ClustBlock: Clustering of Datasets

Hierarchical and partitioning algorithms to cluster blocks of variables. The partitioning algorithm includes an option called noise cluster to set aside atypical blocks of variables. The CLUSTATIS method (for quantitative blocks) (Llobell, Cariou, Vigneau, Labenne & Qannari (2020) <doi:10.1016/j.foodqual.2018.05.013>, Llobell, Vigneau & Qannari (2019) <doi:10.1016/j.foodqual.2019.02.017>) and the CLUSCATA method (for Check-All-That-Apply data) (Llobell, Cariou, Vigneau, Labenne & Qannari (2019) <doi:10.1016/j.foodqual.2018.09.006>, Llobell, Giacalone, Labenne & Qannari (2019) <doi:10.1016/j.foodqual.2019.05.017>) are the core of this package. The CATATIS methods allows to compute some indices and tests to control the quality of CATA data. Multivariate analysis and clustering of subjects for quantitative multiblock data, CATA, RATA, Free Sorting and JAR experiments are available. Clustering of rows in multi-block context (notably with ClusMB strategy) is also included.

Version: 4.0.0
Depends: R (≥ 3.4.0)
Imports: FactoMineR
Suggests: ClustVarLV
Published: 2024-05-21
DOI: 10.32614/CRAN.package.ClustBlock
Author: Fabien Llobell [aut, cre] (Oniris/XLSTAT), Evelyne Vigneau [ctb] (Oniris), Veronique Cariou [ctb] (Oniris), El Mostafa Qannari [ctb] (Oniris)
Maintainer: Fabien Llobell <fabienllobellresearch at gmail.com>
License: GPL-3
NeedsCompilation: no
Citation: ClustBlock citation info
Materials: NEWS
CRAN checks: ClustBlock results

Documentation:

Reference manual: ClustBlock.pdf

Downloads:

Package source: ClustBlock_4.0.0.tar.gz
Windows binaries: r-devel: ClustBlock_4.0.0.zip, r-release: ClustBlock_4.0.0.zip, r-oldrel: ClustBlock_4.0.0.zip
macOS binaries: r-release (arm64): ClustBlock_4.0.0.tgz, r-oldrel (arm64): ClustBlock_4.0.0.tgz, r-release (x86_64): ClustBlock_4.0.0.tgz, r-oldrel (x86_64): ClustBlock_4.0.0.tgz
Old sources: ClustBlock archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ClustBlock to link to this page.