GCPBayes: Bayesian Meta-Analysis of Pleiotropic Effects Using Group
Structure
Run a Gibbs sampler for a multivariate Bayesian sparse group selection model with Dirac, continuous and hierarchical spike prior for detecting pleiotropy on the traits. This package is designed for summary statistics containing estimated regression coefficients and its estimated covariance matrix. The methodology is available from: Baghfalaki, T., Sugier, P. E., Truong, T., Pettitt, A. N., Mengersen, K., & Liquet, B. (2021) <doi:10.1002/sim.8855>.
Version: |
4.2.0 |
Depends: |
R (≥ 3.5.0) |
Imports: |
MASS, mvtnorm, invgamma, gdata, truncnorm, postpack, wiqid, Rcpp (≥ 1.0.9) |
LinkingTo: |
Rcpp, RcppArmadillo |
Published: |
2024-03-14 |
DOI: |
10.32614/CRAN.package.GCPBayes |
Author: |
Yazdan Asgari [aut, cre],
Taban Baghfalaki [aut],
Benoit Liquet [aut],
Pierre-Emmanuel Sugier [aut],
Mohammed Sedki [aut],
Therese Truong [aut] |
Maintainer: |
Yazdan Asgari <yazdan.asgari at inserm.fr> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2.0)] |
URL: |
https://github.com/tbaghfalaki/GCPBayes |
NeedsCompilation: |
yes |
Materials: |
NEWS |
CRAN checks: |
GCPBayes results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=GCPBayes
to link to this page.