EMbC: Expectation-Maximization Binary Clustering

Unsupervised, multivariate, binary clustering for meaningful annotation of data, taking into account the uncertainty in the data. A specific constructor for trajectory analysis in movement ecology yields behavioural annotation of trajectories based on estimated local measures of velocity and turning angle, eventually with solar position covariate as a daytime indicator, ("Expectation-Maximization Binary Clustering for Behavioural Annotation").

Version: 2.0.4
Imports: Rcpp (≥ 0.11.0), sp, methods, RColorBrewer, mnormt, suntools
LinkingTo: Rcpp, RcppArmadillo
Suggests: move, sf, rgl, knitr
Published: 2023-10-03
DOI: 10.32614/CRAN.package.EMbC
Author: Joan Garriga, John R.B. Palmer, Aitana Oltra, Frederic Bartumeus
Maintainer: Joan Garriga <jgarriga at ceab.csic.es>
License: GPL-3 | file LICENSE
URL: <doi:10.1371/journal.pone.0151984>
NeedsCompilation: yes
Materials: NEWS
In views: SpatioTemporal, Tracking
CRAN checks: EMbC results

Documentation:

Reference manual: EMbC.pdf
Vignettes: The EMbC R-package: quick reference

Downloads:

Package source: EMbC_2.0.4.tar.gz
Windows binaries: r-devel: EMbC_2.0.4.zip, r-release: EMbC_2.0.4.zip, r-oldrel: EMbC_2.0.4.zip
macOS binaries: r-release (arm64): EMbC_2.0.4.tgz, r-oldrel (arm64): EMbC_2.0.4.tgz, r-release (x86_64): EMbC_2.0.4.tgz, r-oldrel (x86_64): EMbC_2.0.4.tgz
Old sources: EMbC archive

Reverse dependencies:

Reverse suggests: move

Linking:

Please use the canonical form https://CRAN.R-project.org/package=EMbC to link to this page.