ARIMAANN: Time Series Forecasting using ARIMA-ANN Hybrid Model

Testing, Implementation, and Forecasting of the ARIMA-ANN hybrid model. The ARIMA-ANN hybrid model combines the distinct strengths of the Auto-Regressive Integrated Moving Average (ARIMA) model and the Artificial Neural Network (ANN) model for time series forecasting.For method details see Zhang, GP (2003) <doi:10.1016/S0925-2312(01)00702-0>.

Version: 0.1.0
Depends: R (≥ 2.3.1), stats, forecast, tseries
Published: 2022-10-13
DOI: 10.32614/CRAN.package.ARIMAANN
Author: Ramasubramanian V. [aut, ctb], Mrinmoy Ray [aut, cre]
Maintainer: Mrinmoy Ray <mrinmoy4848 at gmail.com>
License: GPL-3
NeedsCompilation: no
CRAN checks: ARIMAANN results

Documentation:

Reference manual: ARIMAANN.pdf

Downloads:

Package source: ARIMAANN_0.1.0.tar.gz
Windows binaries: r-devel: ARIMAANN_0.1.0.zip, r-release: ARIMAANN_0.1.0.zip, r-oldrel: ARIMAANN_0.1.0.zip
macOS binaries: r-release (arm64): ARIMAANN_0.1.0.tgz, r-oldrel (arm64): ARIMAANN_0.1.0.tgz, r-release (x86_64): ARIMAANN_0.1.0.tgz, r-oldrel (x86_64): ARIMAANN_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ARIMAANN to link to this page.