() %>% cbind(meta_data) %>%
plt_df sample_frac(1L)
<- plt_df %>%
plt ggplot(aes_string("X1", "X2", col = label_name,fill = label_name)) +
theme_tufte(base_size = base_size) +
theme(panel.background = element_rect(fill = NA, color = "black")) +
guides(color = guide_legend(override.aes = list(stroke = 1,
alpha = 1, shape = 16, size = 4)),
alpha = FALSE) +
scale_color_manual(values = palette_use, guide = "none") +
scale_fill_manual(values = palette_use, guide = "none") +
theme(plot.title = element_text(hjust = 0.5, family = "sans"),
legend.text = element_text(family = "sans"),
legend.title = element_text(family = "sans"),
legend.position= as.character(legend_position)) +
labs(x = "UMAP 1", y = "UMAP 2")
if (do_points)
<- plt + geom_point(shape = pt_shape, size = point_size)
plt if (do_density)
<- plt + geom_density_2d()
plt
return(plt)
}
Choose colors for cell types and batches.
<- tableau_color_pal("Classic 20",
colors_cell direction = 1)(length(unique(meta_data$cell_type)))
<- tableau_color_pal("Classic Green-Orange 6",
colors_batch direction = 1)(length(unique(meta_data$dataset)))
Let’s see the umap plots!
<- obtain_plot(SCIBER_umap, meta_data, "dataset", palette_use = colors_batch,
SCIBER_plt1 pt_shape = 19, pt_size = .4, legend_position = "top")
#> Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
#> "none")` instead.
<- obtain_plot(SCIBER_umap, meta_data, "cell_type", palette_use = colors_cell,
SCIBER_plt2 pt_shape = 19, pt_size = .4, legend_position = "top")
#> Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
#> "none")` instead.
plot_grid(SCIBER_plt1, SCIBER_plt2, nrow = 2)
sessionInfo()
#> R version 4.1.2 (2021-11-01)
#> Platform: x86_64-apple-darwin17.0 (64-bit)
#> Running under: macOS Big Sur 10.16
#>
#> Matrix products: default
#> BLAS: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
#>
#> locale:
#> [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] cowplot_1.1.1 ggthemes_4.2.4 ggplot2_3.3.6 dplyr_1.1.2 uwot_0.1.14
#> [6] Matrix_1.5-1 SCIBER_0.2.2
#>
#> loaded via a namespace (and not attached):
#> [1] Rcpp_1.0.9 highr_0.9 pillar_1.9.0 bslib_0.4.0
#> [5] compiler_4.1.2 jquerylib_0.1.4 tools_4.1.2 digest_0.6.29
#> [9] gtable_0.3.1 jsonlite_1.8.2 evaluate_0.15 lifecycle_1.0.3
#> [13] tibble_3.2.1 lattice_0.20-45 pkgconfig_2.0.3 rlang_1.1.1
#> [17] cli_3.6.1 rstudioapi_0.13 yaml_2.3.5 parallel_4.1.2
#> [21] xfun_0.31 fastmap_1.1.0 withr_2.5.0 stringr_1.4.1
#> [25] knitr_1.39 generics_0.1.3 vctrs_0.6.2 sass_0.4.2
#> [29] grid_4.1.2 tidyselect_1.2.0 glue_1.6.2 R6_2.5.1
#> [33] RcppAnnoy_0.0.19 fansi_1.0.4 rmarkdown_2.19.2 irlba_2.3.5.1
#> [37] farver_2.1.1 purrr_0.3.5 magrittr_2.0.3 scales_1.2.1
#> [41] codetools_0.2-18 htmltools_0.5.3 colorspace_2.0-3 labeling_0.4.2
#> [45] utf8_1.2.3 stringi_1.7.8 munsell_0.5.0 cachem_1.0.6